 Members of the Texas Instruments Widebus[™] Family 	SN54ABT16640 WD PACKAGE SN74ABT16640 DGG OR DL PACKAGE (TOP VIEW)					
 State-of-the-Art EPIC-IIB[™] BiCMOS Design Significantly Reduces Power Dissipation 						
 Latch-Up Performance Exceeds 500 mA Per	1B1 2 47 1A1					
JEDEC Standard JESD-17	1B2 3 46 1A2					
 Typical V_{OLP} (Output Ground Bounce) < 1 V	GND [] 4 45] GND					
at V _{CC} = 5 V, T _A = 25°C	1B3 [] 5 44] 1A3					
 Distributed V_{CC} and GND Pin Configuration	1B4 [] 6 43]] 1A4					
Minimizes High-Speed Switching Noise	V _{CC} [] 7 42 [] V _{CC}					
 Flow-Through Architecture Optimizes PCB	1B5 8 41 1A5					
Layout	1B6 9 40 1A6					
 High-Drive Outputs (-32-mA I_{OH}, 64-mA I_{OL}) 	GND 0 10 39 0 GND 1B7 0 11 38 0 1A7 1B8 0 12 37 0 1A8					
 Package Options Include Plastic 300-mil	2B1 13 36 2A1					
Shrink Small-Outline (DL) and Thin Shrink	2B2 14 35 2A2					
Small-Outline (DGG) Packages, and 380-mil	GND 15 34 GND					
Fine-Pitch Ceramic Flat (WD) Package	2B3 16 33 2A3					
Using 25-mil Center-to-Center Spacings	2B4 [] 17 32]] 2A4 V _{CC} [] 18 31]] V _{CC}					
description	2B5 [] 19 30 [] 2A5					

The 'ABT16640 are inverting 16-bit transceivers designed for asynchronous communication between data buses.

These devices can be used as two 8-bit transceivers or one 16-bit transceiver. It allows data transmission from the A bus to the B bus or from the B bus to the A bus, depending on the logic level at the direction-control (1DIR and 2DIR) inputs. The output-enable ($1\overline{OE}$ and $2\overline{OE}$) inputs can be used to disable the device so that the buses are effectively isolated.

To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

2B6 20

GND 21

2B7 22

2DIR 24

2B8 23

29 2A6

28 GND

26 2A8

25 20E

27 2A7

The SN54ABT16640 is characterized for operation over the full military temperature range of -55° C to 125° C. The SN74ABT16640 is characterized for operation from -40° C to 85° C.

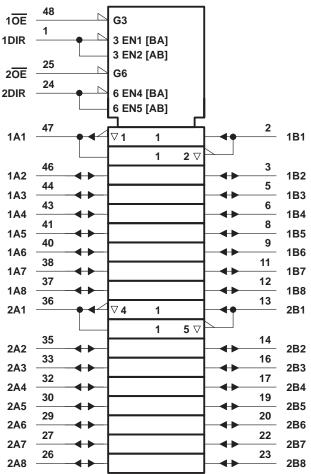
(each 8-bit section)									
INP	UTS								
OE	DIR	OPERATION							
L	L	B data to A bus							
L	Н	A data to B bus							
Н	Х	Isolation							

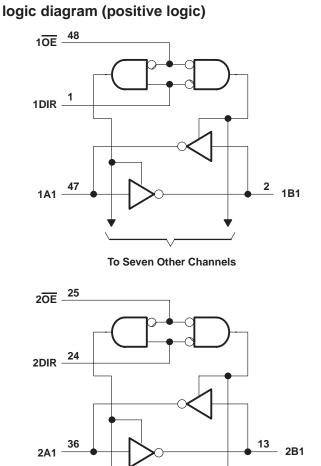
FUNCTION TABLE

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

Widebus and EPIC-IIB are trademarks of Texas Instruments Incorporated.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.




Copyright © 1997, Texas Instruments Incorporated

SN54ABT16640, SN74ABT16640 16-BIT BUS TRANSCEIVERS WITH 3-STATE OUTPUTS

SCBS107C - APRIL 1992 - REVISED JANUARY 1997

logic symbol[†]

⁺ This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

To Seven Other Channels

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[‡]

Supply voltage range, V _{CC}	–0.5 V to 7 V
Input voltage range, V _I (except I/O ports) (see Note 1)	
Voltage range applied to any output in the high or power-off state, VO	–0.5 V to 5.5 V
Current into any output in the low state, I _O : SN54ABT16640	96 mA
SN74ABT16640	128 mA
Input clamp current, I _{IK} (V _I < 0)	–18 mA
Output clamp current, I _{OK} (V _O < 0)	
Package thermal impedance, θ_{JA} (see Note 2): DGG package	89°C/W
DL package	
Storage temperature range, T _{stg}	–65°C to 150°C

[‡] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

2. The package thermal impedance is calculated in accordance with EIA/JEDEC Std JESD51.

SN54ABT16640, SN74ABT16640 16-BIT BUS TRANSCEIVERS WITH 3-STATE OUTPUTS SCBS107C – APRIL 1992 – REVISED JANUARY 1997

recommended operating conditions (see Note 3)

			SN54AB	Г16640	SN74AB1	Г16640	UNIT
			MIN	MAX	MIN	MAX	UNIT
Vcc	Supply voltage		4.5	5.5	4.5	5.5	V
VIH	High-level input voltage		2		2		V
VIL	Low-level input voltage			0.8		0.8	V
VI	Input voltage		0	VCC	0	VCC	V
ЮН	High-level output current			-24		-32	mA
IOL	Low-level output current			48		64	mA
$\Delta t/\Delta v$	Input transition rise or fall rate	Outputs enabled		10		10	ns/V
ТА	Operating free-air temperature		-55	125	-40	85	°C

NOTE 3: Unused pins (input or I/O) must be held high or low to prevent them from floating.

SN54ABT16640, SN74ABT16640 **16-BIT BUS TRÁNSCEIVERS** WITH 3-STATE OUTPUTS

SCBS107C - APRIL 1992 - REVISED JANUARY 1997

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST COM	T _A = 25°C			SN54AB	Г16640	SN74ABT	UNIT			
		TESTCOR	MIN	TYP†	MAX	MIN	MAX	MIN	MAX	UNIT		
VIK		V _{CC} = 4.5 V,	$V_{CC} = 4.5 V$, $I_{I} = -18 mA$					-1.2		-1.2	V	
		V _{CC} = 4.5 V,	I _{OH} = -3 mA	2.5			2.5		2.5			
Vari		V _{CC} = 5 V,	I _{OH} = -3 mA	3			3		3		V	
VOH		V _{CC} = 4.5 V	I _{OH} = -24 mA	2			2				v	
		VCC = 4.5 V	I _{OH} = -32 mA	2*					2			
VOL		V _{CC} = 4.5 V	I _{OL} = 48 mA			0.55		0.55			V	
VOL		VCC = 4.3 V	I _{OL} = 64 mA			0.55*				0.55	v	
V _{hys}					100						mV	
l <u>ı</u>	Control inputs	V _{CC} = 5.5 V,	$V_I = V_{CC}$ or GND			±1		±1		±1	μA	
	A or B ports					±100		±100		±100		
IOZH‡		V _{CC} = 5.5 V,	V _O = 2.7 V			50		50		50	μA	
Iozl‡		V _{CC} = 5.5 V,	$V_{O} = 0.5 V$			-50		-50		-50	μA	
l _{off}		$V_{CC} = 0,$	V_I or $V_O \leq 4.5~V$			±100				±100	μΑ	
ICEX		$V_{CC} = 5.5 V,$ $V_{O} = 5.5 V$	Outputs high			50		50		50	μΑ	
١٥		V _{CC} = 5.5 V,	V _O = 2.5 V	-50	-100	-180	-40	-180	-50	-180	mA	
		V _{CC} = 5.5 V,	Outputs high			2		2		2		
ICC	A or B ports	$I_{O} = 0,$	Outputs low			32		32		32	mA	
		$V_{I} = V_{CC} \text{ or } GND$	Outputs disabled			2		2		2		
	Data inputs	$V_{CC} = 5.5 V$, One input at 3.4 V,	Outputs enabled			1		1.5		1		
∆ICC¶		Other inputs at V _{CC} or GND	Outputs disabled	buts disabled 0.05 0.05			0.05	mA				
	Control inputs	V_{CC} = 5.5 V, One input at 3.4 V, Other inputs at V_{CC} or GND				1.5		1.5		1.5		
Ci	Control inputs	V _I = 2.5 V or 0.5 V			3						pF	
Cio	A or B ports	$V_0 = 2.5 \text{ V or } 0.5 \text{ V}$			8						pF	

* On products compliant to MIL-PRF-38535, this parameter does not apply.

[†] All typical values are at $V_{CC} = 5$ V.

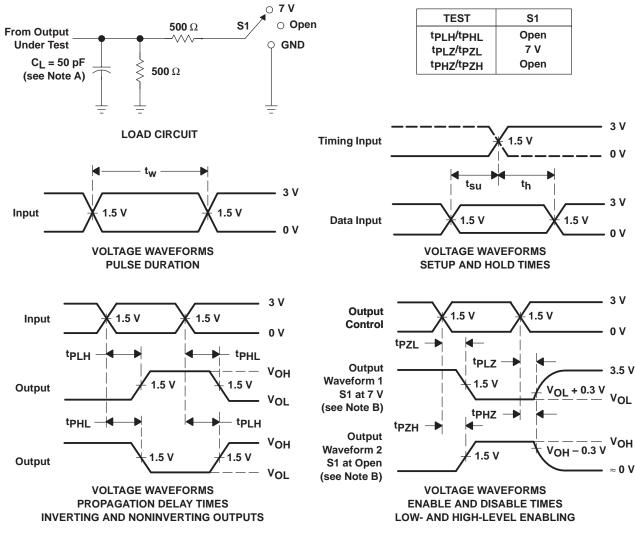
 \ddagger The parameters I_{OZH} and I_{OZL} include the input leakage current.

§ Not more than one output should be tested at a time, and the duration of the test should not exceed one second.

This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND.

switching characteristics over recommended ranges of supply voltage and operating free-air temperature, $C_L = 50 \text{ pF}$ (unless otherwise noted) (see Figure 1)

				SN5	4ABT16	640		
PARAMETER	FROM (INPUT)	TO (OUTPUT)	V(Т,	CC = 5 V A = 25°C	/, ;	MIN	МАХ	UNIT
			MIN	TYP	MAX			
^t PLH	A or B	B or A	0.5	2.5	4.1	0.5	5.2	ns
^t PHL	AUB	BUIA	0.5	2.8	4	0.5	4.5	115
^t PZH	OE	A or B	0.5	3.5	5.2	0.5	6.2	ns
tPZL	ÛE	AUD	0.5	3.9	6	0.5	7.4	115
^t PHZ	ŌĒ	A or B	0.5	3.8	6.8	0.5	7.9	ns
^t PLZ	UL	AUD	0.5	3	4.5	0.5	5	115


switching characteristics over recommended ranges of supply voltage and operating free-air temperature, $C_L = 50 \text{ pF}$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V C	CC = 5 V A = 25°C	l, ;	MIN	MAX	UNIT
			MIN	TYP	MAX			
^t PLH	A or B	B or A	1	2.5	3.4	1	4.3	ns
^t PHL	AUD	BUIA	1.1	2.8	3.6	1.1	3.9	115
^t PZH	OE	A or B	1.2	3.5	4.5	1.2	5.5	ns
^t PZL	OE	AUD	1.5	3.9	5	1.5	6.3	115
^t PHZ	OE	A or B	1.8	3.8	4.8	1.8	6.3	ns
^t PLZ	UE	AUD	1.5	3	3.9	1.5	4.2	115

SN54ABT16640, SN74ABT16640 16-BIT BUS TRANSCEIVERS WITH 3-STATE OUTPUTS

SCBS107C - APRIL 1992 - REVISED JANUARY 1997

PARAMETER MEASUREMENT INFORMATION

NOTES: A. CL includes probe and jig capacitance.

B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.

C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , t_r \leq 2.5 ns, t_f \leq 2.5 ns.

D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1998, Texas Instruments Incorporated

Product Folder: SN54ABT16640, 16-Bit Bus Transceivers With 3-State Outputs

 PRODUCT FOLDER | PRODUCT INFO:
 FEATURES | DESCRIPTION | DATASHEETS | PRICING/AVAILABILITY/PKG |

 APPLICATION NOTES | USER GUIDES | BLOCK DIAGRAMS | MORE LITERATURE

PRODUCT SUPPORT: TRAINING

SN54ABT16640, 16-Bit Bus Transceivers With 3-State Outputs DEVICE STATUS: ACTIVE

PARAMETER NAME	SN54ABT16640	<u>SN74ABT16640</u>
Voltage Nodes (V)	5	5
Vcc range (V)	4.5 to 5.5	4.5 to 5.5
Input Level	TTL	TTL
Output Level	TTL	TTL
Output Drive (mA)		-32/64
No. of Outputs	16	16
Logic	True	True
Static Current		17
tpd max (ns)		4.3

FEATURES

Back to Top

- Members of the Texas Instruments WidebusTM Family
- State-of-the-Art EPIC-IIBTM BiCMOS Design Significantly Reduces Power Dissipation
- Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17
- Typical \hat{V}_{OLP} (Output Ground Bounce) < 1 V at V_{CC} = 5 V, T_A = 25°C
- Distributed V_{CC} and GND Pin Configuration Minimizes High-Speed Switching Noise
- Flow-Through Architecture Optimizes PCB Layout
- High-Drive Outputs (-32-mA I_{OH}, 64-mA I_{OL})
- Package Options Include Plastic 300-mil Shrink Small-Outline (DL) and Thin Shrink Small-Outline (DGG) Packages, and 380-mil Fine-Pitch Ceramic Flat (WD) Package Using 25-mil Center-to-Center Spacings

Widebus and EPIC-IIB are trademarks of Texas Instruments Incorporated.

DESCRIPTION

▲Back to Top

The 'ABT16640 are inverting 16-bit transceivers designed for asynchronous communication between data buses.

These devices can be used as two 8-bit transceivers or one 16-bit transceiver. It allows data transmission from the A bus to the B bus or from the B bus to the A bus, depending on the logic level at the direction-control (1DIR and 2DIR) inputs. The output-enable ($1\overline{OE}$ and $2\overline{OE}$) inputs can be used to disable the device so that the buses are effectively isolated.

To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

The SN54ABT16640 is characterized for operation over the full military temperature range of -55°C to 125°C. The SN74ABT16640 is characterized for operation from -40°C to 85°C.

TECHNICAL DOCUMENTS	▲ <u>Back to Top</u>	
To view the following documents,	Acrobat Reader 4.0 is required.	
To download a document to your	hard drive, right-click on the link and choose 'Save'.	
DATASHEET	▲Back to Top	
Full datasheet in Acrobat PDF: <u>sn</u>	54abt16640.pdf (111 KB,Rev.C) (Updated: 01/01/1997)	
APPLICATION NOTES	- Deals to Ten	
	Back to Top	
View Application Notes for <u>Digital</u>		
<u>Advanced BiCMOS Technol</u>	ogy (ABT) Logic Characterization Information (Rev. B) (SCBA008B - Updated: 06/01/1997)	
 <u>Advanced BiCMOS Technol</u> 	ogy (ABT) Logic Enables Optimal System Design (Rev. A) (SCBA001A - Updated: 03/01/1997	7)
Bus-Interface Devices With	Output-Damping Resistors Or Reduced-Drive Outputs (Rev. A) (SCBA012A - Updated: 08/	01/1997)
• Designing With Logic (Rev.	C) (SDYA009C - Updated: 06/01/1997)	
Evaluation of Nickel/Palladi	um/Gold-Finished Surface-Mount Integrated Circuits (SZZA026 - Updated: 06/20/2001)	
 Family of Curves Demonstr 	rating Output Skews for Advanced BiCMOS Devices (Rev. A) (SCBA006A - Updated: 12/01/1	996)
Implications of Slow or Float	ating CMOS Inputs (Rev. C) (SCBA004C - Updated: 02/01/1998)	
 Input and Output Characte 	ristics of Digital Integrated Circuits (SDYA010 - Updated: 10/01/1996)	

- LVT-to-LVTH Conversion (SCEA010 Updated: 12/08/1998)
- Live Insertion (SDYA012 Updated: 10/01/1996)
- Logic Solutions For IEEE Std 1284 (SCEA013 Updated: 06/01/1999)
- Power-Up 3-State (PU3S) Circuits in TI Standard Logic Devices (SZZA033 Updated: 05/10/2002)
- Quad Flatpack No-Lead Logic Packages (Rev. C) (SCBA017C Updated: 11/22/2002)
- TI IBIS File Creation, Validation, and Distribution Processes (SZZA034 Updated: 08/29/2002)
- Understanding Advanced Bus-Interface Products Design Guide (SCAA029, 253 KB Updated: 05/01/1996)
- Understanding and Interpreting Texas Instruments Standard-Logic Products Data Sh (Rev. A) (SZZA036A Updated: 02/27/2003)

MORE LITERATURE

Back to Top

- Enhanced Plastic Portfolio Brochure (SGZB004, 387 KB Updated: 08/19/2002)
- Logic Reference Guide (SCYB004, 1032 KB Updated: 10/23/2001)
- MicroStar Junior BGA Design Summary (SCET004, 167 KB Updated: 07/28/2000)
- Military Brief (SGYN138, 803 KB Updated: 10/10/2000)
- Overview of IEEE Std 91-1984, Explanation of Logic Symbols Training Booklet (Rev. A) (SDYZ001A, 138 KB Updated: 07/01/1996)
- Palladium Lead Finish User's Manual (SDYV001, 2041 KB Updated: 11/01/1996)
- QML Class V Space Products Military Brief (Rev. A) (SGZN001A, 257 KB Updated: 10/07/2002)

USER GUIDES

Back to Top

▲Back to Top

• LOGIC Pocket Data Book (SCYD013, 4837 KB - Updated: 12/05/2002)

BLOCK DIAGRAMS

- Electro-Optics
- <u>Radar</u>
- <u>Target Detection Recognition</u>

PRICING/AVAILABILITY/PKG

▲Back to Top

Product Folder: SN54ABT16640, 16-Bit Bus Transceivers With 3-State Outputs

DEVICE INFORMATION Updated Daily						TI INVENTORY STATUS As Of 09:00 AM GMT, 17 Apr 2003			REPORTED DISTRIBUTOR INVENTORY As Of 09:00 AM GMT, 17 Apr 2003				
ORDERABLE DEVICE	<u>STATUS</u>	<u>PACKAGE</u> <u>TYPE PINS</u>	<u>TEMP (°C)</u>	<u>DSCC</u> <u>NUMBER</u>	PRODUCT CONTENT	<u>BUDGETARY</u> <u>PRICING</u> QTY \$US	<u>STD</u> <u>PACK</u> <u>QTY</u>	IN STOCK	<u>IN PROGRESS</u> QTY DATE	LEAD TIME	<u>DISTRIBUTOR</u> COMPANY REGION	<u>IN STOCK</u>	PURCHASE
5962-9559001QXA	ACTIVE	<u>CFP</u> (WD) 48	-55 TO 125		View Contents	1KU 24.14	1	<u>0</u> *	6569 20 May	8 WKS	None Reported <u>View Distributors</u>		
SNJ54ABT16640WD	ACTIVE	<u>CFP</u> (WD) 48	-55 TO 125	5962- 9559001QXA	View Contents	1KU 24.14	1	<u>0</u> *	6569 20 May	8 WKS	None Reported <u>View Distributors</u>		

 Table Data Updated on: 4/17/2003

Products | Applications | Support | my.TI

TEXAS INSTRUMENTS © Copyright 1995-2002 Texas Instruments Incorporated. All rights reserved. Trademarks | Privacy Policy | Terms of Use