

# Low Power Video Difference Amplifier

#### DESCRIPTION

The LT1187M/883 is a difference amplifier optimized for operation on  $\pm 5$ V, or a single 5V supply, and gain  $\geq 2$ . This versatile amplifier features uncommitted high input impedance (+) and (–) inputs, and can be used in differential or single-ended configurations. Additionally, a second set of inputs give gain adjustment and DC control to the difference amplifier.

The LT1187M/883's high slew rate,  $165V/\mu s$ , wide bandwidth, 50MHz, and  $\pm 20mA$  output current require only 13mA of supply current. The shutdown feature reduces the power dissipation to a mere 15mW, and allows multiple amplifiers to drive the same cable.

The LT1187M/883 is a low power version of the popular LT1193. For applications with gains of 10 or more, see the LT1189 data sheet.

The device is processed to the requirements of MIL-STD-883 Class B to yield circuits usable in precision military applications.

# **ABSOLUTE MAXIMUM RATINGS**

| Total Supply Voltage (V <sup>+</sup> to V <sup>-</sup> ) | 18V  |
|----------------------------------------------------------|------|
| Differential Input Voltage                               | ±6V  |
| Input Voltage                                            |      |
| Output Short Circuit Duration (Note 1) Continu           |      |
| Operating Temperature Range55°C to 15                    | 50°C |
| Junction Temperature (Note 2) 17                         | 75°C |
| Storage Temperature Range65°C to 15                      | 50°C |
| Lead Temperature (Soldering, 10 sec) 30                  | 0°C  |

# **BURN-IN CIRCUIT**



# PRCKAGE/ORDER INFORMATION



<sup>&</sup>lt;sup>†</sup> The suffix letter "C" of the part mark indicates compliance per MIL-STD-883, para 1.2.1.1.



## TABLE 1: ELECTRICAL CHARACTERISTICS

 $V_8 = \pm 5V$ ,  $V_{REF} = 0V$ ,  $R_{FB1} = 900\Omega$  from pins 6 to 8,  $R_{FB2} = 100\Omega$  from pin 8 to ground,  $R_L = R_{FB1} + R_{FB2} = 1k$ ,  $C_L \le 10pF$ , pin 5 open, unless otherwise noted. (Note 3)

|                                 |                                 |                                                                                             |       | T <sub>A</sub> = 25°C |      | SUB-  | $-55^{\circ}\text{C} \le \text{T}_{\text{A}} \le 125^{\circ}\text{C}$ |      | SUB-       |        |
|---------------------------------|---------------------------------|---------------------------------------------------------------------------------------------|-------|-----------------------|------|-------|-----------------------------------------------------------------------|------|------------|--------|
| SYMBOL                          | PARAMETER                       | CONDITIONS                                                                                  | NOTES | MIN                   | MAX  | GROUP | MIN                                                                   | MAX  | GROUP      | UNITS  |
| V <sub>OS</sub>                 | Input Offset Voltage            | Either Input                                                                                | 4     |                       | 10   | 1     |                                                                       | 15   | 2,3        | mV     |
| los                             | Input Offset Current            | Either Input                                                                                |       |                       | 1.0  | 1     |                                                                       | 1.5  | 2,3        | μΆ     |
| I <sub>B</sub>                  | Input Bias Current              | Either Input                                                                                |       |                       | ±2.0 | 1     |                                                                       | ±3.5 | 2,3        | μА     |
| CMRR                            | Common-Mode Rejection<br>Ratio  | $V_{CM} = -2.5V \text{ to } 3.5V$                                                           |       | 70                    |      | 1     | 70                                                                    |      | 2,3        | dB     |
| PSRR                            | Power Supply Rejection<br>Ratio | $V_S = \pm 2.375 V \text{ to } \pm 8 V$                                                     |       | 70                    |      | 1     | 60                                                                    |      | 2,3        | dB     |
| V <sub>OUT</sub>                | Output Voltage Swing            | $V_S = \pm 5V$ , $R_L = 1k$ , $A_V = 50$                                                    |       | ±3.8                  |      | 4     | ±3.7                                                                  |      | 5,6        | V      |
|                                 |                                 | $V_S = \pm 8V$ , $R_L = 1k$ , $A_V = 50$<br>$V_S = \pm 8V$ , $R_L = 300\Omega$ , $A_V = 50$ | 3     | ±6.7<br>±6.4          |      | 4     | ±6.6<br>±6.4                                                          |      | 5,6<br>5,6 | V<br>V |
| GE                              | Gain Error                      | $V_0 = \pm 1V$ , $A_V = 10$ , $RL = 1k$                                                     |       |                       | 1.0  | 4     |                                                                       | 1.0  | 5,6        | %      |
| SR                              | Slew Rate                       | A <sub>V</sub> = -1, R <sub>L</sub> = 1k                                                    | 6,10  | 100                   |      | 7     |                                                                       |      |            | V/µs   |
| t <sub>r</sub> , t <sub>i</sub> | Rise Time, Fall Time            | $A_V = 50$ , $V_{OUT} = \pm 1.5V$ , 20% to 80%                                              | 10    | 150                   | 325  | 10    |                                                                       |      |            | ns     |
| Is                              | Supply Current                  |                                                                                             |       |                       | 16   | 1     |                                                                       | 17   | 2,3        | mA     |
|                                 | Shutdown Supply Current         | Pin 5 at V                                                                                  |       |                       | 1.5  | 1     |                                                                       | 1.5  | 2,3        | mA     |
| 1 <sub>S/D</sub>                | Shutdown Pin Current            | Pin 5 at V                                                                                  |       |                       | 25   | 1     |                                                                       | 25   | 2,3        | μА     |

 $V_S^+$  = 5V,  $V_S^-$  = 0V,  $V_{REF}$  = 2.5V,  $R_{FB1}$  = 900 $\Omega$  from pins 6 to 8,  $R_{FB2}$  = 100 $\Omega$  from pin 8 to  $V_{REF}$ ,  $R_L$  =  $R_{FB1}$  +  $R_{FB2}$  = 1k,  $C_L \le$  10pF, pin 5 open, unless otherwise noted. (Note 3)

|                  |                             |                                                          |       | T <sub>A</sub> = | 25°C | SUB-  |       |
|------------------|-----------------------------|----------------------------------------------------------|-------|------------------|------|-------|-------|
| SYMBOL           | PARAMETER                   | CONDITIONS                                               | NOTES | MIN              | MAX  | GROUP | UNITS |
| Vos              | Input Offset Voltage        | Either Input                                             | 4     |                  | 10   | 1     | mV    |
| los              | Input Offset Current        | Either Input                                             |       |                  | 1.0  | 1     | μА    |
| l <sub>B</sub>   | Input Bias Current          | Either Input                                             |       |                  | ±2.0 | 1     | μА    |
| CMRR             | Common-Mode Rejection Ratio | V <sub>CM</sub> = 2V to 3.5V                             |       | 70               |      | 1     | dB    |
| V <sub>OUT</sub> | Output Voltage Swing        | $R_L = 300\Omega$ to Ground $V_{OUT}$ High $V_{OUT}$ Loo | 3 3   | 3.6              | 0.4  | 4 4   | V     |
| Is               | Supply Current              |                                                          |       |                  | 15   | 1     | mA    |
|                  | Shutdown Supply Current     | Pin 5 at V                                               |       |                  | 1.5  | 1     | mA    |
| I <sub>S/D</sub> | Shutdown Pin Current        | Pin 5 at V                                               |       |                  | 25   | 1     | μА    |

#### TABLE 1: ELECTRICAL CHARACTERISTICS

Note 1: A heat sink may be required to keep the junction temperature below absolute maximum when the output is shorted continuously.

**Note 2:**  $T_J$  is calculated from the ambient temperature  $T_A$  and power dissipation  $P_D$  according to the following formula:

 $T_J = T_A + (P_D \times 100^{\circ}C/W)$ 

**Note 3**: When  $R_L$  = 1k is specified, the load resistor is  $R_{FB1}$  +  $R_{FB2}$ , but when  $R_L$  = 300 $\Omega$  is specified, then an additional 430 $\Omega$  is added to the output such that ( $R_{FB1}$  +  $R_{FB2}$ ) in parallel with 430 $\Omega$  is  $R_L$  = 300 $\Omega$ .

Note 4:  $V_{OS}$  measured at the output (pin 6) is the contribution from both input pair, and is input referred.

Note 5:  $V_{IN}$  LIM is the maximum voltage between  $-V_{IN}$  and  $+V_{IN}$  (pin 2 and pin 3) for which the output can respond.

Note 6: Slew rate is measured between  $\pm 0.5V$  on the output, with a  $V_{IN}$  step of  $\pm 0.75V$ ,  $A_V = 3$  and  $R_L = 1k$ .

Note 7: Full power bandwidth is calculated from the slew rate measurement: FPBW =  $SR/2\pi Vp$ .

Note 8: Settling time measurement techniques are shown in "Take the Guesswork Out of Settling Time Measurements," *EDN*, September 19, 1985. Note 9: NTSC (3.58MHz).

Note 10: AC parameters are 100% tested.

Note 11: See Application section in the standard data sheet for shutdown at elevated temperatures. Do not operate shutdown above  $T_J > 125^{\circ}C$ .

## TABLE 2: ELECTRICAL TEST REQUIREMENTS

| MIL-STD-883 TEST REQUIREMENTS                               | SUBGROUP          |  |  |
|-------------------------------------------------------------|-------------------|--|--|
| Final Electrical Test Requirements (Method 5004)            | 1*,2,3,4,5,6,7,10 |  |  |
| Group A Test Requirements (Method 5005)                     | 1,2,3,4,5,6,7,10  |  |  |
| Group C and D End Point Electrical Parameters (Method 5005) | 1,2,3,4,5,6,7,10  |  |  |

<sup>\*</sup> PDA Applies to subgroup 1. See PDA Test Notes.

#### **PDA Test Notes**

The PDA is specified as 5% based on failures from group A, subgroup 1, tests after cooldown as the final electrical test in accordance with method 5004 of MIL-STD-883 Class B. The verified failures of group A, subgroup 1, after burn-in divided by the total number of devices submitted for burn-in in that lot shall be used to determine the percent for the lot.

Linear Technology Corporation reserves the right to test to tighter limits than those given.

