1600日間を発生される。

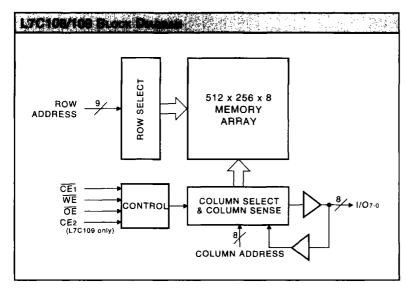
- ☐ 128K x 8 Static RAM with Chip Select Powerdown, Output Enable
- ☐ Auto-Powerdown[™] Design
- ☐ Advanced CMOS Technology
- ☐ High Speed to 17 ns maximum
- ☐ Low Power Operation Active: 550 mW typical at 25 ns Standby: 5 mW typical
- ☐ Data Retention at 2 V for Battery Backup Operation
- ☐ DECC SMD No. 5962-89598
- ☐ Available 100% Screened to MIL-STD-883, Class B
- ☐ Plug Compatible with Cypress CY7C108/109, IDT71024/71B024, Micron MT5C1008, Motorola MCM6226A/62L26A, Sony CXK581020
- ☐ Package Styles Available:
 - 32-pin Sidebraze, Hermetic DIP
 - 32-pin Plastic SOJ
 - 32-pin Ceramic LCC

NOTES BELLEVIA

The L7C108 and L7C109 are high-performance, low-power CMOS static RAMs. The storage circuitry is organized as 131,072 words by 8 bits per word. The 8 Data In and Data Out signals share I/O pins. The L7C108 has a single active-low Chip Enable. The L7C109 has two Chip Enables (one active-low). These devices are available in three speeds with maximum access times from 17 ns to 25 ns.

Inputs and outputs are TTL compatible. Operation is from a single +5 V power supply. Power consumption is 550 mW (typical) at 25 ns. Dissipation drops to 50 mW (typical) when the memory is deselected.

Two standby modes are available. Proprietary Auto-Powerdown™ circuitry reduces power consumption automatically during read or write accesses which are longer than the minimum access time, or when the memory is deselected. In addition, data may be retained in inactive storage with a supply voltage as low as 2 V. The L7C108 and L7C109


consume only 1.5 mW (typical), at 3 V, allowing effective battery backup operation.

The L7C108 and L7C109 provide asynchronous (unclocked) operation with matching access and cycle times. The Chip Enables and a three-state I/O bus with a separate Output Enable control simplify the connection of several chips for increased storage capacity.

Memory locations are specified on address pins A0 through A16. For the L7C108, reading from a designated location is accomplished by presenting an address and driving CE1 and OE LOW while WE remains HIGH. For the L7C109, CE1 and OE must be LOW while CE2 and WE are HIGH. The data in the addressed memory location will then appear on the Data Out pins within one access time. The output pins stay in a high-impedance state when CE1 or OE is HIGH, or CE2 (L7C109) or WE is LOW.

Writing to an addressed location is accomplished when the active-low $\overline{\text{CE}_1}$ and $\overline{\text{WE}}$ inputs are both LOW, and CE2 (L7C109) is HIGH. Any of these signals may be used to terminate the write operation. Data In and Data Out signals have the same polarity.

Latchup and static discharge protection are provided on-chip. The L7C108 and L7C109 can withstand an injection current of up to 200 mA on any pin without damage.

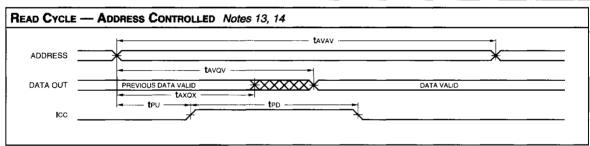
128K x 8 Static RAM (Low Power)

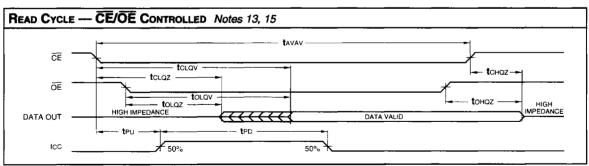
XIMUM RATINGS Above which useful life may be impaired (Notes 1, 2)	
Storage temperature	65°C to +150°C
Operating ambient temperature	55°C to +125°C
Vcc supply voltage with respect to ground	0.5 V to +7.0 V
Input signal with respect to ground	3.0 V to +7.0 V
Signal applied to high impedance output	3.0 V to +7.0 V
Output current into low outputs	25 mA
Latchup current	

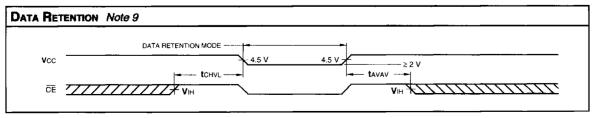
Mode	Temperature Range (Ambient)	Supply Voltage
Active Operation, Commercial	0°C to +70°C	4.5 V ≤ Vcc ≤ 5.5 V
Active Operation, Industrial	-40°C to +85°C	4.5 V ≤ V CC ≤ 5.5 V
Active Operation, Military	-55°C to +125°C	4.5 V ≤ V CC ≤ 5.5 V
Data Retention, Commercial	0°C to +70°C	2.0 V ≤ V CC ≤ 5.5 V
Data Retention, Industrial	-40°C to +85°C	2.0 V ≤ V CC ≤ 5.5 V
Data Retention, Military	-55°C to +125°C	2.0 V ≤ V CC ≤ 5.5 V

	- -		L7	C108/1	09	L7C	108-L/1	0 9 -L	l
Symbol	Parameter	Test Condition	Min	Тур	Max	Min	Тур	Мах	Unit
V OH	Output High Voltage	Vcc = 4.5 V, Iон = -4.0 mA	2.4			2.4			٧
V OL	Output Low Voltage	IOL = 8.0 mA			0.4			0.4	V
V iH	Input High Voltage		2.2		V cc +0.3	2.2		V cc +0.3	V
V IL	Input Low Voltage	(Note 3)	-3.0		0.8	-3.0		8.0	٧
lix	Input Leakage Current	GND ≤ Vin ≤ Vcc	-10		+10	-10	i	+10	μA
loz	Output Leakage Current	(Note 4)	-10		+10	-10		+10	μА
ICC2	Vcc Current, TTL Inactive	(Note 7)		10	20			10	mA
ICC3	Vcc Current, CMOS Standby	(Note 8)		1	3.0			0.9	mA
ICC4	Vcc Current, Data Retention	V CC ≈ 3.0 V (Note 9)		500	1000		† · · · · · · · · · · · · · · · · · · ·	300	μA
CIN	Input Capacitance	Ambient Temp = 25°C, Vcc = 5.0 V			5			5	pF
Cout	Output Capacitance	Test Frequency = 1 MHz (Note 10)			7		-	7	pF

	-		ı	L7C108	3/109-	
Symbol	Parameter	Test Condition	25	20	17	Unit
ICC1	Vcc Current, Active	(Note 6)	145	180	210	mA

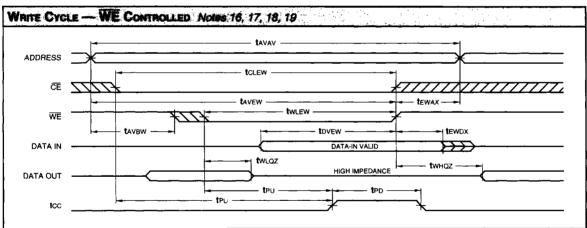

7-52

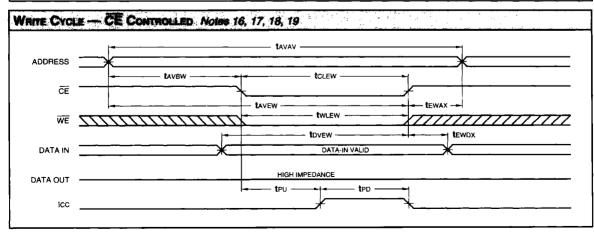



128K x 8 Static RAM (Low Power)

SWITCHING CHARACTERISTICS Over Operating Range

READ (READ CYCLE Notes 5, 11, 12, 22, 23, 24 (ns)						
			L	-7C10	08/109	- -	
		2	5	2	20	1	7
Symbol	Parameter	Min	Max	Min	Max	Min	Max
tavav	Read Cycle Time	25		20		17	1
tavqv	Address Valid to Output Valid (Notes 13, 14)		25		20		17
t AXQX	Address Change to Output Change	3		3	-	3	
tclav	Chip Enable Low to Output Valid (Notes 13, 15)		25		20		17
toLaz	Chip Enable Low to Output Low Z (Notes 20, 21)	3	;	3		3	
tchaz	Chip Enable High to Output High Z (Notes 20, 21)		10		8		8
tolav	Output Enable Low to Output Valid		10		10		9
toLoz	Output Enable Low to Output Low Z (Notes 20, 21)	0		0		0	1
tоноz	Output Enable High to Output High Z (Notes 20, 21)		10		7		6
t PU	Input Transition to Power Up (Notes 10, 19)	0		0		0	
t PD	Power Up to Power Down (Notes 10, 19)		25		20		17
t CHVL	Chip Enable High to Data Retention (Note 10)	0		0	<u> </u>	0	



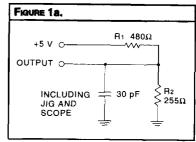


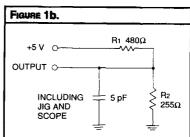
128K x 8 Static RAM (Low Power)

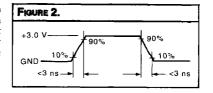
SWITCHING CHARACTERISTICS Over Operating Range

Watte Cycle, Notes 5, 11, 12, 22, 23, 24 (ns)							
					8/109)	
		2	5	1	20	1	7
Symbol	Parameter	Min	Max	Min	Max	Min	Max
tavav	Write Cycle Time	20		20		17	
tclew	Chip Enable Low to End of Write Cycle	15		15		13	i
tavew	Address Valid to Beginning of Write Cycle	0		0		0	
tavew	Address Valid to End of Write Cycle	15		15		13	
t EWAX	End of Write Cycle to Address Change	0		0		0	1
twiew	Write Enable Low to End of Write Cycle	15		15		13	
tovew	Data Valid to End of Write Cycle	10		9		8	1
t EWDX	End of Write Cycle to Data Change	0		0		0	
twHQZ	Write Enable High to Output Low Z (Notes 20, 21)	0		0		0	1
twLQZ	Write Enable Low to Output High Z (Notes 20, 21)		7		7		6

128K x 8 Static RAM (Low Power)


NOTES


- 1. Maximum Ratings indicate stress specifications only. Functional operation of these products at values beyond those indicated in the Operating Conditions table is not implied. Exposure to maximum rating conditions for extended periods may affect reliability of the tested device.
- 2. The products described by this specification include internal circuitry designed to protect the chip from damaging substrate injection currents and accumulations of static charge. Nevertheless, conventional precautions should be observed during storage, handling, and use of these circuits in order to avoid exposure to excessive electrical stress values.
- 3. This product provides hard clamping of transient undershoot. Input levels below ground will be clamped beginning at -0.6 V. A current in excess of 100 mA is required to reach -2.0 V. The device can withstand indefinite operation with inputs as low as -3 V subject only to power dissipation and bond wire fusing constraints.
- 4. Tested with GND \leq **V**OUT \leq **V**CC. The device is disabled, i.e., $\overline{CE1} = VCC$, CE2 = GND.
- 5. A series of normalized curves is available to supply the designer with typical DC and AC parametric information for Logic Devices Static RAMs. These curves may be used to determine device characteristics at various temperatures and voltage levels.
- 6. Tested with all address and data inputs changing at the maximum cycle rate. The device is continuously enabled for writing, i.e., CEi ≤ VII., CE2 ≥ VIII, WE ≤ VII. Input pulse levels are 0 to 3.0 V.
- 7. Tested with outputs open and all address and data inputs changing at the maximum read cycle rate. The device is continuously disabled, i.e., $\overline{\text{CE}}_1 \ge \text{V}_{\text{IH}}$, $\text{CE}_2 \le \text{V}_{\text{IL}}$.
- 8. Tested with outputs open and all address and data inputs stable. The device is continuously disabled, i.e., CE1 = VCC, CE2 = GND. Input levels are within 0.2 V of VCC or GND.
- 9. Data retention operation requires that VCC never drop below 2.0 V. $\overrightarrow{CE1}$ must be \geq VCC -0.2 V or CE2 must be \leq 0.2 V. All other inputs must meet $\overrightarrow{VIN} \geq$ VCC -0.2 V or $\overrightarrow{VIN} \leq$ 0.2 V to ensure full powerdown. For low power version (if applicable), this requirement applies only to $\overrightarrow{CE1}$, $\overrightarrow{CE2}$, and \overrightarrow{WE} ; there are no restrictions on data and address.
- 10. These parameters are guaranteed but not 100% tested.


- 11. Test conditions assume input transition times of less than 3 ns, reference levels of 1.5 V, output loading for specified IOL and IOH plus 30 pF (Fig. 1a), and input pulse levels of 0 to 3.0 V (Fig. 2).
- 12. Each parameter is shown as a minimum or maximum value. Input requirements are specified from the point of view of the external system driving the chip. For example, tAVEW is specified as a minimum since the external system must supply at least that much time to meet the worst-case requirements of all parts. Responses from the internal circuitry are specified from the point of view of the device. Access time, for example, is specified as a maximum since worst-case operation of any device always provides data within that time.
- 13. WE is high for the read cycle.
- 14. The chip is continuously selected ($\overline{CE1}$ low, CE2 high).
- 15. All address lines are valid prior-to or coincident-with the CE1 and CE2 transition to active
- 16. The internal write cycle of the memory is defined by the overlap of CE1 and CE2 active and WE low. All three signals must be active to initiate a write. Any signal can terminate a write by going inactive. The address, data, and control input setup and hold times should be referenced to the signal that becomes active last or becomes inactive first.
- 17. If WE goes low before or concurrent with the latter of CE1 and CE2 going active, the output remains in a high impedance state.
- 18. If CE1 and CE2 goes inactive before or concurrent with WE going high, the output remains in a high impedance state.
- 19. Powerup from ICC2 to ICC1 occurs as a result of any of the following conditions:
- a. Rising edge of CE2 (CE1 active) or the falling edge of CE1 (CE2 active).
- b. Falling edge of WE (CE1, CE2 active).
- Transition on any address line (CE1, CE2 active).
- d. Transition on any data line (CE1, CE2, and WE active).

The device automatically powers down from ICC1 to ICC2 after tPD has elapsed from any of the prior conditions. This means that power dissipation is dependent on only cycle rate, and is not on Chip Select pulse width.

- 20. At any given temperature and voltage condition, output disable time is less than output enable time for any given device.
- 21. Transition is measured ± 200 mV from steady state voltage with specified loading in Fig. 1b. This parameter is sampled and not 100% tested.
- 22. All address timings are referenced from the last valid address line to the first transitioning address line.
- 23. CE1, CE2, or WE must be inactive during address transitions.
- 24. This product is a very high speed device and care must be taken during testing in order to realize valid test information. Inadequate attention to setups and procedures can cause a good part to be rejected as faulty. Long high inductance leads that cause supply bounce must be avoided by bringing the VCC and ground planes directly up to the contactor fingers. A $0.01~\mu F$ high frequency capacitor is also required between VCC and ground. To avoid signal reflections, proper terminations must be used.

=1M Static RAMs

01/22/97-LDS.108/9-J

128K x 8 Static RAM (Low Power)

	L7C108 ORDERING INFORMATION	
	32-pin — 0.4" wide	32-pin
	NC [1 32] VCC A0 [2 31] A16 A1 [3 30] NC A2 [4 29] WE A3 [5 28] A15 A4 [6 27] A14 A5 [7 26] A13 A6 [8 25] A12 A7 [9 24] OE A8 [10 23] A11 A9 [11 22] CE1 A10 [12 21] I/O7 I/O0 [13 20] I/O6 I/O1 [14 19] I/O5 I/O2 [15 18] I/O4 GND [16 17] I/O3	NC
ed	Sidebraze Hermetic DIP (D12)	Plastic SOJ (0.4" wide) (W6)
	(D12) O°C to +70°C — Commercial Screening	(Wé)
ns	(D12) 0°C to +70°C — Commercial Screening L7C108DC25*	(W6)
	(D12) O°C to +70°C — Commercial Screening	(W6)
ns ns	(D12) O°C to +70°C — COMMERCIAL SCREENING L7C108DC25* L7C108DC20*	L7C108WC25* L7C108WC20*
ns ns ns	(D12) 0°C to +70°C — COMMERCIAL SCREENING L7C108DC25* L7C108DC20* L7C108DC17*	L7C108WC25* L7C108WC20* L7C108WC17* L7C108WI25*
ns ns ns ns	(D12) 0°C to +70°C — COMMERCIAL SCREENING L7C108DC25* L7C108DC20* L7C108DC17*	L7C108WC25* L7C108WC17* L7C108WI25* L7C108WI25* L7C108WI20*
ns ns ns ns	(D12) 0°C to +70°C — Commercial Screening L7C108DC25* L7C108DC20* L7C108DC17* -40°C to +85°C — Commercial Screening	L7C108WC25* L7C108WC20* L7C108WC17* L7C108WI25*
ns ns ns ns	(D12) 0°C to +70°C — COMMERCIAL SCREENING L7C108DC25* L7C108DC20* L7C108DC17* -40°C to +85°C — COMMERCIAL SCREENING	L7C108WC25* L7C108WC17* L7C108WI25* L7C108WI25* L7C108WI20*
ns ns ns ns	(D12) 0°C to +70°C — Commercial Screening L7C108DC25* L7C108DC20* L7C108DC17* -40°C to +85°C — Commercial Screening	L7C108WC25* L7C108WC17* L7C108WI25* L7C108WI25* L7C108WI20*
ns ns ns ns ns	(D12) 0°C to +70°C — COMMERCIAL SCREENING L7C108DC20° L7C108DC17° -40°C to +85°C — COMMERCIAL SCREENING -55°C to +125°C — COMMERCIAL SCREENING L7C108DM25 L7C108DM20	L7C108WC25* L7C108WC17* L7C108WI25* L7C108WI25* L7C108WI20*
ns ns ns ns ns	(D12) 0°C to +70°C — COMMERCIAL SCREENING L7C108DC25* L7C108DC17* -40°C to +85°C — COMMERCIAL SCREENING -55°C to +125°C — COMMERCIAL SCREENING L7C108DM25	L7C108WC25* L7C108WC20* L7C108WC17* L7C108WI25* L7C108WI25*

*The Low Power version is specified by adding the "L" suffix after the speed grade (e.g., L7C108WI17L)

01/22/97-LDS.108/9-J

128K x 8 Static RAM (Low Power)

- 1	32-pin	
ı	32-pm	
l	NC N	
l	1	
l	4 3 2 1 32 31 30	
l	A3 >5 29 \ WE	
١	A4)6 28 C A15 A5)7 27 C A14	
	A6 8 Top 26 A13	
	Niow 25) A12	
l	A8 \$10 VIEW 24 OE A9 \$11 23 A11	
l	A ₁₀ > 12 22 ⟨ CE ₁	
	1/O ₀) 13 21 (1/O ₇	
Į	14 15 16 17 18 19 20	
	1/O 2 3/N D	
I	6	
١		
I		
I		
١		
I		
١		
١		
1		
1	Ceramic Leadless Chip Carrier	
1	(K10)	
-	0°C to +70°C — COMMERCIAL SCREENING	
	L7C108KC25* L7C108KC20*	
	L7C108KC17*	
_	-40°C to +85°C Commencial Scheening	
	TO U W TOU U TOURNESSOUL SUPERIOR	
,	l l	
,		
١		
١	-55°C to +125°C Commercial Screening	
	-55°C to +125°C COMMERCIAL SCREENING L7C108KM25	
;	L7C108KM25	

"The Low Power version is specified by adding the "L" suffix after the speed grade (e.g., L7C108KC17L)

128K x 8 Static RAM (Low Power)

L7C109 ORDERING INFORMATION	
32-pin — 0.4" wide	32-pin
NC [1 32] Vcc A0 [2 31] A16 A1 [3 30] CE2 A2 [4 29] WE A3 [5 28] A15 A4 [6 27] A14 A5 [7 26] A13 A6 [8 25] A12 A7 [9 24] OE A8 [10 23] A11 A9 [11 22] CE1 A10 [12 21] VO7 I/O0 [13 20] I/O6 I/O1 [14 19] I/O5 I/O2 [15 18] I/O4 GND [16 17] I/O3	NC
Sidebraze Hermetic DIP	Plastic SOJ (0.4" wide) (W6)
(D12) 0°C to +70°C — COMMERCIAL SCREENING L7C109DC25*	(W6) L7C109WC25*
(D12) O°C to +70°C — COMMERCIAL SCREENING	(W6)
(D12) 0°C to +70°C — COMMERCIAL SCREENING L7C109DC25* L7C109DC20*	(W6) L7C109WC25* L7C109WC20*
(D12) 0°C to +70°C — COMMERCIAL SCREENING L7C109DC25° L7C109DC20° L7C109DC17°	(W6) L7C109WC25* L7C109WC20* L7C109WC17*
(D12) 0°C to +70°C — COMMERCIAL SCREENING L7C109DC25* L7C109DC20* L7C109DC17* -40°C to +85°C — COMMERCIAL SCREENING	L7C109WC25* L7C109WC20* L7C109WC17*
(D12) 0°C to +70°C — COMMERCIAL SCREENING L7C109DC25* L7C109DC20* L7C109DC17* -40°C to +85°C — COMMERCIAL SCREENING S	L7C109WC25* L7C109WC20* L7C109WC17* L7C109WI25*
(D12) O°C to +70°C — COMMERCIAL SCREENING L7C109DC25* L7C109DC17* -40°C to +85°C — COMMERCIAL SCREENING -55°C to +125°C — COMMERCIAL SCREENING	L7C109WC25* L7C109WC20* L7C109WC17* L7C109WI25* L7C109WI25*
(D12) O°C to +70°C — COMMERCIAL SCREENING L7C109DC25* L7C109DC17* -40°C to +85°C — COMMERCIAL SCREENING -55°C to +125°C — COMMERCIAL SCREENING L7C109DM25	L7C109WC25* L7C109WC20* L7C109WC17* L7C109WI25* L7C109WI20* L7C109WI17*
(D12) O°C to +70°C — COMMERCIAL SCREENING L7C109DC25* L7C109DC17* -40°C to +85°C — COMMERCIAL SCREENING -55°C to +125°C — COMMERCIAL SCREENING	L7C109WC25* L7C109WC20* L7C109WC17* L7C109WI25* L7C109WI20* L7C109WI17*
(D12) O°C to +70°C — COMMERCIAL SCREENING L7C109DC25* L7C109DC17* -40°C to +85°C — COMMERCIAL SCREENING L7C109DM25 L7C109DM25 L7C109DM20	L7C109WC25* L7C109WC20* L7C109WC17* L7C109WI25* L7C109WI20* L7C109WI17*
(D12) O°C to +70°C — COMMERCIAL SCREENING L7C109DC25* L7C109DC17* -40°C to +85°C — COMMERCIAL SCREENING -55°C to +125°C — COMMERCIAL SCREENING L7C109DM25	L7C109WC25* L7C109WC20* L7C109WC17* L7C109WI25* L7C109WI20* L7C109WI17*

^{*}The Low Power version is specified by adding the "L" suffix after the speed grade (e.g., L7C109WI17L)

01/22/97--LD\$.108/9-J

128K x 8 Static RAM (Low Power)

- 1	OO win	
	32-pin	
1	E S S S S S S S S S S S S S S S S S S S	
	4 3 2 11 32 31 30	
ŀ	A3 25 29 WE	
	A4 6 28 A15 A5 7 27 A14	
	A6 8 Top 26 A13	
	A7 39 COP 25 A12 A8 510 View 24 OE	
	A9 \$11 23 A11	:
	A10 212 22 CE1	
	I/O ₀ 313 21 6 I/O ₇	
	14 15 16 17 18 19 20	
	1/O ₁ 1/O ₂ 1/O ₃ 1/O ₃	
	Ĭ	
ļ		<u> </u>
-		
\dashv	Ceramic Leadless Chip Carrier	
ed	(K10)	
	0°C to +70°C — Commencial Screening	<u> </u>
ns ns		
ns		
	-40°C to +85°C COMMERCIAL SCREENING	
ns		T
ns		
ns	-55°C to +125°C COMMERCIAL SCREENING	
ns		T
		
ns	L7C109KM25	
ns	L7C109KM25 L7C109KM20	
ns ns ns	E7C109KM25 L7C109KM20 -55°C to +125°C - MIL-STD-883 COMPLIANT	

^{*}The Low Power version is specified by adding the "L" suffix after the speed grade (e.g., L7C109KC17L)