9-BIT BUS-INTERFACE REGISTER WITH 3-STATE OUTPUTS

SCCS069A - OCTOBER 2001 - REVISED NOVEMBER 2001

- Function, Pinout, and Drive Compatible
 With FCT, F Logic, and AM29823
- Reduced V_{OH} (Typically = 3.3 V) Version of Equivalent FCT Functions
- Edge-Rate Control Circuitry for Significantly Improved Noise Characteristics
- I_{off} Supports Partial-Power-Down Mode Operation
- Matched Rise and Fall Times
- Fully Compatible With TTL Input and Output Logic Levels
- ESD Protection Exceeds JESD 22
 - 2000-V Human-Body Model (A114-A)
 - 200-V Machine Model (A115-A)
 - 1000-V Charged-Device Model (C101)
- 64-mA Output Sink Current
 32-mA Output Source Current
- High-Speed Parallel Register With Positive-Edge-Triggered D-Type Flip-Flops
- Buffered Common Clock-Enable (EN) and Asynchronous-Clear (CLR) Inputs
- 3-State Outputs

(TOP VIEW) 24 🛮 V_{CC} <u>oe</u> l $D_0 \square 2$ 23 Y_0 $D_1 \square 3$ 22 X1 $D_2 \square 4$ 21 Y₂ $D_3 \square 5$ 20 Y₃ $D_4 \begin{bmatrix} 1 \\ 6 \end{bmatrix}$ 19 Y₄ D₅ [] 7 18 Y₅ $D_6 \square 8$ 17 X Y₆ $D_7 \begin{bmatrix} 1 \\ 9 \end{bmatrix}$ 16 Y₇ 15 🛮 Y₈ D₈ [] 10 14 EN CLR II 11 GND 12 13 CP

P. Q. OR SO PACKAGE

description

This bus-interface register is designed to eliminate the extra packages required to buffer existing registers and provide extra data width for wider address/data paths or buses carrying parity. The CY74FCT823T is a 9-bit-wide buffered register with clock-enable (EN) and clear (CLR) inputs that are ideal for parity bus interfacing in high-performance microprogrammed systems. It is ideal for use as an output port requiring high I_{OL}/I_{OH}.

This device is designed for high-capacitance load drive capability, while providing low-capacitance bus loading at both inputs and outputs. Outputs are designed for low-capacitance bus loading in the high-impedance state.

This device is fully specified for partial-power-down applications using I_{off}. The I_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

ORDERING INFORMATION

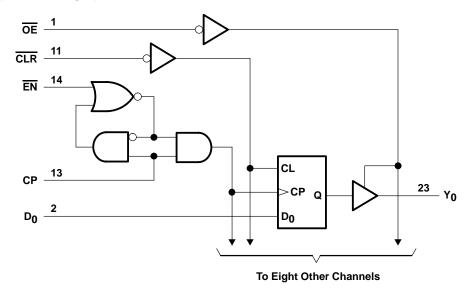
TA	PACI	KAGEŤ	SPEED (ns)	ORDERABLE PART NUMBER	TOP-SIDE MARKING
	QSOP - Q	Tape and reel	6	CY74FCT823CTQCT	FCT823C
	SOIC - SO	Tube	6	CY74FCT823CTSOC	FCT823C
	3010 - 30	Tape and reel	6	CY74FCT823CTSOCT	FC1023C
-40°C to 85°C	DIP – P	Tube	7.5	CY74FCT823BTPC	CY74FCT823BTPC
-40 C to 83 C	DIP – P	Tube	10	CY74FCT823ATPC	CY74FCT823ATPC
	QSOP - Q	Tape and reel	10	CY74FCT823ATQCT	FCT823A
	SOIC - SO	Tube	10	CY74FCT823ATSOC	FCT823A
	3010 - 30	Tape and reel	10	CY74FCT823ATSOCT	FUIOZSA

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

PIN DESCRIPTION

NAME	1/0	DESCRIPTION
D	I	D flip-flop data inputs
CLR	I	When CLR is low and OE is low, Q outputs are low. When CLR is high, data can be entered into the register.
СР	0	Clock pulse for the register. Enters data into the register on the low-to-high clock transition.
Υ	0	Register 3-state outputs
EN	I	Clock enable. When \overline{EN} is low, data on the D input is transferred to the Q output on the low-to-high clock transition. When \overline{EN} is high, the Q outputs do not change state, regardless of the data or clock input transitions.
ŌĒ	I	Output control. When \overline{OE} is high, the Youtputs are in the high-impedance state. When \overline{OE} is low, true register data is present at the Youtputs.

FUNCTION TABLE


	1	INPUTS				RNAL PUTS	FUNCTION	
OE	CLR	EN	D	СР	Q	Υ		
Н	Н	L	L	↑	L	Z	Z	
Н	Н	L	Н	\uparrow	Н	Z	۷	
Н	L	Χ	Χ	Х	L	Z	Clear	
L	L	Χ	Χ	X	L	L	Clear	
Н	Н	Н	Х	Х	NC	Z	Hold	
L	Н	Н	Χ	Х	NC	NC	Hold	
Н	Н	L	L	1	L	Z		
Н	Н	L	Н	\uparrow	Н	Z	Load	
L	Н	L	L	\uparrow	L	L	Load	
L	Н	L	Н	1	Н	Н		

H = High logic level, L = Low logic level, X = Don't care, NC = No change,

^{↑ =} Low-to-high transition, Z = High-impedance state

logic diagram (positive logic)

absolute maximum rating over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range to ground potential	
DC output voltage range	
DC output current (maximum sink current/pin)	120 mA
Package thermal impedance, θ _{JA} (see Note 1): P package	67°C/W
(see Note 2): Q package	61°C/W
(see Note 2): SO package	46°C/W
Ambient temperature range with power applied, T _A	-65°C to 135°C
Storage temperature range, T _{stg}	-65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- NOTES: 1. The package thermal impedance is calculated in accordance with JESD 51-3.
 - 2. The package thermal impedance is calculated in accordance with JESD 51-7.

recommended operating conditions (see Note 3)

		MIN	NOM	MAX	UNIT
Vcc	Supply voltage	4.75	5	5.25	V
VIH	High-level input voltage	2			V
VIL	Low-level input voltage			0.8	V
ІОН	High-level output current			-32	mA
lOL	Low-level output current			64	mA
TA	Operating free-air temperature	-40		85	°C

NOTE 3: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation.

SCCS069A - OCTOBER 2001 - REVISED NOVEMBER 2001

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITION	S	MIN	TYP [†]	MAX	UNIT
VIK	$V_{CC} = 4.75 \text{ V},$	I _{IN} = -18 mA			-0.7	-1.2	V
\/a	\/a a 4.75.\/	I _{OH} = -32 mA		2			V
VOH	V _{CC} = 4.75 V	I _{OH} = -15 mA		2.4	3.3		V
VOL	V _{CC} = 4.75 V,	I _{OL} = 64 mA			0.3	0.55	V
V _{hys}	All inputs				0.2		V
Ι _Ι	$V_{CC} = 5.25 \text{ V},$	$V_{IN} = V_{CC}$				5	μΑ
lіН	V _{CC} = 5.25 V,	$V_{IN} = 2.7 \text{ V}$				±1	μΑ
Ι _{ΙL}	V _{CC} = 5.25 V,	$V_{IN} = 0.5 V$				±1	μΑ
lozh	V _{CC} = 5.25 V,	V _{OUT} = 2.7 V				10	μΑ
lozL	V _{CC} = 5.25 V,	V _{OUT} = 0.5 V				-10	μΑ
los [‡]	$V_{CC} = 5.25 \text{ V},$	V _{OUT} = 0 V		-60	-120	-225	mA
l _{off}	$V_{CC} = 0 V$,	V _{OUT} = 4.5 V				±1	μΑ
Icc	$V_{CC} = 5.25 \text{ V},$	$V_{IN} \le 0.2 V$,	$V_{IN} \ge V_{CC} - 0.2 \text{ V}$		0.1	0.2	mA
ΔlCC	V _{CC} = 5.25 V, V _{IN} =	3.4 V\$, f ₁ = 0, Outputs or	oen		0.5	2	mA
ICCD¶	$\frac{V_{CC}}{OE} = \frac{5.25}{EN} $	it switching at 50% duty c $1 \le 0.2 \text{ V or V}_{IN} \ge \text{V}_{CC} = 0$	cycle, Outputs open, 0.2 V		0.06	0.12	mA/ MHz
		One bit switching at f ₁ = 5 MHz	$V_{IN} \le 0.2 \text{ V or}$ $V_{IN} \ge V_{CC} - 0.2 \text{ V}$		0.7	1.4	
#	$V_{CC} = 5.25 \text{ V},$	at 50% duty cycle	V _{IN} = 3.4 V or GND		1.2	3.4	A
IC#	Outputs open, OE = EN = GND	Eight bits switching at f ₁ = 2.5 MHz	$V_{IN} \le 0.2 \text{ V or}$ $V_{IN} \ge V_{CC} - 0.2 \text{ V}$		1.6	3.2	mA
		at 50% duty cycle	V _{IN} = 3.4 V or GND		3.9	12.2	
Ci					5	10	pF
Co					9	12	pF

[†] Typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

Where:

IC = Total supply current

I_{CC} = Power-supply current with CMOS input levels

ΔICC = Power-supply current for a TTL high input (V_{IN} = 3.4 V)

D_H = Duty cycle for TTL inputs high N_T = Number of TTL inputs at D_H

ICCD = Dynamic current caused by an input transition pair (HLH or LHL)

f₀ = Clock frequency for registered devices, otherwise zero

f₁ = Input signal frequency

N₁ = Number of inputs changing at f₁

All currents are in milliamperes and all frequencies are in megahertz.

 \parallel Values for these conditions are examples of the I_{CC} formula.

Not more than one output should be shorted at a time. Duration of short should not exceed one second. The use of high-speed test apparatus and/or sample-and-hold techniques are preferable to minimize internal chip heating and more accurately reflect operational values. Otherwise, prolonged shorting of a high output can raise the chip temperature well above normal and cause invalid readings in other parametric tests. In any sequence of parameter tests, IOS tests should be performed last.

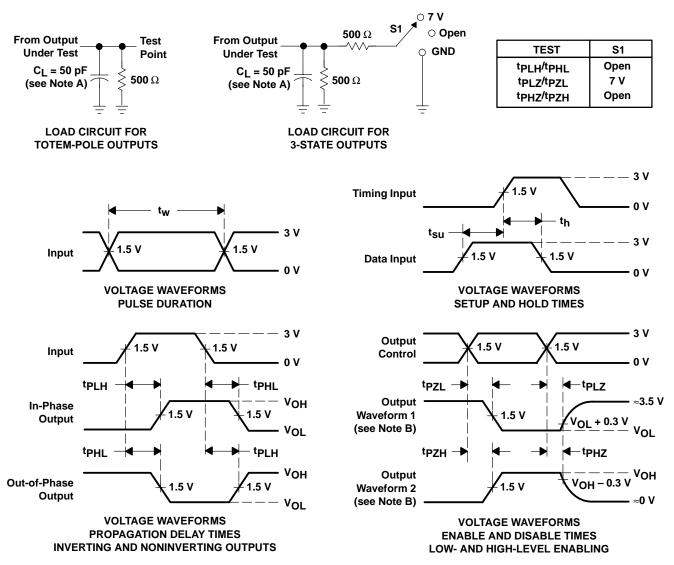
 $[\]$ Per TTL-driven input ($V_{IN} = 3.4 \text{ V}$); all other inputs at V_{CC} or GND

This parameter is derived for use in total power-supply calculations.

 $^{^{\#}}$ IC = ICC + Δ ICC \times DH \times NT + ICCD (f₀/2 + f₁ \times N₁)

CY74FCT823T 9-BIT BUS-INTERFACE REGISTER WITH 3-STATE OUTPUTS SCCS069A - OCTOBER 2001 - REVISED NOVEMBER 2001

timing requirements over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1)


	PARAMETER		TEST LOAD CY74FCT823AT C		CY74FCT	823BT	CY74FCT	823CT	UNIT		
	PARAMETER		TEST LOAD	MIN	MAX	MIN	MAX	MIN	MAX	UNIT	
t Dulas duration		CP	C _L = 50 pF,	7		6		6			
t _W Pulse duration	CLR low	$R_L = 500 \Omega$	6		6		6		ns		
A Control Constitution of CONT		Data	$C_L = 50 \text{ pF},$	4		3		3		ns	
t _{su}	Setup time, before CP↑	EN	$R_L = 500 \Omega$	4		3		3		115	
Ī.,	Hold time, after CP↑	Data	C _L = 50 pF,	2		1.5		1.5		20	
۱ ^ւ h	th Hold time, after CPT	EN	$R_L = 500 \Omega$	2		0		0		ns	
t _{rec}	Recovery time	CLR before CP↑	$C_L = 50 \text{ pF},$ $R_L = 500 \Omega$	6		6		6		ns	

switching characteristics over operating free-air temperature range (see Figure 1)

PARAMETER	FROM	то	TEST LOAD	CY74FC	Г823AT	CY74FCT823B	T CY74FC	T823CT	UNIT		
PARAMETER	(INPUT)	(OUTPUT)	TEST LOAD	MIN	MAX	MIN MA	X MIN	MAX	UNII		
t _{PLH}	СР	Y	C _L = 50 pF,		10	7	5	6	ns		
t _{PHL}	OI .	•	$R_L = 500 \Omega$		10	7	5	6	113		
^t PLH	СР	Y	$C_L = 300 \text{ pF},$		20	1	5	12.5	ns		
t _{PHL}	GF .		$R_L = 500 \Omega$		20	1	5	12.5	115		
^t PLH	CLR	Y	$C_L = 50 \text{ pF},$ $R_L = 500 \Omega$		14		9	8	ns		
^t PZH	ŌE	Υ	$C_1 = 50 \text{ pF},$		12		8	7	no		
t _{PZL}	OE	ī	R _L = 500 Ω	$R_L = 500 \Omega$	$R_L = 500 \Omega$		12		8	7	ns
^t PZH	ŌE	Y	C _L = 300 pF,		23	1	5	12.5	ns		
tpzL	OL	ī	$R_L = 500 \Omega$		23	1	5	12.5	115		
^t PHZ	ŌE	Υ	C _L = 5 pF,		7	6	5	6			
tpLZ)E	ſ	$R_L = 500 \Omega$		7	6	5	6	ns		
^t PHZ	ŌE	Y	C _L = 50 pF,		8	7	5	6.5	ns		
tPLZ	5	ſ	$R_L = 500 \Omega$		8	7	5	6.5	115		

PARAMETER MEASUREMENT INFORMATION

NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. The outputs are measured one at a time with one input transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
CY74FCT823ATPC	ACTIVE	PDIP	NT	24	15	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
CY74FCT823ATPCE4	ACTIVE	PDIP	NT	24	15	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
CY74FCT823ATQCT	ACTIVE	SSOP/ QSOP	DBQ	24	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
CY74FCT823ATQCTG4	ACTIVE	SSOP/ QSOP	DBQ	24	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
CY74FCT823ATSOC	ACTIVE	SOIC	DW	24	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CY74FCT823ATSOCE4	ACTIVE	SOIC	DW	24	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CY74FCT823ATSOCG4	ACTIVE	SOIC	DW	24	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CY74FCT823ATSOCT	ACTIVE	SOIC	DW	24	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CY74FCT823ATSOCTE4	ACTIVE	SOIC	DW	24	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CY74FCT823ATSOCTG4	ACTIVE	SOIC	DW	24	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CY74FCT823BTPC	ACTIVE	PDIP	NT	24	15	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
CY74FCT823BTPCE4	ACTIVE	PDIP	NT	24	15	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
CY74FCT823CTQCT	ACTIVE	SSOP/ QSOP	DBQ	24	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
CY74FCT823CTQCTE4	ACTIVE	SSOP/ QSOP	DBQ	24	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
CY74FCT823CTQCTG4	ACTIVE	SSOP/ QSOP	DBQ	24	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
CY74FCT823CTSOC	ACTIVE	SOIC	DW	24	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CY74FCT823CTSOCE4	ACTIVE	SOIC	DW	24	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CY74FCT823CTSOCG4	ACTIVE	SOIC	DW	24	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CY74FCT823CTSOCT	ACTIVE	SOIC	DW	24	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CY74FCT823CTSOCTE4	ACTIVE	SOIC	DW	24	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CY74FCT823CTSOCTG4	ACTIVE	SOIC	DW	24	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBLY: Thas announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

PACKAGE OPTION ADDENDUM

21-May-2007

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

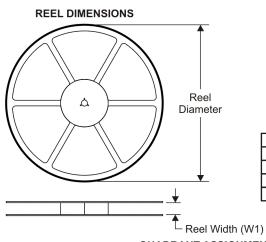
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

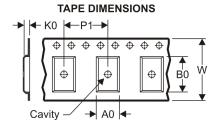
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

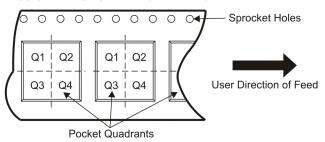
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

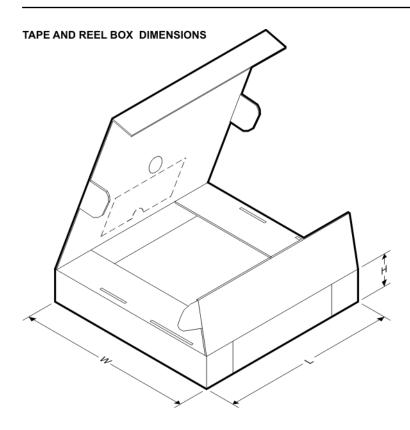

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.



.com 11-Mar-2008

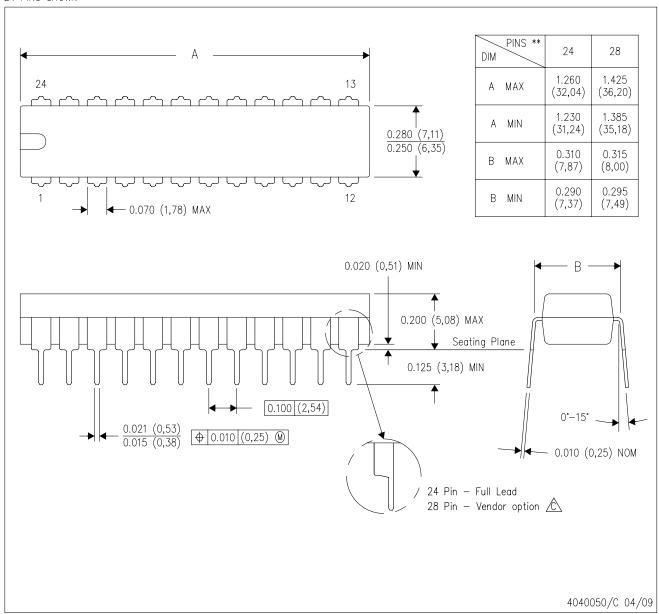

TAPE AND REEL INFORMATION

	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device		Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
CY74FCT823ATQCT	SSOP/ QSOP	DBQ	24	2500	330.0	16.4	6.5	9.0	2.1	8.0	16.0	Q1
CY74FCT823ATSOCT	SOIC	DW	24	2000	330.0	24.4	10.75	15.7	2.7	12.0	24.0	Q1
CY74FCT823CTQCT	SSOP/ QSOP	DBQ	24	2500	330.0	16.4	6.5	9.0	2.1	8.0	16.0	Q1
CY74FCT823CTSOCT	SOIC	DW	24	2000	330.0	24.4	10.75	15.7	2.7	12.0	24.0	Q1


*All dimensions are nominal

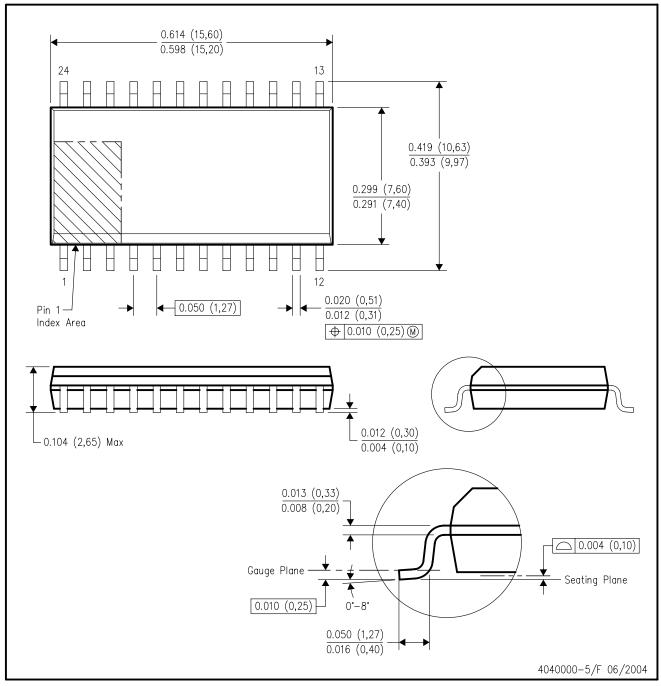
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
CY74FCT823ATQCT	SSOP/QSOP	DBQ	24	2500	346.0	346.0	33.0
CY74FCT823ATSOCT	SOIC	DW	24	2000	346.0	346.0	41.0
CY74FCT823CTQCT	SSOP/QSOP	DBQ	24	2500	346.0	346.0	33.0
CY74FCT823CTSOCT	SOIC	DW	24	2000	346.0	346.0	41.0

NT (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

24 PINS SHOWN

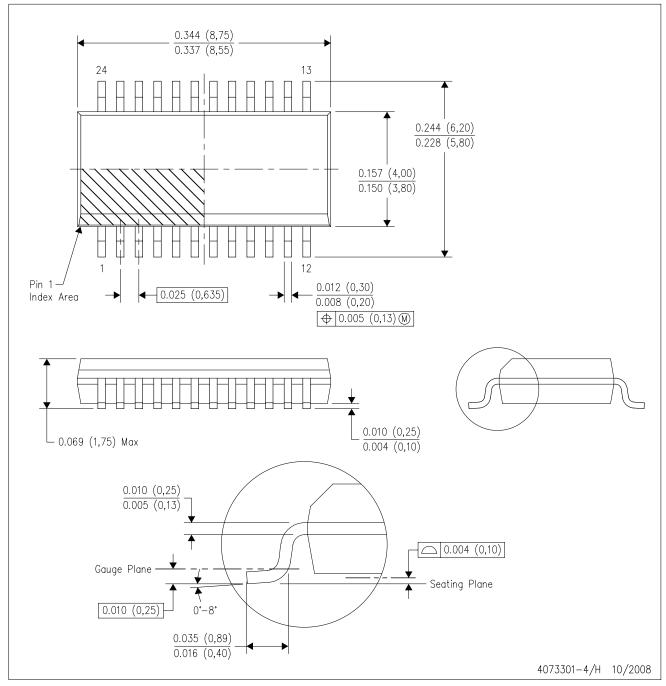
NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.


B. This drawing is subject to change without notice.

The 28 pin end lead shoulder width is a vendor option, either half or full width.

DW (R-PDSO-G24)

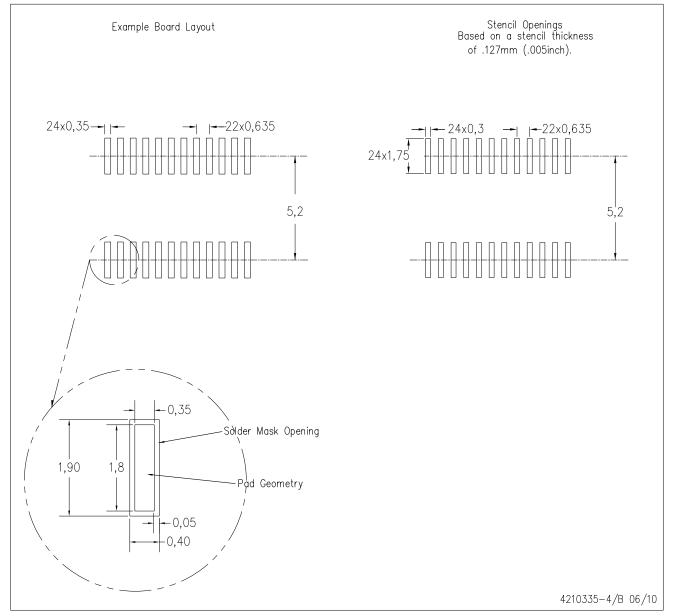
PLASTIC SMALL-OUTLINE PACKAGE


NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
- D. Falls within JEDEC MS-013 variation AD.

DBQ (R-PDSO-G24)

PLASTIC SMALL-OUTLINE PACKAGE


NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15) per side.
- D. Falls within JEDEC MO-137 variation AE.

DBQ (R-PDSO-G24)

PLASTIC SMALL OUTLINE PACKAGE

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad.
- D. Publication IPC-7351 is recommended for alternate designs.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DLP® Products	www.dlp.com	Communications and Telecom	www.ti.com/communications
DSP	<u>dsp.ti.com</u>	Computers and Peripherals	www.ti.com/computers
Clocks and Timers	www.ti.com/clocks	Consumer Electronics	www.ti.com/consumer-apps
Interface	interface.ti.com	Energy	www.ti.com/energy
Logic	logic.ti.com	Industrial	www.ti.com/industrial
Power Mgmt	power.ti.com	Medical	www.ti.com/medical
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
RFID	www.ti-rfid.com	Space, Avionics & Defense	www.ti.com/space-avionics-defense
RF/IF and ZigBee® Solutions	www.ti.com/lprf	Video and Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless-apps