
- 3-Terminal Regulators
- Output Current Up To 100 mA
- No External Components Required
- Internal Thermal-Overload Protection
- Internal Short-Circuit Current Limiting
- Direct Replacement for Industry-Standard MC79L00 Series
- Available in 5% or 10% Selections

description/ordering information

This series of fixed negative-voltage integrated-circuit voltage regulators is designed for a wide range of applications. These include on-card regulation for elimination of noise and distribution problems associated with single-point

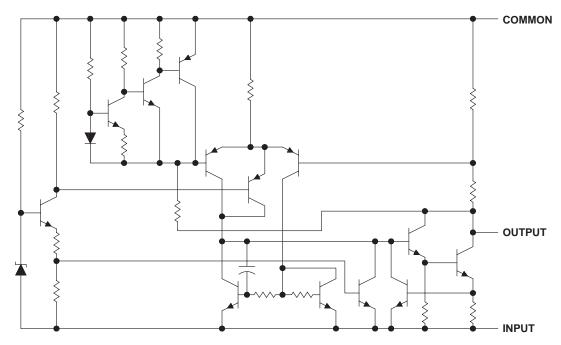
† Internally connected NC – No internal connection

LP PACKAGE (TOP VIEW)

regulation. In addition, they can be used to control series pass elements to make high-current voltage-regulator circuits. One of these regulators can deliver up to 100 mA of output current. The internal current-limiting and thermal-shutdown features essentially make the regulators immune to overload. When used as a replacement for a Zener-diode and resistor combination, these devices can provide an effective improvement in output impedance of two orders of magnitude, with lower bias current.

ORDERING INFORMATION

TJ	OUTPUT VOLTAGE TOLERANCE	NOMINAL OUTPUT VOLTAGE (V)	PACKAG	ΕŤ	ORDERABLE PART NUMBER	TOP-SIDE MARKING	
		-5	SOIC (D)	Tube of 75	MC79L05ACD	79L05A	
			301C (D)	Reel of 2500	MC79L05ACDR	792037	
			TO-226 / TO-92 (LP)	Bulk of 1000	MC79L05ACLP	79L05AC	
	5%			Reel of 2000	MC79L05ACLPR	79LUSAC	
		-12	SOIC (D)	Tube of 75	MC79L12ACD	79L12A	
				Reel of 2500	MC79L12ACDR	IJEIZA	
0°C to 125°C			TO-226 / TO-92 (LP)	Bulk of 1000	MC79L12ACLP	701.40.40	
				Reel of 2000	MC79L12ACLPR	79L12AC	
				Bulk of 1000	MC79L15ACLP		
		-15	TO-226 / TO-92 (LP)	Ammo of 2000	MC79L15ACLPM	79L15AC	
				Reel of 2000	MC79L15ACLPR]	
	100/	-12	TO-226 / TO-92 (LP)	Bulk of 1000	MC79L12CLP	79L12C	
	10%	– 15	SOIC (D)	Tube of 75	MC79L15CD	79L15C	


[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

equivalent schematic

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Input voltage: MC79L05	–30 V
MC79L12, MC79L15	
Package thermal impedance, θ _{JA} (see Notes 1 and 2): D package	97°C/W
LP package	140°C/W
Operating free-air, case, or virtual junction temperature	150°C
Lead temperature 1.6 mm (1/16 inch) from case for 10 seconds	260°C
Storage temperature range, T _{Sto}	–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

recommended operating conditions

			MIN	MAX	UNIT
		MC79L05	-7	-20	
VI	Input voltage	MC79L12	-14.5	-27	V
		MC79L15	-17.5	-30	
I _O Output current					mA
T _J Operating virtual junction temperature					°C

NOTES: 1. Maximum power dissipation is a function of $T_J(max)$, θ_{JA} , and T_A . The maximum allowable power dissipation at any allowable ambient temperature is $P_D = (T_J(max) - T_A)/\theta_{JA}$. Operating at the absolute maximum T_J of 150°C can affect reliability.

^{2.} The package thermal impedance is calculated in accordance with JESD 51-7.

SLVS011D - OCTOBER 1982 - REVISED AUGUST 2003

electrical characteristics at specified virtual junction temperature, $V_I = -10 \text{ V}$, $I_O = 40 \text{ mA}$ (unless otherwise noted)

PARAMETER	TEST CONDITIONS†	т.	М	C79L05	С	МС	79L05A	C	UNIT
PARAMETER	TEST CONDITIONS!	TJ	MIN	TYP	MAX	MIN	TYP	MAX	UNII
		25°C	-4.6	- 5	-5.4	-4.8	- 5	-5.2	
Output voltage [‡]	$V_I = -7 \text{ V to } -20 \text{ V},$ $I_O = 1 \text{ mA to } 40 \text{ mA}$	0°C to 125°C	-4.5		-5.5	-4.75		−5.25 V	
	$V_I = -10 \text{ V}, I_O = 1 \text{ mA to } 70 \text{ mA}$	0°C to 125°C	-4.5		-5.5	-4.75		-5.25	
Input regulation	$V_I = -7 V \text{ to } -20 V$	25°C			200			150	mV
Input regulation	V _I = −8 V to −20 V				150			100	
Ripple rejection	$V_I = -8 \text{ V to } -18 \text{ V, f} = 120 \text{ Hz}$	25°C	40	49		41	49		dB
Output regulation	I _O = 1 mA to 100 mA	25°C			60			60	mV
Output regulation	I _O = 1 mA to 40 mA	25 C			30			30	
Output noise voltage	f = 10 Hz to 100 kHz	25°C		40			40		μV
Dropout voltage	I _O = 40 mA	25°C		1.7			1.7		V
Diag gurrant		25°C			6			6	mA
Bias current		125°C			5.5			5.5	
Dies surrent change	V _I = −8 V to −20 V	0°C to 125°C			1.5			1.5	mA
Bias current change	$I_O = 1 \text{ mA to } 40 \text{ mA}$	− 0°C to 125°C			0.2			0.1	

[†] All characteristics are measured with a 0.33-μF capacitor across the input and a 0.1-μF capacitor across the output. Pulse-testing techniques are used to maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into account separately. ‡ This specification applies only for dc power dissipation permitted by absolute maximum ratings.

electrical characteristics at specified virtual junction temperature, $V_I = -19 \text{ V}$, $I_O = 40 \text{ mA}$ (unless otherwise noted)

PARAMETER	TEST CONDITIONS [†]	T .	M	C79L12	С	MC79L12AC			UNIT
PARAMETER	TEST CONDITIONS!	TJ	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
		25°C	-11.1	-12	-12.9	-11.5	-12	-12.5	
Output voltage‡	$V_I = -14.5 \text{ V to } -27 \text{ V},$ $I_O = 1 \text{ mA to } 40 \text{ mA}$	0°C to 125°C	-10.8		-13.2	-11.4		-12.6	V
	$V_I = -19 \text{ V}, I_O = 1 \text{ mA to } 70 \text{ mA}$	0°C to 125°C	-10.8		-13.2	-11.4		-12.6	
Innut regulation	V _I = -14.5 V to -27 V	25°C			250			250	mV
Input regulation	$V_{I} = -16 \text{ V to } -27 \text{ V}$	25-0			200			200	
Ripple rejection	$V_I = -15 \text{ V to } -25 \text{ V, f} = 120 \text{ Hz}$	25°C	36	42		37	42		dB
Output regulation	I _O = 1 mA to 100 mA	0500			100			100	mV
Output regulation	$I_O = 1 \text{ mA to } 40 \text{ mA}$	25°C			50			50	
Output noise voltage	f = 10 Hz to 100 kHz	25°C		80			80		μV
Dropout voltage	I _O = 40 mA	25°C		1.7			1.7		V
Dies sument		25°C			6.5			6.5	Λ
Bias current		125°C			6			6	mA
Dies sument shares	$V_{I} = -16 \text{ V to } -27 \text{ V}$	000 +- 40500			1.5			1.5	Λ
Bias current change	I _O = 1 mA to 40 mA	0°C to 125°C			0.2			0.1	mA

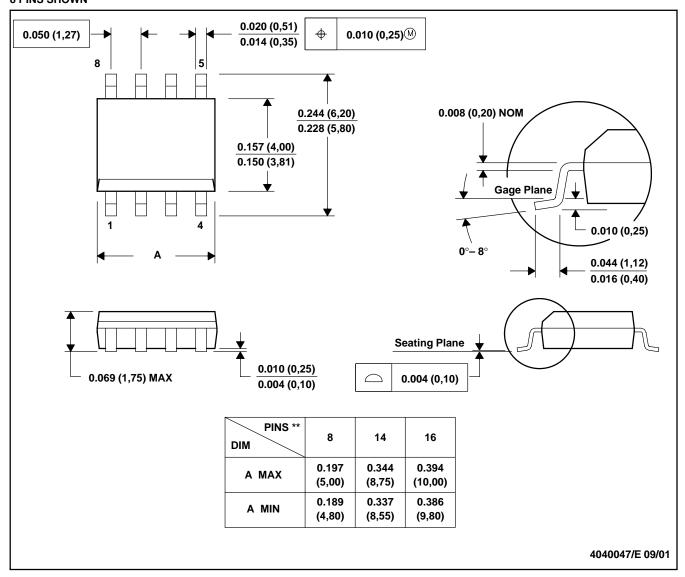
[†] All characteristics are measured with a 0.33-µF capacitor across the input and a 0.1-µF capacitor across the output. Pulse-testing techniques are used to maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into account separately. ‡ This specification applies only for dc power dissipation permitted by absolute maximum ratings.

SLVS011D - OCTOBER 1982 - REVISED AUGUST 2003

electrical characteristics at specified virtual junction temperature, $V_I = -23$ V, $I_O = 40$ mA (unless otherwise noted)

PARAMETER	ETER TEST CONDITIONS† TJ	т.	MC79L15C			МС	UNIT			
PARAMETER		1,1	MIN	TYP	MAX	MIN	TYP	MAX	UNIT	
		25°C	-13.8	-15	-16.2	-14.4	-15	-15.6		
Output voltage‡	$V_I = -17.5 \text{ V to } -30 \text{ V},$ $I_O = 1 \text{ mA to } 40 \text{ mA}$	0°C to 125°C	-13.5		-16.5	-14.25		-15.75	٧	
	$V_{I} = -23 \text{ V}, I_{O} = 1 \text{ mA to } 70 \text{ mA}$	0°C to 125°C	-13.5		-16.5	-14.25		-15.75		
Input regulation	V _I = -17.5 V to -30 V	25°C			300			300	mV	
Input regulation	$V_{I} = -17.5 \text{ V to } -30 \text{ V}$				250			250	IIIV	
Ripple rejection	$V_{\parallel} = -18.5 \text{ V to } -28.5 \text{ V, f} = 120 \text{ Hz}$	25°C	33	39		34	39		dB	
Output regulation	I _O = 1 mA to 100 mA	25°C			150			150	mV	
Output regulation	I _O = 1 mA to 40 mA				75			75	IIIV	
Output noise voltage	f = 10 Hz to 100 kHz	25°C		90			90		μV	
Dropout voltage	I _O = 40 mA	25°C		1.7			1.7		V	
Pigg gurrent		25°C			6.5			6.5	4	
Bias current		125°C			6			6	mA	
Rice current change	$V_1 = -20 \text{ V to } -30 \text{ V}$	0°C to 125°C			1.5			1.5	mΛ	
Bias current change	I _O = 1 mA to 40 mA	0°C to 125°C			0.2			0.1	mA	

 $^{^{\}dagger}$ All characteristics are measured with a 0.33- μ F capacitor across the input and a 0.1- μ F capacitor across the output. Pulse-testing techniques are used to maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into account separately.

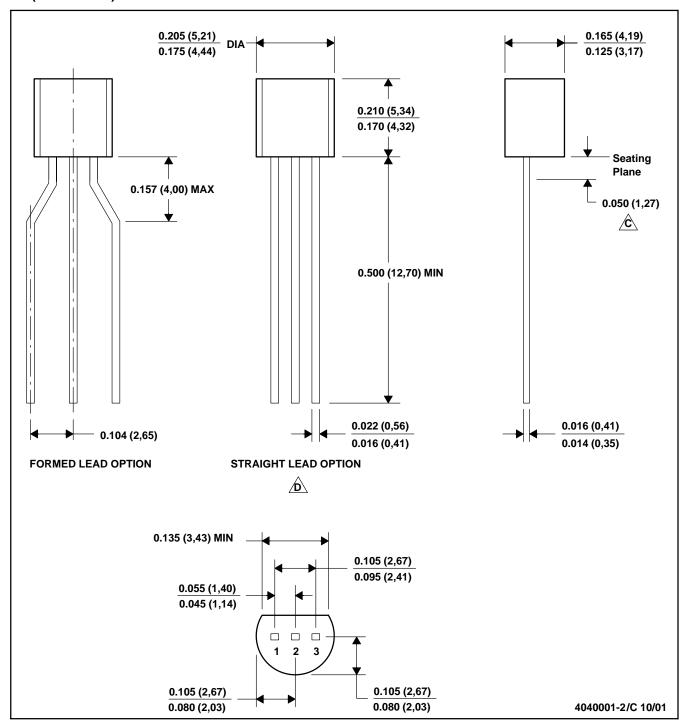


D (R-PDSO-G**)

PLASTIC SMALL-OUTLINE PACKAGE

8 PINS SHOWN

NOTES: A. All linear dimensions are in inches (millimeters).


B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion, not to exceed 0.006 (0,15).

D. Falls within JEDEC MS-012

LP (O-PBCY-W3)

PLASTIC CYLINDRICAL PACKAGE

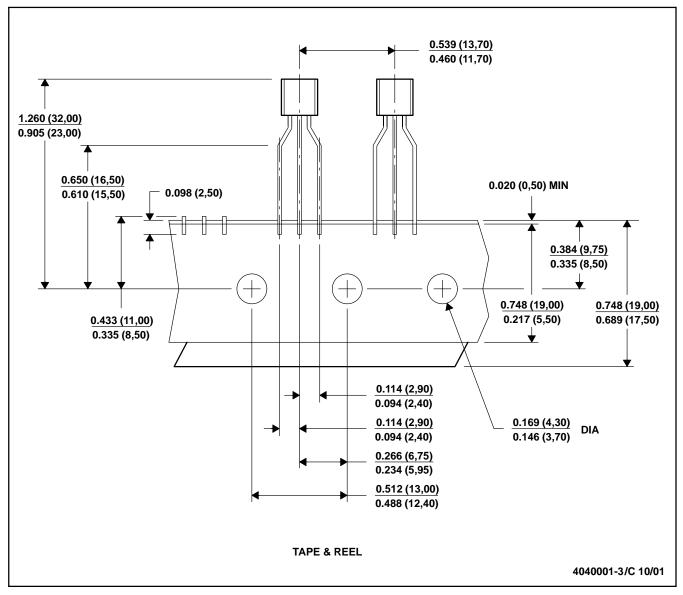
NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

C.\ Lead dimensions are not controlled within this area

√D.\ FAlls within JEDEC TO -226 Variation AA (TO-226 replaces TO-92)

E. Shipping Method:


Straight lead option available in bulk pack only.

Formed lead option available in tape & reel or ammo pack.

LP (O-PBCY-W3)

PLASTIC CYLINDRICAL PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

C. Tape and Reel information for the Format Lead Option package.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
		Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright © 2003, Texas Instruments Incorporated