

MECHANICAL DATA Dimensions in mm (inches)

DUAL HIGH GAIN PNP TRANSISTORS IN A HERMETICALLY SEALED CERAMIC SURFACE MOUNT PACKAGE FOR HIGH RELIABILITY APPLICATIONS

FEATURES

- HERMETIC CERAMIC SURFACE MOUNT PACKAGE
- CECC SCREENING OPTIONS
- SPACE QUALITY LEVELS OPTIONS

LCC2 PACKAGE **Underside View**

PAD 1 - Collector 1 PAD 4 - Collector 2 PAD 2 - Base 1 PAD 5 - Emitter 2 PAD 3 - Base 2 PAD 6 - Emitter 1

APPLICATIONS:

Suitable for use in high gain, low noise differential amplifier applications.

ABSOLUTE MAXIMUM RATINGS

	(T _{amb} = 25°C unless otherwise stated)	EACH SIDE	TOTAL DEVICE	
V_{CBO}	Collector – Base Voltage	–60V		
V_{CEO}	Collector – Emitter Voltage	–60V		
V_{EBO}	Emitter – Base Voltage	–5V		
$I_{\mathbb{C}}$	Collector Current	–50mA		
P_{D}	Total Device Dissipation	500mW	600mW	
	Derate above 25°C	2.9mW / °C	3.4mW / °C	
T _{STG}	Storage Temperature Range	−65 to 200°C		

Semelab PIc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.

Semelab plc. Telephone +44(0)1455 556565. Fax +44(0)1455 552612. E-mail: sales@semelab.co.uk

Website: http://www.semelab.co.uk

2N3811DCSM

ELECTRICAL CHARACTERISTICS (T_{amb} = 25°C unless otherwise stated)

	Parameter	Test Conditions		Min.	Тур.	Max.	Unit
INDIVIDU	AL TRANSISTOR CHARACTERISTICS	S					•
V _{(BR)CBO}	Collector – Base Breakdown Voltage	$I_{C} = -10 \mu A$	I _E = 0	-60			
V _{(BR)CEO*}	Collector – Emitter Breakdown Voltage	$I_C = -10 \text{mA}$	I _B = 0	-60			V
V _{(BR)EBO}	Emitter – Base Breakdown Voltage	$I_{E} = -10 \mu A$	I _C = 0	- 5			
_	Collector Cut-off Current	$V_{CB} = -50V$	I _E = 0			-10	nA
I _{CBO}	Collector Cut-on Current		T _A = 150°C			-10	μΑ
I _{EBO}	Emitter Cut-off Current	$V_{EB} = -4V$	I _C = 0			-20	nA
		$I_{C} = -10 \mu A$	$V_{CE} = -5V$	225			
		$I_{C} = -100 \mu A$	$V_{CE} = -5V$	300		900	
h	DC Current Gain		$T_A = -55$ °C	150			
h _{FE}	Do Guirent Gain	$I_{C} = -500 \mu A$	$V_{CE} = -5V$	300		900	
		$I_C = -1 \text{mA}$		300		900	
		$I_C = -10 \text{mA}$	$V_{CE} = -5V *$	250			
	Base – Emitter Voltage	$I_{C} = -100 \mu A$	$V_{CE} = -5V$			-0.7	
V_{BE}		$I_B = -10\mu A$	$I_C = -100\mu A$			-0.7	V
		$I_{B} = -100 \mu A$	$I_C = -1mA$			-0.8	
V _{CE(sat)}	Collector – Emitter Saturation Voltage	$I_B = -10\mu A$	$I_C = -100\mu A$			-0.2	V
		$I_{B} = -100 \mu A$	$I_C = -1mA$			-0.25	
h _{ie}	Small Signal Common – Emitter			10		40	kΩ
	Input Impedance	V _{CE} = -10V		10		40	1,22
h _{fe}	Small Signal Common – Emitter	VCE = -10V		300		900	
	Current Gain	$I_C = -1 \text{mA}$		000		300	
h _{re}	Small Signal Common – Emitter					25 x 10 ⁻⁴	
	Reverse Voltage Gain	 - f = 1kHz				20 X 10	
h _{oe}	Small Signal Common – Emitter	- 11112		5		60	μmho
	Output Admittance			Ŭ			p
h _{fe}	Small Signal Common – Emitter Current Gain	$V_{CE} = -5V$	$I_{C} = -500 \mu A$	1			
		f = 30MHz				_	
		$V_{CE} = -5V$	$I_C = -1mA$	1		5	
		f = 100MHz		•		U	
C _{obo}	Common – Base Open Circuit	$V_{CB} = -5V$	$I_E = 0$			4	
	Output Capacitance	f = 100kHz				Т	pF
C _{ibo}	Common – Base Open Circuit	$V_{EB} = -0.5V$	I _C = 0			8	"
	Input Capacitance	f = 100kHz					

NOTES

E-mail: sales@semelab.co.uk

Semelab PIc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.

Website: http://www.semelab.co.uk

Semelab plc. Telephone +44(0)1455 556565. Fax +44(0)1455 552612.

^{*} Pulse Test: t_p = 300 μ s, δ ≤ 2%. 1) Terminals not under test are open circuited under all test conditions.

ELECTRICAL CHARACTERISTICS (T_{amb} = 25°C unless otherwise stated)

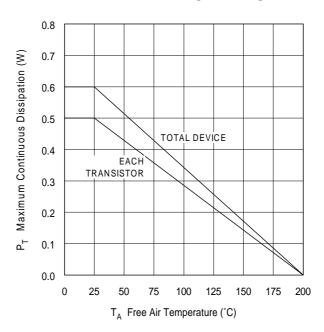
Parameter		Test Conditions		Min.	Тур.	Max.	Unit	
TRANSISTOR MATCHING CHARACTERISTICS								
h _{FE1}	Static Forward Current Gain	$V_{CE} = -5V$	$I_{C} = -100 \mu A$	0.9		1		
h _{FE2}	Balance Ratio	See Note 1.		0.9		ı		
V _{BE1} – V _{BE2}	Base – Emitter Voltage Differential	$V_{CE} = -5V$				5	mV	
		$I_C = -10\mu A to$	o −10mA			3		
		V _{CE} = -5V	$I_{C} = -100 \mu A$			3		
IA()/	\AT		$I_{C} = -100 \mu A$			0.8		
$ \Delta(V_{BE1} - V_{BE2}) $	• • •	T _{A1} = 25°C	$T_{A2} = -55^{\circ}C$			0.6	mV	
	Base – Emitter Voltage Differential		$I_{C} = -100 \mu A$			1	1 '''	
		T _{A1} = 25°C	T _{A2} = 125°C		L			

OPERATING CHARACTERISTICS (T_{amb} = 25°C unless otherwise stated)

Parameter		Test Conditions	Min.	Тур.	Max.	Unit
INDIVIDUAL TRANSISTOR CHARACTERISTICS						
F	Spot Noise Figure	$V_{CE} = -10V$ $I_{C} = -100\mu A$ $R_{G} = 3k\Omega$ $f = 100Hz$ Noise Bandwidth = 20Hz			1.5	dB
		$V_{CE} = -10V$ $I_{C} = -100\mu A$ $R_{G} = 3k\Omega$ $f = 1kHz$ Noise Bandwidth = 200Hz				
		$V_{CE} = -10V$ $I_{C} = -100\mu A$ $R_{G} = 3k\Omega$ $f = 10kHz$ Noise Bandwidth = 2kHz				
_ F	Average Noise Figure	$V_{CE}=-10V$ $I_{C}=-100\mu A$ $R_{G}=3k\Omega$ Noise Bandwidth = 15.7kHz See Note 2.			2.5	dB

NOTES

- 1) The lower of the two readings is taken as h_{FF1}
- 2) Average noise figure is measured in an amplifier with response down 3dB at 10Hz and 10 kHz and a high frequency rolloff of 6dB / octave.


Semelab PIc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.

Semelab plc. Telephone +44(0)1455 556565. Fax +44(0)1455 552612. E-mail: sales@semelab.co.uk Website: http://www.semelab.co.uk

THERMAL INFORMATION

Semelab Plc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.

Semelab plc. Telephone +44(0)1455 556565. Fax +44(0)1455 552612. Document Number 5749

E-mail: sales@semelab.co.uk Website: http://www.semelab.co.uk Issue 1