

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All recreations are done with the approval of the OCM.

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceed the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-35835
 - Class Q Military
 - Class V Space Level
- Qualified Suppliers List of Distributors (QSLD)

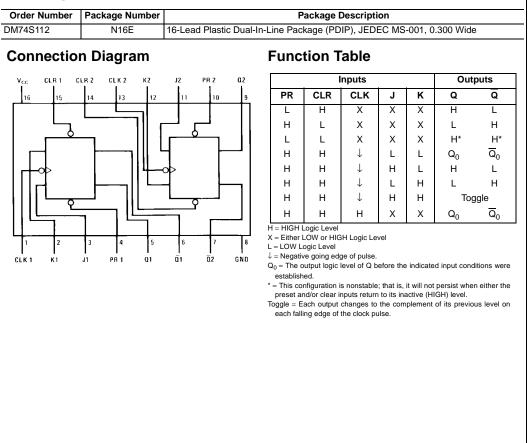
• Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OEM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

August 1986 Revised April 2000

DM74S112 Dual Negative-Edge-Triggered Master-Slave J-K Flip-Flop with Preset, Clear, and Complementary Outputs


General Description

FAIRCHILD

SEMICONDUCTOR

This device contains two independent negative-edge-triggered J-K flip-flops with complementary outputs. The J and K data is processed by the flip-flops on the falling edge of the clock pulse. The clock triggering occurs at a voltage level and is not directly related to the transition time of the negative going edge of the clock pulse. Data on the J and K inputs can be changed while the clock is HIGH or LOW without affecting the outputs as long as setup and hold times are not violated. A low logic level on the preset or clear inputs will set or reset the outputs regardless of the logic levels of the other inputs.

Ordering Code:

© 2000 Fairchild Semiconductor Corporation DS006459

www.fairchildsemi.com

Outputs

Absolute Maximum Ratings(Note 1)

Supply Voltage	7V
Input Voltage	5.5V
Operating Free Air Temperature Range	$0^{\circ}C$ to $+70^{\circ}C$
Storage Temperature Range	$-65^{\circ}C$ to $+150^{\circ}C$
	Input Voltage Operating Free Air Temperature Range

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Param	eter	Min	Nom	Max	Units
V _{CC}	Supply Voltage		4.75	5	5.25	V
VIH	HIGH Level Input Volta	ge	2			V
V _{IL}	LOW Level Input Voltag	ge			0.8	V
I _{ОН}	HIGH Level Output Cu	rrent			-1	mA
I _{OL}	LOW Level Output Cur	rent			20	mA
f _{CLK}	Clock Frequency (Note	2)	0	125	80	MHz
f _{CLK}	Clock Frequency (Note 3)		0	80	60	MHz
t _W	Pulse Width	Clock HIGH	6			
	(Note 2)	Clock LOW	6.5			
		Clear LOW	8			ns
		Preset LOW	8			
t _W	Pulse Width	Clock HIGH	8			
	(Note 3)	Clock LOW	8			1
		Clear LOW	10			ns
		Preset LOW	10			
t _{SU}	Setup Time (Note 4)(N	7↓			ns	
t _H	Input Hold Time (Note	0↓			ns	
T _A	Free Air Operating Ten	0		70	°C	

Note 2: C_L = 15 pF, R_L = 280Ω, T_A = 25°C and V_{CC} = 5V.

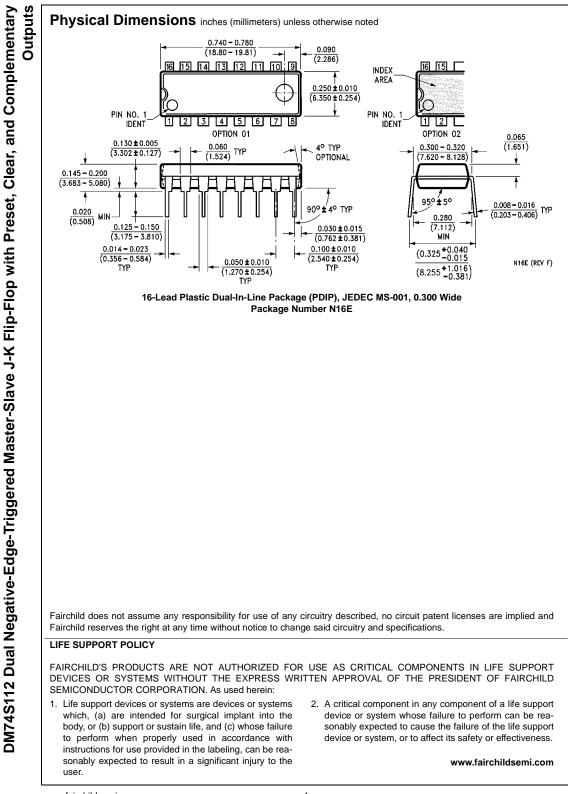
Note 3: C_L = 50 pF, R_L = 280Ω, T_A = 25°C and V_{CC} = 5V.

Note 4: T_A = 25°C and V_{CC} = 5V.

Note 5: The symbol (\downarrow) indicates the falling edge at the clock pulse is used for reference.

	nmended operating free air temperatu	re (unless otherwise noted)					
Symbol	Parameter	Conditions	Min	Typ (Note 6)	Мах	Units	
VI	Input Clamp Voltage	$V_{CC} = Min, I_I = -18 mA$				-1.2	V
V _{OH}	HIGH Level Output Voltage	V _{CC} = Min, I _{OH} = Max V _{IL} = Max, V _{IH} = Min		2.7	3.4		V
V _{OL}	LOW Level Output Voltage	V _{CC} = Min, I _{OL} = Max V _{IH} = Min, V _{IL} = Max				0.5	V
l _l	Input Current @ Max Input Voltage	$V_{CC} = Max, V_I = 5.5V$				1	mA
IIH	HIGH Level	V _{CC} = Max	J, K			50	
	Input Current	$V_{I} = 2.7V$	Clear		1	100	μA
			Preset			100	μΑ
			Clock			100	
IIL	LOW Level	V _{CC} = Max	J, K		1	-1.6	
	Input Current	$V_{I} = 0.5V$	Clear			-7	mA
		(Note 7)	Preset		1	-7	- IIIA
			Clock		1 1	-4	
l _{os}	Short Circuit Output Current	V _{CC} = Max (Note 8)		-40		-100	mA
I _{CC}	Supply Current	V _{CC} = Max (Note 9)	•	1	30	50	mA

Note 6: All typicals are at V_{CC} = 5V, T_A = 25^{\circ}C.


Note 7: Clear is tested with preset HIGH and preset is tested with clear HIGH.

Note 8: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Note 9: With all outputs OPEN, I_{CC} is measured with the Q and \overline{Q} outputs HIGH in turn. At the time of measurement, the clock input is grounded.

Switching Characteristics at $V_{CC} = 5V$ and $T_A = 25^{\circ}C$

		From (Input)					
Symbol	Parameter		C _L =	15 pF	C _L =	Units	
		To (Output)	Min	Max	Min	Max	
f _{MAX}	Maximum Clock Frequency		80		60		MHz
t _{PLH}	Propagation Delay Time LOW-to-HIGH Level Output	Preset to Q		7		9	ns
t _{PHL}	Propagation Delay Time HIGH-to-LOW Level Output	Preset to Q		7		12	ns
t _{PLH}	Propagation Delay Time LOW-to-HIGH Level Output	Clear to \overline{Q}		7		9	ns
t _{PHL}	Propagation Delay Time HIGH-to-LOW Level Output	Clear to Q		7		12	ns
t _{PLH}	Propagation Delay Time LOW-to-HIGH Level Output	Clock to Q or \overline{Q}		7		9	ns
t _{PHL}	Propagation Delay Time HIGH-to-LOW Level Output	Clock to Q or \overline{Q}		7		12	ns

www.fairchildsemi.com

	ogo			
ୁ ଅନୁ ଅନୁ	wind S New		Search 1001s	
	Products >>>DM74	<mark>6112</mark>		
[Informatio	on as of 1-Aug-200	00]		
DM74S	5112 FR A			

Dual Negative-Edge-Triggered J-K Flip-Flop with Preset Clear and Complementary Ou

Generic P/N 74S112

Contents

<u>General Description</u> <u>Features</u> <u>Datasheet</u> <u>Availability, Models, Samples & Pricing</u>

General Description

This device contains two independent negative-edge-triggered J-K flip-flops with complementary outputs. The J and K data is processed by the flip-flops on the falling edge of the clock pulse. The c triggering occurs at a voltage level and is not directly related to the transition time of the negative g edge of the clock pulse. Data on the J and K inputs can be changed while the clock is HIGH or LOV without affecting the outputs as long as setup and hold times are not violated. A low logic level on t preset or clear inputs will set or reset the outputs regardless of the logic levels of the other inputs.

Features

Datasheet

Receive datasheet via E-mail I or download now i; use <u>Adobe Acrobat</u> to view...

<u>DM74S112 Dual Negative-Edge-Triggered J-K Flip-Flop with Preset, Clear, and</u> <u>Complementary Outputs</u> (43 Kbytes; 29-JUL-00)

Availability, Models, Samples & Pricing

Part Number	Grade	Package		Status	Models		Budgetary Pricing		Std Pack	Package
		Туре	# pins		SPICE	IBIS	Quantity	\$US ea	Size	Marking
DM74S112N	Comm	MDIP	16	Full Production	N/A	N/A	1-24 25-99 100-1000		N/A	\$Y&Z&4& DM74S11
DM74S112CW	Comm	wat	fer	Preliminary	N/A	N/A		N/A	N/A	
[] []										
Quick Search	<u>Comp</u>	oany <u>W</u>	hat's N	ew Products	Search T	ools	Contact Faire	<u>child</u>	<u>Home</u>	

çopyrıgın