
- 2.5-V Fixed-Output Regulator
- Very Low-Dropout (LDO) Voltage . . . 57 mV
 Typical at I_O = 100 mA
- Very Low Quiescent Current, Independent of Load . . . 292 μA Typ
- Extremely Low Sleep-State Current,
 0.5 μA Max
- 2% Tolerance Over Specified Conditions
- Output Current Range . . . 0 mA to 500 mA
- Available in Space Saving 8-Pin SOIC and 20-Pin TSSOP Packages
- 0°C to 125°C Operating Junction Temperature Range

description

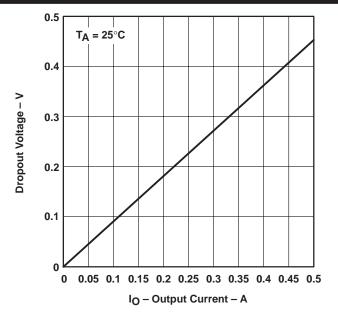
The TPS71025 low-dropout regulator offers an order of magnitude reduction in both dropout voltage and quiescent current over conventional LDO performance. The improvement results from replacing the typical pnp pass transistor with a PMOS device.

PW PACKAGE

NC - No internal connection

Because the PMOS device behaves as a low-value resistor, the dropout voltage is very low (maximum of 95 mV at an output current of 100 mA) and is directly proportional to the output current (see Figure 1). Additionally, since the PMOS pass element is a voltage-driven device, the quiescent current is very low and remains independent of output loading (typically 292 μ A over the full range of output current, 0 mA to 500 mA). These two key specifications yield a significant improvement in operating life for battery-powered systems. The TPS71025 also features a sleep mode; applying a TTL high signal to $\overline{\text{EN}}$ (enable) shuts down the regulator, reducing the quiescent current to 0.5 μ A maximum at $T_J = 25^{\circ}\text{C}$.

AVAILABLE OPTIONS


	т.	OUTP	UT VOL [*] (V)	ΓAGE	PA	CKAGED DEVICES		CHIP FORM
TJ	MIN	TYP	MAX	SMALL OUTLINE (D)	PLASTIC DIP (P)	TSSOP (PW)	(Y)	
Г	0°C to 125°C	2.45	2.5	2.55	TPS71025D	TPS71025P	TPS71025PWLE	TPS71025Y

The D package is available taped and reeled. Add R suffix to device type (e.g., TPS71025DR). The PW package is only available left-end taped and reeled and is indicated by the LE suffix on the device type.

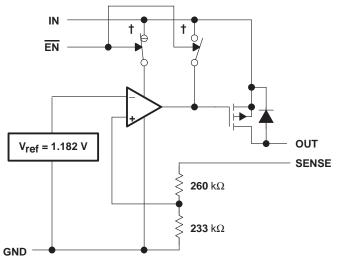
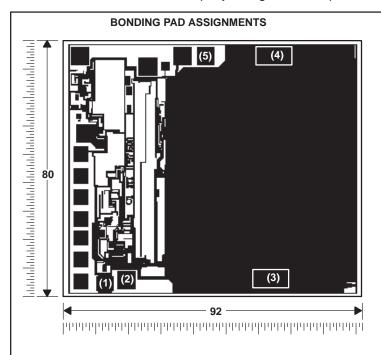
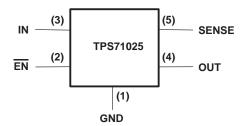

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

Figure 1. Dropout Voltage Versus Output Current

functional block diagram


 \dagger Switch positions are shown with $\overline{\text{EN}}$ low (active).


Terminal Functions

	TERMINAL					
NAME	N	0.	DESCRIPTION			
NAME	D or P	PW				
EN	2 6		Enable input. Logic low enables output			
GND	1	1–3	Ground			
IN	3, 4	8–10	Input supply voltage			
OUT	5, 6	13, 14	Output voltage			
SENSE	7	15	Output voltage sense input			

TPS71025Y chip information

These chips, when properly assembled, display characteristics similar to those of the TPS71025. Thermal compression or ultrasonic bonding may be used on the doped aluminum bonding pads. The chips may be mounted with conductive epoxy or a gold-silicon preform.

CHIP THICKNESS: 15 MILS TYPICAL

BONDING PADS: 4 × 4 MILS MINIMUM

T_Jmax = 150°C

TOLERANCES ARE $\pm 10\%$.

ALL DIMENSIONS ARE IN MILS.

NOTE A: For most applications, OUT and SENSE should be tied together as close as possible to the device; for other implementations, refer to SENSE-pin connection discussion in the Application Information section of this data sheet.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Continuous total power dissipation See Dissipation Rating Tables 1 and 2 Operating virtual junction temperature range, T_J –0°C to 150°C

NOTE 1: All voltage values are with respect to GND

DISSIPATION RATING TABLE 1 - FREE-AIR TEMPERATURE‡

PACKAGE	$T_{\mbox{A}} \le 25^{\circ}\mbox{C}$ POWER RATING	DERATING FACTOR ABOVE T _A = 25°C	T _A = 70°C POWER RATING	T _A = 125°C POWER RATING	
D	725 mW	5.8 mW/°C	464 mW	145 mW	
Р	1175 mW	9.4 mW/°C	752 mW	235 mW	
PW	700 mW	5.6 mW/°C	448 mW	140 mW	

DISSIPATION RATING TABLE 2 - CASE TEMPERATURE[‡]

PACKAGE	$T_C \le 25^{\circ}C$ POWER RATING	DERATING FACTOR ABOVE T _C = 25°C	T _C = 70°C POWER RATING	T _C = 125°C POWER RATING
D	2188 mW	17.5 mW/°C	1400 mW	438 mW
Р	2738 mW	21.9 mW/°C	1752 mW	548 mW
PW	4025 mW	32.2 mW/°C	2576 mW	805 mW

[‡] Dissipation rating tables and figures are provided for maintenance of junction temperature at or below absolute maximum temperature of 150°C. For guidelines on maintaining junction temperature within recommended operating range, see the Thermal Information section.

recommended operating conditions

	MIN	MAX	UNIT
Input voltage, V _I	2.97	10	V
High-level input voltage at EN, VIH	2		V
Low-level input voltage at EN, V _{IL}	0	0.5	V
Output current range, IO	0	500	mA
Operating virtual junction temperature range, TJ	0	125	°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

electrical characteristics over recommended operating junction temperature range, V_{I(IN)} = 3.5 V, I_O = 10 mA, $\overline{\text{EN}}$ = 0 V, C_O = 4.7 $\mu\text{F/CSR}^{\dagger}$ = 1 Ω , SENSE shorted to OUT (unless otherwise noted)

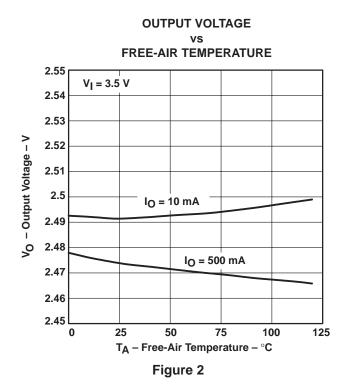
PARAMETER	TEST CONDITIONS‡		TJ	MIN	TYP	MAX	UNIT
Output voltage	35 // < // < 10 //	3.5 V ≤ V _I ≤ 10 V			2.5		V
Output voltage	3.5 V \(\) V \(\) \(\)	0°C to 125°C	2.45		2.55	ı v	
	I _O = 10 mA,	V _I = 2.45 V	25°C		5.7	7.5	
	10 = 10 111/4,	V - 2.40 V	0°C to 125°C			10	
Dropout voltage	$I_{O} = 100 \text{ mA},$	V _I = 2.45 V	25°C		57	95	m∨
Diopout voltage	10 = 100 m/r,	V ₁ = 2.10 V	0°C to 125°C			105	
	I _O = 500 mA,	V _I = 2.45 V	25°C		330	450	
	10 = 000 11// 1,	V = 2.40 V	0°C to 125°C			500	
Pass-element series resistance			25°C		0.66	0.9	Ω
T doo olollion concertodictaries			0°C to 125°C			1	
Input regulation	$V_I = 3.5 \text{ V to } 10 \text{ V},$		25°C		7	23	m∨
par.ogaiane	$50 \mu\text{A} \le I_{\text{O}} \le 500 \text{mA}$		0°C to 125°C		12.7	29	
	$I_O = 5 \text{ mA to } 500 \text{ mA}$,	25°C		18	38	mV
Output regulation	$3.5 \text{ V} \le \text{V}_{\text{I}} \le 10 \text{ V}$		0°C to 125°C			75	
Carpat regulation	$I_0 = 50 \mu\text{A} \text{ to } 500 \text{mA}$	λ,	25°C		24	60	mV
	3.5 V ≤ V _I ≤ 10 V		0°C to 125°C			120	IIIV
	f = 120 Hz.	ΙΟ = 50 μΑ	25°C	43	53		dB
Ripple rejection	1 = 120 112,		0°C to 125°C	40			
	f = 120 Hz,	I _O = 500 mA	25°C	39	51		
	1 = 120112,	10 = 300 mz	0°C to 125°C	36			
Output noise-spectral density	f = 120 Hz		25°C		2		μV/√ Hz
	40.11- 46.4400.111-	$C_0 = 4.7 \mu F$	25°C		274		
Output noise voltage	10 Hz \leq f \leq 100 kHz, CSR = 1 Ω	$C_0 = 10 \mu F$	25°C		228		μVrms
		C _O = 100 μF	25°C		159		
	<u>EN</u> ≤ 0.5 V,	25°C		292	390	μΑ	
Quiescent current (active mode)	0 mA ≤ I _O ≤ 500 mA		0°C to 125°C				540
Complete our month (store dless and de)	$\overline{EN} = V_{I},$	0.7.1/ < 10.1/	25°C		18	475	nA
Supply current (standby mode)	$\square N = V$,	2.7 V ≤ V _I ≤ 10 V	0°C to 125°C			1900	
Output current limit	Va = 0	V _I = 10 V	25°C		1.07	2	Α
Output current limit	$V_O = 0$,	V = 10 V	0°C to 125°C			2	A
Pass-element leakage current in standby	$\overline{EN} = V_1,$	2.7 V ≤ V _I ≤ 10 V	25°C		0.223	0.5	
mode	$\square V = V$,	$2.7 \text{ V} \leq \text{V} \leq 10 \text{ V}$	0°C to 125°C			1	μΑ
Output voltage temperature coefficient			0°C to 125°C		61	75	ppm/°C
Thermal shutdown junction temperature					165		°C
Louis bisch insert voltage (standby speeds) FNI	2.5 V ≤ V _I ≤ 6 V		25°C	2			
Logic high input voltage (standby mode), EN	6 V ≤ V _I ≤ 10 V		0°C to 125°C	2.7			V
Logic low input voltage (active mode), EN	2.7 V ≤ V _I ≤ 10 V		25°C			0.5	V
7	$ 2.7 \text{ V} \leq \text{V} \leq 10 \text{ V}$	0°C to 125°C			0.5	V	
Hysteresis voltage, EN	eresis voltage, EN		0°C to 125°C		50		mV
Input current, EN	0 V ≤ V _I ≤ 10 V		25°C	-0.5		0.5	^
Input current, EN	0 v > v > 10 v		0°C to 125°C	-0.5		0.5	μΑ
Input voltage, minimum for active pass			25°C		2	2.5	V
element		0°C to 125°C			2.5	v	

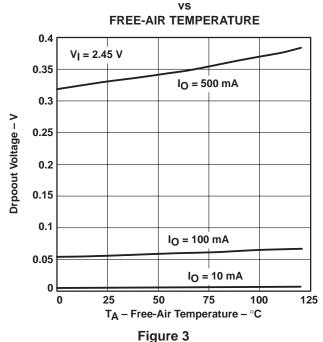
[†] CSR (compensation series resistance) refers to the total series resistance, including the equivalent series resistance (ESR) of the capacitor, any

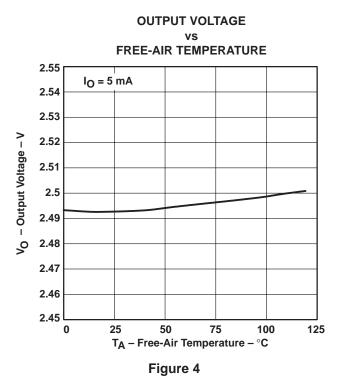
series resistance added externally, and PWB trace resistance to C₀.

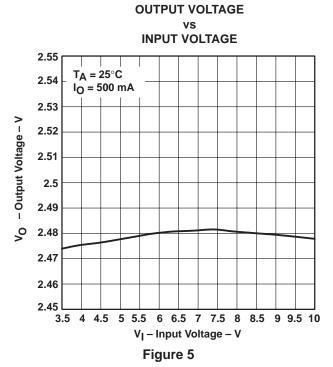
† Pulse-testing techniques are used to maintain virtual junction temperature as close as possible to ambient temperature; thermal effects must be taken into account separately.

electrical characteristics at T_J = 25°C, V_{I(IN)} = 3.5 V, I_O = 10 mA, $\overline{\text{EN}}$ = 0 V, C_O = 4.7 $\mu\text{F/CSR}^{\dagger}$ = 1 Ω , SENSE shorted to OUT (unless otherwise noted)

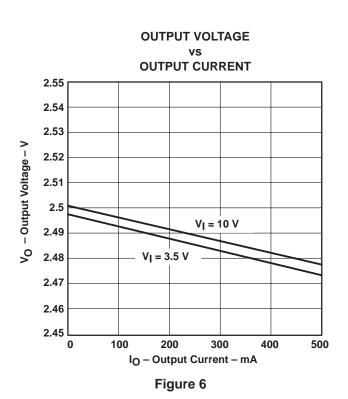

1	TP	LINUT			
TEST CONE	MIN	TYP	MAX	UNIT	
$3.5 \text{ V} \le \text{V}_{\text{I}} \le 10 \text{ V}$			2.5		V
I _O = 10 mA,	V _I = 2.45 V		5.7		
I _O = 100 mA,	V _I = 2.45 V		57		mV
I _O = 500 mA,	V _I = 2.45 V		330		
			0.66		Ω
V _I = 3.5 V to 10 V			7		mV
$I_O = 5 \text{ mA to } 500 \text{ mA}$			18		mV
$I_{O} = 50 \mu\text{A} \text{ to } 500 \text{mA}$		24		mV	
f = 120 Hz,	ΙΟ = 50 μΑ		53		40
f = 120 Hz,	I _O = 500 mA		51		dB
f = 120 Hz			2		μV/√Hz
	$C_0 = 4.7 \mu F$		274		
			228		μVrms
CSK = 1 52	C _O = 100 μF		159		
$\overline{\text{EN}} = 0 \text{ V},$ $0 \text{ mA} \le I_{\text{O}} \le 500 \text{ mA}$			292		μΑ
EN = V _I ,	2.7 V ≤ V _I ≤ 10 V		18		nA
$V_{O} = 0,$	V _I = 10 V		1.07		А
EN = V _I ,	2.7 V ≤ V _I ≤ 10 V		0.223		μΑ
			61		ppm/°C
			165		°C
$2.5 \text{ V} \leq \text{V}_{\text{I}} \leq 6 \text{ V}$		2			V
6 V ≤ V _I ≤ 10 V			2.7		
$2.7 \text{ V} \le \text{V}_{\text{I}} \le 10 \text{ V}$				0.5	V
			50		mV
0 V ≤ V _I ≤ 10 V			0		μΑ
			2		V
	$\begin{array}{c} 3.5 \ V \leq V_{I} \leq 10 \ V \\ I_{O} = 10 \ mA, \\ I_{O} = 100 \ mA, \\ I_{O} = 500 \ mA, \\ \hline \\ V_{I} = 3.5 \ V \ to \ 10 \ V \\ I_{O} = 5 \ mA \ to \ 500 \ mA \\ \hline I_{O} = 50 \ \muA \ to \ 500 \ mA \\ \hline I_{O} = 50 \ \muA \ to \ 500 \ mA \\ \hline I_{O} = 50 \ \muA \ to \ 500 \ mA \\ \hline I_{O} = 50 \ \muA \ to \ 500 \ mA \\ \hline I_{O} = 120 \ Hz, \\ \hline f = 120 \ Hz, \\ \hline f = 120 \ Hz, \\ \hline CSR = 1 \ \Omega \\ \hline \hline EN = 0 \ V, \\ 0 \ mA \leq I_{O} \leq 500 \ mA \\ \hline \hline EN = V_{I}, \\ \hline V_{O} = 0, \\ \hline EN = V_{I}, \\ \hline \hline 2.5 \ V \leq V_{I} \leq 6 \ V \\ 6 \ V \leq V_{I} \leq 10 \ V \\ \hline 2.7 \ V \leq V_{I} \leq 10 \ V \\ \hline \end{array}$	$\begin{split} & \text{I}_O = 10 \text{ mA}, & \text{V}_I = 2.45 \text{ V} \\ & \text{I}_O = 100 \text{ mA}, & \text{V}_I = 2.45 \text{ V} \\ & \text{I}_O = 500 \text{ mA}, & \text{V}_I = 2.45 \text{ V} \\ & \text{I}_O = 500 \text{ mA}, & \text{V}_I = 2.45 \text{ V} \\ & \text{V}_I = 3.5 \text{ V to } 10 \text{ V} \\ & \text{I}_O = 5 \text{ mA to } 500 \text{ mA} \\ & \text{I}_O = 50 \text{ µA to } 500 \text{ mA} \\ & \text{I}_O = 50 \text{ µA to } 500 \text{ mA} \\ & \text{f} = 120 \text{ Hz}, & \text{I}_O = 500 \text{ µA} \\ & \text{f} = 120 \text{ Hz}, & \text{I}_O = 500 \text{ mA} \\ & \text{f} = 120 \text{ Hz}, & \text{I}_O = 500 \text{ mA} \\ & \text{f} = 120 \text{ Hz}, & \text{I}_O = 500 \text{ mA} \\ & \text{Co} = 10 \text{ µF} \\ & \text{C}_O = 100 \text{ µF} \\ \hline & \text{C}_O = 100 \text{ µF} \\ \hline & \text{EN} = 0 \text{ V}, & \text{OmA} \leq \text{I}_O \leq 500 \text{ mA} \\ & \overline{\text{EN}} = \text{V}_I, & \text{2.7 V} \leq \text{V}_I \leq 10 \text{ V} \\ & \text{V}_O = 0, & \text{V}_I = 10 \text{ V} \\ \hline & \text{EN} = \text{V}_I, & \text{2.7 V} \leq \text{V}_I \leq 10 \text{ V} \\ \hline & \text{2.5 V} \leq \text{V}_I \leq 6 \text{ V} \\ & \text{6 V} \leq \text{V}_I \leq 10 \text{ V} \\ \hline & \text{2.7 V} \leq \text{V}_I \leq 10 \text{ V} \\ \hline \end{cases}$	TEST CONDITIONS $=$ MIN 3.5 V ≤ V ≤ 10 V $ _{O} = 10 \text{ mA}, \qquad V_{I} = 2.45 \text{ V} $ $ _{O} = 100 \text{ mA}, \qquad V_{I} = 2.45 \text{ V} $ $ _{O} = 500 \text{ mA}, \qquad V_{I} = 2.45 \text{ V} $ $ _{O} = 500 \text{ mA}, \qquad V_{I} = 2.45 \text{ V} $ $ _{O} = 500 \text{ mA}, \qquad V_{I} = 2.45 \text{ V} $ $ _{O} = 500 \text{ mA}, \qquad V_{I} = 2.45 \text{ V} $ $ _{O} = 500 \text{ mA}, \qquad V_{I} = 2.45 \text{ V} $ $ _{O} = 500 \text{ mA}, \qquad V_{I} = 2.45 \text{ V} $ $ _{O} = 500 \text{ mA}, \qquad V_{I} = 2.45 \text{ V} $ $ _{O} = 500 \text{ mA}, \qquad V_{I} = 2.45 \text{ V} $ $ _{O} = 500 \text{ mA}, \qquad V_{I} = 2.45 \text{ V} $ $ _{O} = 500 \text{ mA}, \qquad V_{I} = 2.500 \text{ mA} $ $ _{O} = 500 \text{ mA}, \qquad V_{I} = 2.500 \text{ mA} $ $ _{O} = 100 \text{ mA}, \qquad V_{I} = 2.7 \text{ V} = $	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c } \hline \textbf{TEST CONDITIONS$} & \textbf{MIN} & \textbf{TYP} & \textbf{MAX} \\ \hline \hline 3.5 \ V \leq V_{I} \leq 10 \ V & 2.5 \\ \hline I_{O} = 10 \ \text{mA}, & V_{I} = 2.45 \ V & 5.7 \\ \hline I_{O} = 100 \ \text{mA}, & V_{I} = 2.45 \ V & 57 \\ \hline I_{O} = 500 \ \text{mA}, & V_{I} = 2.45 \ V & 330 \\ \hline \hline 0.66 & 0.66 \\ \hline \hline V_{I} = 3.5 \ V \ \text{to} \ 10 \ V & 7 \\ \hline I_{O} = 5 \ \text{mA} \ \text{to} \ 500 \ \text{mA} & 18 \\ \hline I_{O} = 50 \ \mu \text{A} \ \text{to} \ 500 \ \text{mA} & 24 \\ \hline f = 120 \ \text{Hz}, & I_{O} = 50 \ \mu \text{A} & 53 \\ f = 120 \ \text{Hz}, & I_{O} = 500 \ \text{mA} & 51 \\ f = 120 \ \text{Hz} & 2 \\ \hline C_{O} = 4.7 \ \mu \text{F} & 274 \\ \hline C_{O} = 100 \ \mu \text{F} & 228 \\ \hline \hline C_{O} = 100 \ \mu \text{F} & 159 \\ \hline \hline \hline EN = 0 \ V, & 2.7 \ V \leq V_{I} \leq 10 \ V & 1.07 \\ \hline EN = V_{I}, & 2.7 \ V \leq V_{I} \leq 10 \ V & 0.223 \\ \hline \hline 0 \ V \leq V_{I} \leq 10 \ V & 2.7 \\ \hline 0.5 \ \hline 0 \ V \leq V_{I} \leq 10 \ V & 0.5 \\ \hline \end{array}$

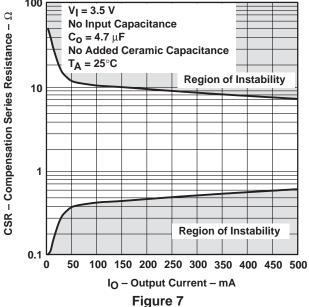

[†] CSR (compensation series resistance) refers to the total series resistance, including the equivalent series resistance (ESR) of the capacitor , any series resistance added externally, and PWB trace resistance to C₀.


[‡] Pulse-testing techniques are used to maintain virtual junction temperature as close as possible to ambient temperature; thermal effects must be taken into account separately.

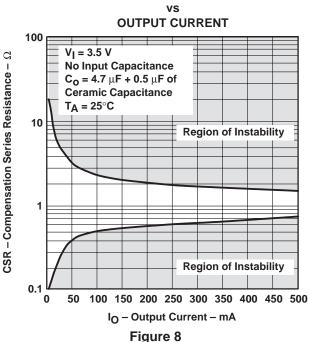

DROPOUT VOLTAGE

TYPICAL CHARACTERISTICS

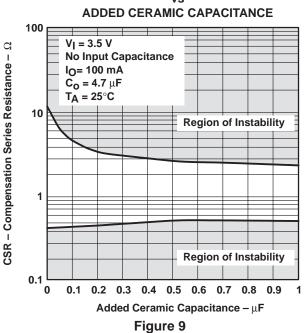




TYPICAL CHARACTERISTICS



COMPENSATION SERIES RESISTANCE vs **OUTPUT CURRENT** 100 $V_{I} = 3.5 \text{ V}$ No Input Capacitance $C_0 = 4.7 \mu F$ No Added Ceramic Capacitance


TYPICAL REGIONS OF STABILITY

TYPICAL REGIONS OF STABILITY **COMPENSATION SERIES RESISTANCE**

TYPICAL REGIONS OF STABILITY **COMPENSATION SERIES RESISTANCE**

TYPICAL CHARACTERISTICS

TYPICAL REGIONS OF STABILITY COMPENSATION SERIES RESISTANCE vs

ADDED CERAMIC CAPACITANCE

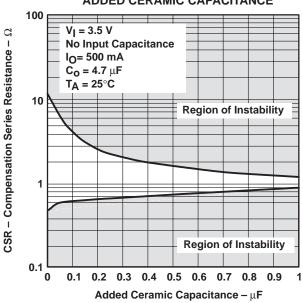
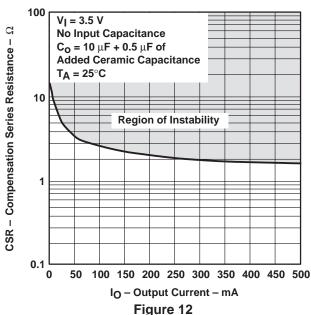
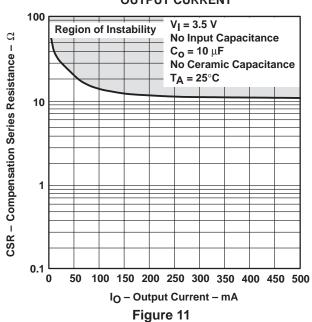
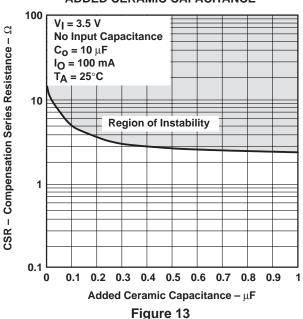



Figure 10

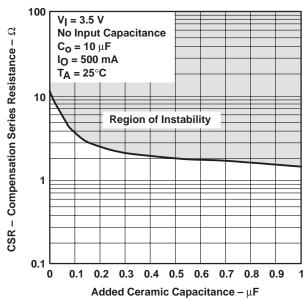

TYPICAL REGIONS OF STABILITY[†] COMPENSATION SERIES RESISTANCE

OUTPUT CURRENT

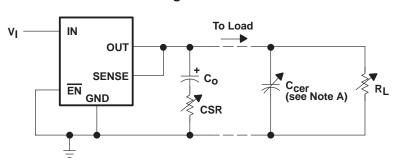

[†] CSR values below 0.1 Ω are not recommended.

TYPICAL REGIONS OF STABILITY[†] COMPENSATION SERIES RESISTANCE vs OUTPUT CURRENT

TYPICAL REGIONS OF STABILITY TO COMPENSATION SERIES RESISTANCE


vs ADDED CERAMIC CAPACITANCE

TYPICAL CHARACTERISTICS


TYPICAL REGIONS OF STABILITY † COMPENSATION SERIES RESISTANCE

ADDED CERAMIC CAPACITANCE

 † CSR values below 0.1 Ω are not recommended.

Figure 14

NOTE A: Ceramic capacitor

Figure 15. Test Circuit for Typical Regions of Stability (Figures 7 through 14)

THERMAL INFORMATION

In response to system-miniaturization trends, integrated circuits are being offered in low-profile and fine-pitch surface-mount packages. Implementation of many of today's high-performance devices in these packages requires special attention to power dissipation. Many system-dependent issues such as thermal coupling, airflow, added heat sinks and convection surfaces, and the presence of other heat-generating components affect the power-dissipation limits of a given component.

Three basic approaches for enhancing thermal performance are illustrated in this discussion:

- Improving the power-dissipation capability of the PWB design
- Improving the thermal coupling of the component to the PWB
- Introducing airflow in the system

Figure 16 is an example of a thermally enhanced PWB layout for the 20-lead TSSOP package. This layout involves adding copper on the PWB to conduct heat away from the device. The $R_{\theta JA}$ for this component/board system is illustrated in Figure 17. The family of curves illustrates the effect of increasing the size of the copper-heat-sink surface area. The PWB is a standard FR4 board (L × W × H = 3.2 inch × 3.2 inch × 0.062 inch); the board traces and heat sink area are 1-oz (per square foot) copper.

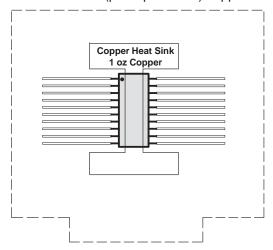
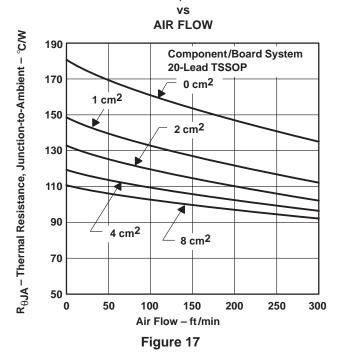
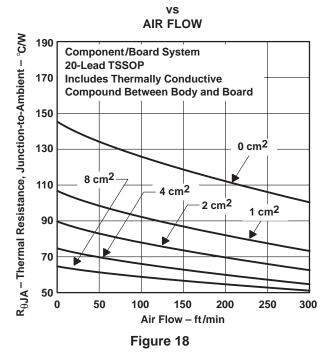



Figure 16. Thermally Enhanced PWB Layout (Not to Scale) for the 20-Pin TSSOP


Figure 18 shows the thermal resistance for the same system with the addition of a thermally conductive compound between the body of the TSSOP package and the PWB copper routed directly beneath the device. The thermal conductivity for the compound used in this analysis is $0.815 \text{ W/m} \times {}^{\circ}\text{C}$.

THERMAL INFORMATION

THERMAL RESISTANCE, JUNCTION-TO-AMBIENT

THERMAL RESISTANCE, JUNCTION-TO-AMBIENT

Using these figures to determine the system $R_{\theta JA}$ allows the maximum power-dissipation $P_{D(max)}$ limit to be calculated with the equation:

$$P_{D(max)} = \frac{T_{J(max)} - T_{A}}{R_{\theta JA(system)}}$$

Where

T_{J(max)} is the maximum allowable junction temperature (i.e., 150°C absolute maximum or 125°C maximum recommended operating temperature for specified operation).

This limit should then be applied to the internal power dissipated by the TPS71025 regulator. The equation for calculating total internal power dissipation of the device is:

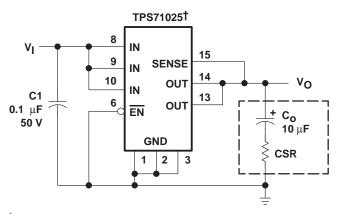
$$P_{D(total)} = (V_{I} - V_{O}) \times I_{O} + (V_{I} \times I_{Q})$$

Because the quiescent current is very low, the second term is negligible, further simplifying the equation to:

$$P_{D(total)} = (V_{I} - V_{O}) \times I_{O}$$

THERMAL INFORMATION

For a 20-lead TSSOP/FR4 board system with thermally conductive compound between the board and the device body, where $T_A = 55^{\circ}C$, airflow = 100 ft/min, and copper heat sink area = 1 cm², the maximum power-dissipation limit can be calculated. As indicated in Figure 18, the system $R_{\theta JA}$ is 94°C/W; therefore, the maximum power-dissipation limit is:


$$P_{D(max)} = \frac{T_{J(max)} - T_{A}}{R_{\theta JA(system)}} = \frac{125^{\circ}C - 55^{\circ}C}{94^{\circ}C/W} = 745 \text{ mW}$$

If the system implements a TPS71025 regulator where $V_1 = 3.3 \text{ V}$ and $I_O = 385 \text{ mA}$, the internal power dissipation is:

$$P_{D(total)} = (V_I - V_O) \times I_O = (3.3 - 2.5) \times 0.385 = 308 \text{ mW}$$

Comparing $P_{D(total)}$ with $P_{D(max)}$ reveals that the power dissipation in this example does not exceed the maximum limit. When it does, one of two corrective actions can be taken. The power-dissipation limit can be raised by increasing the airflow or the heat-sink area. Alternatively, the internal power dissipation of the regulator can be lowered by reducing the input voltage or the load current. In either case, the above calculations should be repeated with the new system parameters.

APPLICATION INFORMATION

† Capacitor selection is nontrivial. See external capacitor requirements section.

Figure 19. Typical Application Circuit

The TPS71025 low-dropout (LDO) regulator overcomes many of the shortcomings of earlier-generation LDOs, while adding features such as a power-saving shutdown mode.

device operation

The TPS71025, unlike many other LDOs, features very low quiescent current that remains virtually constant even with varying loads. Conventional LDO regulators use a pnp-pass element, the base current of which is directly proportional to the load current through the regulator ($I_B = I_C/\beta$). Examination of the data sheets reveals that those devices are typically specified under near no-load conditions; actual operating currents are much higher as evidenced by typical quiescent current versus load current curves. The TPS71025 uses a PMOS transistor to pass current; because the gate of the PMOS element is voltage driven, operating currents are low and stable over the full load range. The TPS71025 specifications reflect actual performance under load.

Another pitfall associated with the pnp-pass element is its tendency to saturate when the device goes into dropout. The resulting drop in β forces an increase in I_B to maintain the load. During power up, this translates to large start-up currents. Systems with limited supply current may fail to start up. In battery-powered systems, it means rapid battery discharge when the voltage decays below the minimum required for regulation. The TPS71025 quiescent current remains low even when the regulator drops out, eliminating both problems.

The TPS71025 also features a shutdown mode that places the output in the high-impedance state (essentially equal to the feedback-divider resistance) and reduces quiescent current to under $2\,\mu\text{A}$. If the shutdown feature is not used, $\overline{\text{EN}}$ should be tied to ground. Response to an enable transition is quick; regulated output voltage is reestablished in typically 120 μs .

minimum load requirements

The TPS71025 family is stable even at zero load; no minimum load is required for operation.

SENSE-pin connection

The SENSE pin must be connected to the regulator output for proper functioning of the regulator. Normally, this connection should be as short as possible; however, the connection can be made near a critical circuit (remote sense) to improve performance at that point. Internally, SENSE connects to a high-impedance wide-bandwidth amplifier through a resistor-divider network, and noise pickup feeds through to the regulator output. Routing the SENSE connection to minimize/avoid noise pickup is essential. Adding an RC network between SENSE and OUT to filter noise is not recommended because it can cause the regulator to oscillate.

APPLICATION INFORMATION

external capacitor requirements

An input capacitor is not required; however, a ceramic bypass capacitor (0.047 pF to 0.1 μ F) improves load transient response and noise rejection if the TPS71025 is located more than a few inches from the power supply. A higher-capacitance electrolytic capacitor may be necessary if large (hundreds of milliamps) load transients with fast rise times are anticipated.

As with most LDO regulators, the TPS71025 requires an output capacitor for stability. A low-ESR 10- μ F solid-tantalum capacitor connected from the regulator output to ground is sufficient to ensure stability over the full load range (see Figure 11). Adding high-frequency ceramic or film capacitors (such as power-supply bypass capacitors for digital or analog ICs) can cause the regulator to become unstable unless the ESR of the tantalum capacitor is less than 1.2 Ω over temperature. Capacitors with published ESR specifications such as the AVX TPSD106K035R0300 and the Sprague 593D106X0035D2W work well because the maximum ESR at 25°C is 300 m Ω (typically, the ESR in solid-tantalum capacitors increases by a factor of 2 or less when the temperature drops from 25°C to -40°C). Where component height and/or mounting area is a problem, physically smaller, 10- μ F devices can be screened for ESR. Figure 7 through Figure 14 show the stable regions of operation using different values of output capacitance with various values of ceramic load capacitance.

In applications with little or no high-frequency bypass capacitance (< 0.2 μ F), the output capacitance can be reduced to 4.7 μ F, provided ESR is maintained between 0.7 and 2.5 Ω . Because minimum capacitor ESR is seldom if ever specified, it may be necessary to add a 0.5- Ω to 1- Ω resistor in series with the capacitor and limit ESR to 1.5 Ω maximum. As shown in the ESR graphs (Figure 7 through Figure 14), minimum ESR is not a problem when using 10- μ F or larger output capacitors.

Below is a partial listing of surface-mount capacitors usable with the TPS71025. This information (along with the ESR graphs, Figure 7 through Figure 14) is included to assist in selection of suitable capacitance for the application. When necessary to achieve low height requirements along with high output current and/or high ceramic load capacitance, several higher ESR capacitors can be used in parallel to meet the guidelines above.

APPLICATION INFORMATION

external capacitor requirements (continued)

All load and temperature conditions with up to 1 μF of added ceramic load capacitance:

PART NO.	MFR.	VALUE	MAX ESR†	SIZE $(H \times L \times W)^{\dagger}$
T421C226M010AS	Kemet	$22~\mu F,10~V$	0.5	$2.8\times 6\times 3.2$
593D156X0025D2W	Sprague	15 μF , 25 V	0.3	$2.8\times7.3\times4.3$
593D106X0035D2W	Sprague	10 μ F, 35 V	0.3	$2.8\times7.3\times4.3$
TPSD106M035R0300	AVX	10 μF, 35 V	0.3	$2.8\times7.3\times4.3$

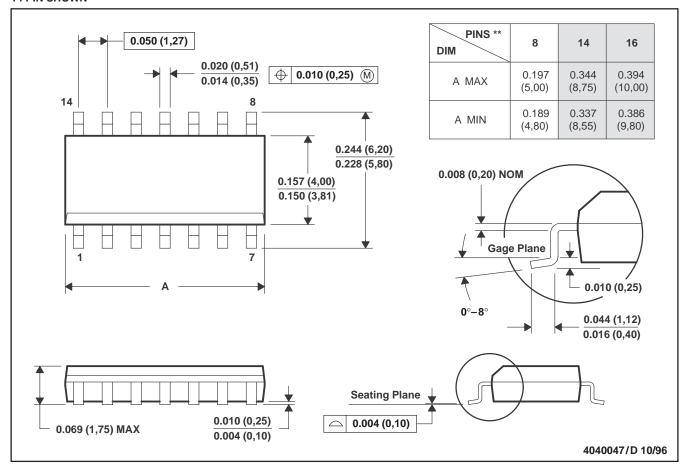
Load < 200 mA, ceramic load capacitance < 0.2 μ F, full temperature range:

PART NO.	MFR.	VALUE	MAX ESR†	SIZE $(H \times L \times W)^{\dagger}$
592D156X0020R2T	Sprague	15 μF , 20 V	1.1	$1.2\times7.2\times6$
595D156X0025C2T	Sprague	15 μF, 25 V	1	$2.5\times7.1\times3.2$
595D106X0025C2T	Sprague	10 μF, 25 V	1.2	$2.5\times7.1\times3.2$
293D226X0016D2W	Sprague	22 μF, 16 V	1.1	$2.8 \times 7.3 \times 4.3$

Load < 100 mA, ceramic load capacitance < 0.2 μ F, full temperature range:

PART NO.	MFR.	VALUE	MAX ESR†	SIZE $(H \times L \times W)^{\dagger}$
195D106X06R3V2T	Sprague	10 μ F, 6.3 V	1.5	$1.3\times3.5\times2.7$
195D106X0016X2T	Sprague	10 μ F, 16 V	1.5	$1.3\times7\times2.7$
595D156X0016B2T	Sprague	15 μF, 16 V	1.8	$1.6\times3.8\times2.6$
695D226X0015F2T	Sprague	$22~\mu\text{F},~15~\text{V}$	1.4	$1.8\times6.5\times3.4$
695D156X0020F2T	Sprague	15 μ F, 20 V	1.5	$1.8\times6.5\times3.4$
695D106X0035G2T	Sprague	10 μ F, 35 V	1.3	$2.5\times7.6\times2.5$

 $^{^\}dagger$ Size is in mm. ESR is maximum resistance at 100 kHz and T_A = 25°C. Listings are sorted by height.



MECHANICAL DATA

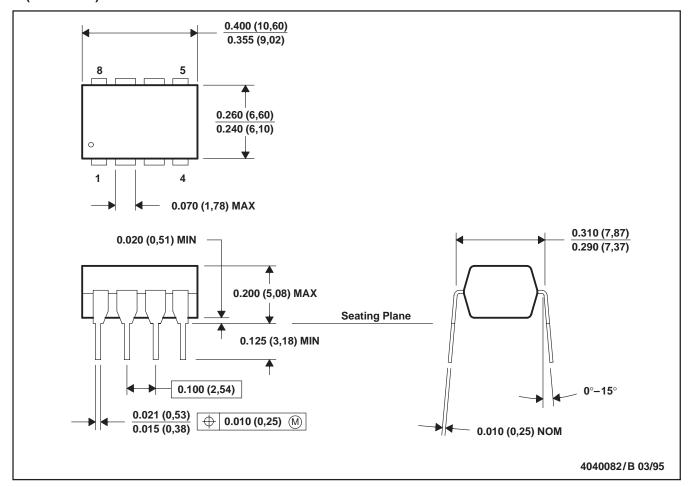
D (R-PDSO-G**)

14 PIN SHOWN

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.


C. Body dimensions do not include mold flash or protrusion, not to exceed 0.006 (0,15).

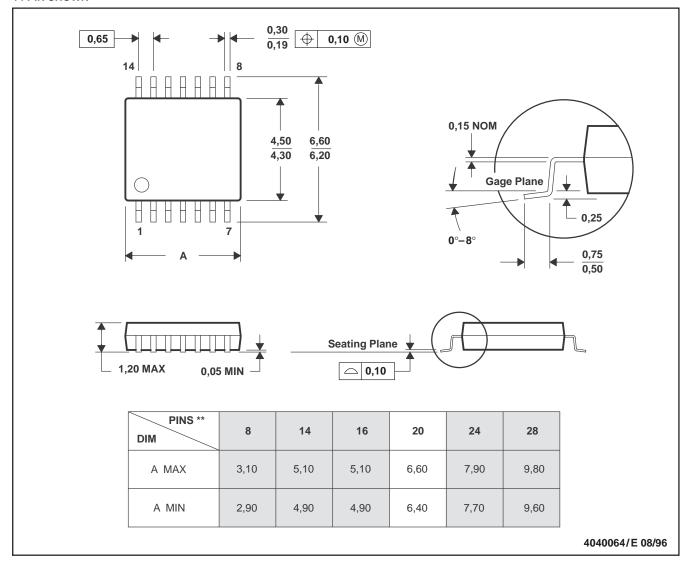
D. Falls within JEDEC MS-012

MECHANICAL DATA

P (R-PDIP-T8)

PLASTIC DUAL-IN-LINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).


- B. This drawing is subject to change without notice.
- C. Falls within JEDEC MS-001

MECHANICAL DATA

PW (R-PDSO-G**)

14 PIN SHOWN

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.

D. Falls within JEDEC MO-153

i.com 5-Feb-2007

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
TPS71025D	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TPS71025DG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TPS71025DR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TPS71025DRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TPS71025P	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
TPS71025PE4	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
TPS71025PWLE	OBSOLETE	TSSOP	PW	20		TBD	Call TI	Call TI
TPS71025PWR	ACTIVE	TSSOP	PW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TPS71025PWRG4	ACTIVE	TSSOP	PW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

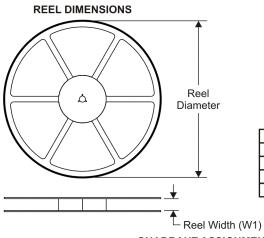
TBD: The Pb-Free/Green conversion plan has not been defined.

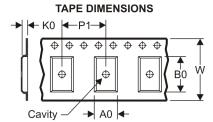
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

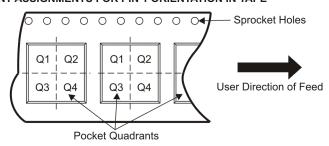
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.


Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

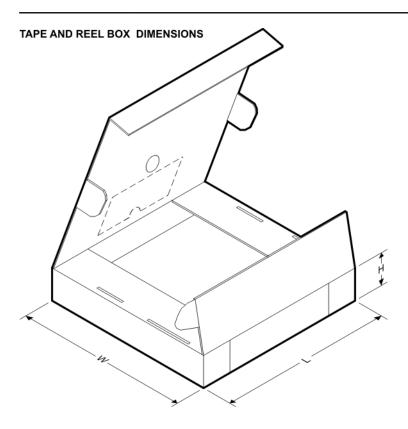

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com 5-May-2011


TAPE AND REEL INFORMATION

A0	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TPS71025DR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TPS71025PWR	TSSOP	PW	20	2000	330.0	16.4	6.95	7.1	1.6	8.0	16.0	Q1

www.ti.com 5-May-2011

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TPS71025DR	SOIC	D	8	2500	346.0	346.0	29.0
TPS71025PWR	TSSOP	PW	20	2000	346.0	346.0	33.0

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications			
Audio	www.ti.com/audio	Communications and Telecom	www.ti.com/communications		
Amplifiers	amplifier.ti.com	Computers and Peripherals	www.ti.com/computers		
Data Converters	dataconverter.ti.com	Consumer Electronics	www.ti.com/consumer-apps		
DLP® Products	www.dlp.com	Energy and Lighting	www.ti.com/energy		
DSP	dsp.ti.com	Industrial	www.ti.com/industrial		
Clocks and Timers	www.ti.com/clocks	Medical	www.ti.com/medical		
Interface	interface.ti.com	Security	www.ti.com/security		
Logic	logic.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense		
Power Mgmt	power.ti.com	Transportation and Automotive	www.ti.com/automotive		
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video		
RFID	www.ti-rfid.com	Wireless	www.ti.com/wireless-apps		
RF/IF and ZigBee® Solutions	www.ti.com/lprf				

TI E2E Community Home Page

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2011, Texas Instruments Incorporated

e2e.ti.com