

QUICKSWITCH® PRODUCTS 2.5V/3.3V 8-BIT HIGH BANDWIDTH BUS EXCHANGE BUS SWITCH

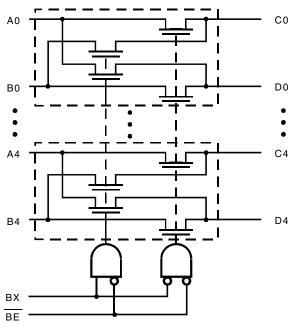
IDTQS3VH383

FEATURES:

- · N channel FET switches with no parasitic diode to Vcc
 - Isolation under power-off conditions
 - No DC path to Vcc or GND
 - 5V tolerant in OFF and ON state
- 5V tolerant I/Os
- Low Ron 4Ω typical
- Flat Ron characteristics over operating range
- · Rail-to-rail switching 0 5V
- Bidirectional dataflow with near-zero delay: no added ground bounce
- Excellent Ron matching between channels
- · Vcc operation: 2.3V to 3.6V
- · High bandwidth up to 500 MHz
- · LVTTL-compatible control Inputs
- · Undershoot Clamp Diodes on all switch and control Inputs
- · Low I/O capacitance, 4pF typical
- Available in QSOP, SOIC, and TSSOP packages

APPLICATIONS:

- · Hot-swapping
- · 10/100 Base-T, Ethernet LAN switch
- · Low distortion analog switch
- · Replaces mechanical relay
- ATM 25/155 switching

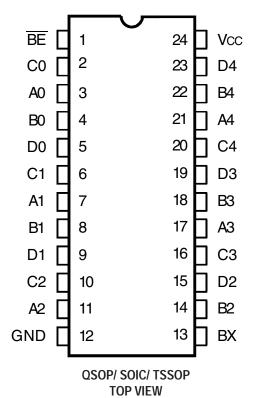

DESCRIPTION:

The QS3VH383 Bus Exchange HotSwitch with 10-bits is a high bandwidth bus switch. The QS3VH383 has very low ON resistance, resulting in under 250ps propagation delay through the switch. The Bus Enable (\overline{BE}) signal turns the switches on. The Bus Exchange (BX) signal provides nibble swap of the AB and CD signal pairs. This exchange configuration allows byte swapping of buses. In the OFF and ON states, the switches are 5V-tolerant. In the OFF state, the switches offer very high impedence at the terminals.

The combination of near-zero propagation delay, the lack of additional ground bounce noise, high OFF impedance, and over-voltage tolerance makes the QS3VH383 ideal for high performance communications applications.

The QS3VH383 is characterized for operation from -40°C to +85°C.

FUNCTIONAL BLOCK DIAGRAM



The IDT logo is a registered trademark of Integrated Device Technology, Inc.

INDUSTRIAL TEMPERATURE RANGE

APRIL 2002

PIN CONFIGURATION

ABSOLUTE MAXIMUM RATINGS(1)

Symbol	Description	Max.	Unit
VTERM(2)	Supply Voltage to Ground	- 0.5 to 4.6	V
VTERM(3)	DC Switch Voltage Vs	- 0.5 to 5.5	V
VTERM(3)	DC Input Voltage VIN	- 0.5 to 5.5	V
VAC	AC Input Voltage (pulse width ≤20ns)	- 3	V
Іоит	DC Output Current (max. current/pin)	120	mA
Tstg	Storage Temperature	-65 to +150	°C

NOTES:

- Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
- 2. Vcc terminals.
- 3. All terminals except Vcc.

CAPACITANCE (TA = +25°C, f = 1MHz, VIN = 0V, VOUT = 0V)

Symbol	Parameter ⁽¹⁾	Тур.	Max.	Unit
CIN	Control Inputs	3	5	pF
CI/O	Quickswitch Channels (Switch OFF)	7	11	pF
Cı/o	Quickswitch Channels (Switch ON)	14	22	pF

NOTE:

1. This parameter is guaranteed but not production tested.

PIN DESCRIPTION

Pin Names	I/O	Description
A0-A4, B0-B4	I/O	Buses A and B
C0-4, D0-D4	I/O	Buses C and D
BE	l	Bus Switch Enable
ВХ	I	Bus Exchange

FUNCTION TABLE(1)

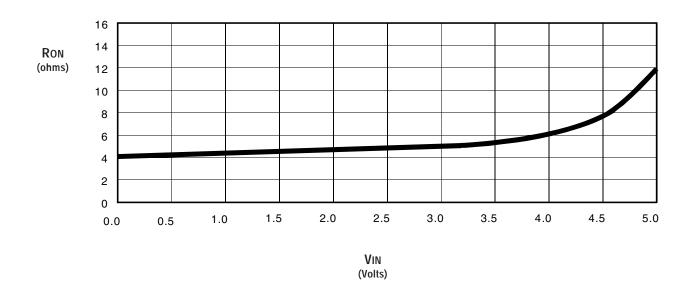
BE	ВХ	A0-A4	B ₀ -B ₄	Function
Н	Х	Z	Z	Disconnect
L	L	Co-C4	D0-D4	Connect
L	Н	Do-D4	Co-C4	Exchange

NOTE:

- 1. H = HIGH Voltage Level
 - L = LOW Voltage Level
 - X = Don't Care
 - Z = High-Impedance

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE(1)

Following Conditions Apply Unless Otherwise Specified:

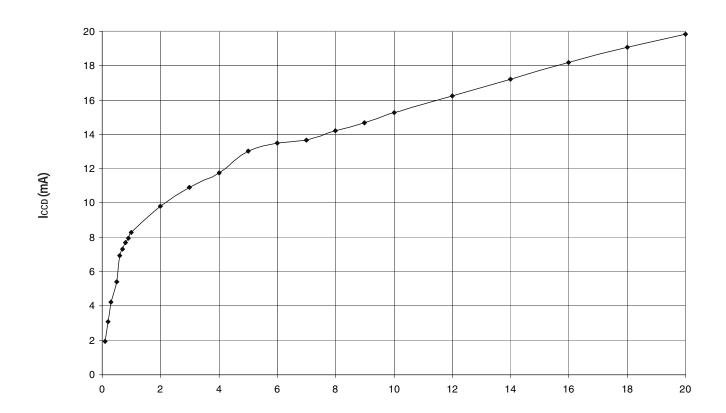

Industrial: TA = -40°C to +85°C, VCC = $3.3V \pm 0.3V$

Symbol	Parameter	Test Conditions			Min.	Typ. ⁽¹⁾	Max.	Unit
VIH	Input HIGH Voltage	Guaranteed Logic HI	GH	Vcc = 2.3V to 2.7V	1.7	_	_	V
		for Control Inputs		Vcc = 2.7V to 3.6V	2	_	_	
VIL	Input LOW Voltage	Guaranteed Logic HI	GH	Vcc = 2.3V to 2.7V	_	_	0.7	V
		for Control Inputs		Vcc = 2.7V to 3.6V	_	_	0.8	
lin	Input Leakage Current (Control Inputs)	0V ≤ VIN ≤ VCC		_	_	±1	μA	
loz	Off-State Current (Hi-Z)	0V ≤ Vouт ≤ 5V, Switches OFF		_	_	±1	μA	
loff	Data Input/Output Power Off Leakage	VIN or Vout 0V to 5\	VIN or VOUT 0V to 5V, VCC = 0V		_	_	±1	μA
		Vcc = 2.3V	VIN = 0V	ION = 30mA	_	6	8	
Ron	Switch ON Resistance	(Typ. at Vcc = 2.5V)	VIN = 1.7V	ION = 15mA	_	7	9	Ω
		Vcc = 3V	VIN = 0V	ION = 30mA	_	4	6	
			VIN = 2.4V	ION = 15mA	_	5	8	

NOTE:

1. Typical values are at Vcc = 3.3V and TA = 25°C.

TYPICAL ON RESISTANCE vs Vin AT Vcc = 3.3V


POWER SUPPLY CHARACTERISTICS

Symbol	Parameter	Test Conditions ⁽¹⁾	Min.	Тур.	Max.	Unit
Icco	Quiescent Power Supply Current	Vcc = Max., Vin = GND or Vcc, f = 0	_	1.5	3	mA
Δlcc	Power Supply Current ^(2,3) per Input HIGH	Vcc = Max., Vin = 3V, f = 0 per Control Input	_	_	30	μA
ICCD	Dynamic Power Supply Current ⁽⁴⁾	Vcc = 3.3V, A, B,C, or D Pins Open, Control	See Typical	ccd vs Enable	Frequency gra	ph below
		Inputs Toggling @ 50% Duty Cycle				

NOTES:

- 1. For conditions shown as Min. or Max., use the appropriate values specified under DC Electrical Characteristics.
- 2. Per input driven at the specified level. A, B, C, and D pins do not contribute to Δlcc.
- 3. This parameter is guaranteed but not tested.
- 4. This parameter represents the current required to switch internal capacitance at the specified frequency. The A, B, C, and D inputs do not contribute to the Dynamic Power Supply Current. This parameter is guaranteed but not production tested.

TYPICAL ICCD vs ENABLE FREQUENCY CURVE AT Vcc = 3.3V

ENABLE FREQUENCY (MHz)

SWITCHING CHARACTERISTICS OVER OPERATING RANGE

 $T_A = -40^{\circ}C \text{ to } +85^{\circ}C$

		$Vcc = 2.5 \pm 0.2V^{(1)}$		$Vcc = 3.3 \pm 0.3V^{(1)}$		
Symbol	Parameter	Min. ⁽⁴⁾	Max.	Min. ⁽⁴⁾	Max.	Unit
t PLH	Data Propagation Delay ^(2,3)	_	0.2	_	0.2	ns
t PHL	Ax or Bx to Cx or Dx, Cx or Dx to Ax or Bx					
tpzh	Switch Turn-On Delay	1.5	8.5	1.5	8.5	ns
tpzl	BE to Ax, Bx, Cx, Dx					
tphz	Switch Turn-Off Delay	1.5	8	1.5	8	ns
tPLZ	BE to Ax, Bx, Cx, Dx					
tpbx	Bus Exchange Propagation Delay	1.5	8	1.5	7.5	ns
	BX to Ax, Bx, Cx, Dx					
fenable	Operating Frequency - Enable (BE) (2,5)	_	10	_	20	MHz

NOTES:

- 1. See Test Conditions under TEST CIRCUITS AND WAVEFORMS.
- 2. This parameter is guaranteed but not production tested.
- 3. The bus switch contributes no propagation delay other than the RC delay of the ON resistance of the switch and the load capacitance. The time constant for the switch alone is of the order of 0.25ns at C_L = 50pF. Since this time constant is much smaller than the rise and fall times of typical driving signals, it adds very little propagation delay to the system. Propagation delay of the bus switch, when used in a system, is determined by the driving circuit on the driving side of the switch and its interaction with the load on the driven side.
- 4. Minimums are guaranteed but not production tested.
- 5. Maximum toggle frequency for \overline{BE} control input (pass voltage > Vcc, Vin = 5V, RLOAD \geq 1M Ω , no CLOAD).

QUICKSWITCH® PRODUCTS 2.5V/3.3V 8-BIT HIGH BANDWIDTH BUS EXCHANGE BUS SWITCH

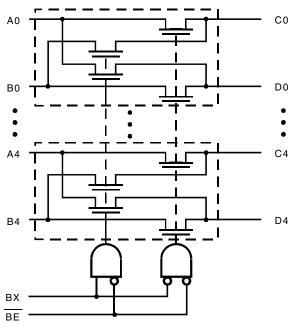
IDTQS3VH383

FEATURES:

- · N channel FET switches with no parasitic diode to Vcc
 - Isolation under power-off conditions
 - No DC path to Vcc or GND
 - 5V tolerant in OFF and ON state
- 5V tolerant I/Os
- Low Ron 4Ω typical
- · Flat Ron characteristics over operating range
- · Rail-to-rail switching 0 5V
- Bidirectional dataflow with near-zero delay: no added ground bounce
- Excellent Ron matching between channels
- · Vcc operation: 2.3V to 3.6V
- · High bandwidth up to 500 MHz
- · LVTTL-compatible control Inputs
- · Undershoot Clamp Diodes on all switch and control Inputs
- Low I/O capacitance, 4pF typical
- Available in QSOP, SOIC, and TSSOP packages

APPLICATIONS:

- · Hot-swapping
- · 10/100 Base-T, Ethernet LAN switch
- · Low distortion analog switch
- · Replaces mechanical relay
- ATM 25/155 switching


DESCRIPTION:

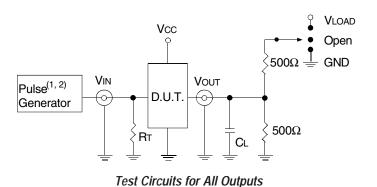
The QS3VH383 Bus Exchange HotSwitch with 10-bits is a high bandwidth bus switch. The QS3VH383 has very low ON resistance, resulting in under 250ps propagation delay through the switch. The Bus Enable (\overline{BE}) signal turns the switches on. The Bus Exchange (BX) signal provides nibble swap of the AB and CD signal pairs. This exchange configuration allows byte swapping of buses. In the OFF and ON states, the switches are 5V-tolerant. In the OFF state, the switches offer very high impedence at the terminals.

The combination of near-zero propagation delay, the lack of additional ground bounce noise, high OFF impedance, and over-voltage tolerance makes the QS3VH383 ideal for high performance communications applications.

The QS3VH383 is characterized for operation from -40°C to +85°C.

FUNCTIONAL BLOCK DIAGRAM

The IDT logo is a registered trademark of Integrated Device Technology, Inc.


INDUSTRIAL TEMPERATURE RANGE

APRIL 2002

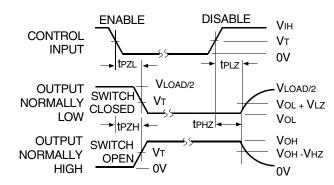
TEST CIRCUITS AND WAVEFORMS

TEST CONDITIONS

Symbol	Vcc ⁽¹⁾ = 3.3V ± 0.3V	Vcc ⁽²⁾ = 2.5V ± 0.2V	Unit
VLOAD	6	2 x Vcc	V
VIH	3	Vcc	V
VT	1.5	Vcc/2	V
VLZ	300	150	mV
VHZ	300	150	mV
CL	50	30	pF

DEFINITIONS:

CL = Load capacitance: includes jig and probe capacitance.


RT = Termination resistance: should be equal to ZouT of the Pulse Generator.

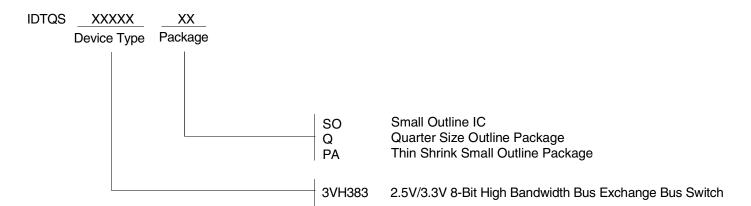
NOTES:

- 1. Pulse Generator for All Pulses: Rate \leq 1.0MHz; tr \leq 2.5ns; tr \leq 2.5ns.
- 2. Pulse Generator for All Pulses: Rate \leq 1.0MHz; tr \leq 2ns; tr \leq 2ns.

Vін SAME PHASE Vт INPUT TRANSITION 0V tphl **t**PLH Vон OUTPUT Vт Vol **t**PLH **t**PHL Vін **OPPOSITE PHASE** Vт INPUT TRANSITION 0V

Propagation Delay

NOTE:


1. Diagram shown for input Control Enable-LOW and input Control Disable-HIGH.

Enable and Disable Times

SWITCH POSITION

Test	Switch
tplz/tpzl	Vload
tрнz/tpzн	GND
tpp	Open

ORDERING INFORMATION

