

CD74LPT543

December 1996

Fast CMOS 3.3V 8-Bit Latched Transceiver

Features

- Advanced 0.6 micron CMOS Technology
- Compatible with LCX™ Families of Products
- Supports 5V Tolerant Mixed Signal Mode Operation
 - Input Can Be 3V or 5V
 - Output Can Be 3V or Connected to 5V Bus
- · Advanced Low Power CMOS Operation
- Active Bus-Hold Circuitry
- . Excellent Output Drive Capability:
 - Balanced Drives (24mA Sink and Source)
- Low Ground Bounce Outputs
- · Hysteresis on All Inputs

Ordering Information

PART NUMBER	TEMP. RANGE (°C)	PACKAGE	PKG. NO.
CD74LPT543AM	-40 to 85	24 Ld SOIC	M24.3-P
CD74LPT543AQM	-40 to 85	24 Ld QSOP	M24.15-P
CD74LPT543CM	-40 to 85	24 Ld SOIC	M24.3-P
CD74LPT543CQM	-40 to 85	24 Ld QSOP	M24.15-P
CD74LPT543M	-40 to 85	24 Ld SOIC	M24.3-P
CD74LPT543QM	-40 to 85	24 Ld QSOP	M24.15-P

NOTE: QSOP is commonly known as SSOP.

When ordering, use the entire part number. Add the suffix 96 to obtain the variant in the tape and reel.

Description

The CD74LPT543 is an 8-bit wide non-inverting transceiver designed with two sets of eight D-type latches with separate input and output controls for each set. For data flow from A to B, for example, the A-to-B Enable (CEAB) input must be LOW in order to enter data from A₀-A₇ or to take data from B₀-B₇, as indicated in the Truth Table. With CEAB LOW, a LOW signal makes the A-to-B latches transparent; a subsequent LOW-to-HIGH transition of the LEAB signal puts the A latches in the storage mode and their outputs no longer change the A inputs. With CEAB and OEAB both LOW, the three-state B output buffers are active and reflect the data present at the output of the A latches. Control of data from B to A is similar, but uses the CEBA, LEBA, and OEBA inputs. Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level.

The CD74LPT543 can be driven from either 3.3V or 5.0V devices allowing this device to be used as a translator in a mixed 3.3/5.0V system.

Pinout

CD74LPT543 (QSOP, SOIC) TOP VIEW LEBA 1 Vcc OEBA 2 23 CEBA 22 B₀ 20) B₂ 19 B₃ A4 7 18 B. 17 Bs 9 16 B₆ A7 10 15 B7 14 LEAB CEAB 11 13 OEAB

Functional Block Diagram

TRUTH TABLE (NOTES 1, 3)

INPUTS			LATCH STATUS	OUTPUT BUFFERS
CEAB	LEAB	OEAB	A-TO-B	B ₀ - B ₇
Н	Х	Х	Storing	High Z
X	Н	Х	Storing	х
Х	Х	н	х	High Z
L	L	L	Transparent	Current A Inputs
L	н	L	Storing	Previous A Inputs (Note 2)

NOTES:

- A-to-B data flow is shown. B-to-A flow control is the same except using CEBA, LEBA, and OEBA.
- 2. Before LEAB LOW-to-HIGH Transition
- 3. H = High Voltage Level
 - L = Low Voltage Level
 - X = Don't Care or Irrelevant
 - Z = High Impedance

Pin Descriptions

PIN NAME	DESCRIPTION
OEAB	A-to-B Output Enable Input (Active LOW)
OEBA	B-to-A Output Enable Input (Active LOW)
CEAB	A-to-B Enable Input (Active LOW)
CEBA	B-to-A Enable Input (Active LOW)
LEAB	A-to-B Latch Enable Input (Active LOW)
LEBA	B-to-A Latch Enable Input (Active LOW)
A ₀ - A ₇	A-to-B Data Inputs or B-to-A Three-State Outputs
B ₀ - B ₇	B-to-A Data Inputs or B-to-A Three-State Outputs
GND	Ground
Vcc	Power

CD74LPT543

Absolute Maximum Ratings	Thermal Information	
DC Input Voltage -0.5V to 7.0V DC Output Current 120mA	Thermal Resistance (Typical, Note 4) θ SOIC Package	_{JA} (^o C/W) 75
Operating Conditions	QSOP Package	100
Operating Temperature Range40°C to 85°C Supply Voltage to Ground Potential Inputs and V _{CC} Only0.5V to 7.0V Supply Voltage to Ground Potential Outputs and D/O Only0.5V to 7.0V	Maximum Junction Temperature	to 150°C

CAUTION: Stresses above those listed in "Absolute Maximum Flatings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

4. $\theta_{\mbox{\scriptsize JA}}$ is measured with the component mounted on an evaluation PC board in free air.

Electrical Specifications

PARAMETER	SYMBOL	(NOTE 5) TEST CONDITIONS		MIN	(NOTE 6) TYP	MAX	UNITS
DC ELECTRICAL SPE	CIFICATION	NS Over the Operating Range, TA	= -40°C to 85°C, V ₀	_{CC} = 2.7V to 3	3.6V		
Input HIGH Voltage (Input Pins)	V _{IH}	Guaranteed Logic HIGH Level	Guaranteed Logic HIGH Level		-	5.5	٧
Input HIGH Voltage (I/O Pins)	V _{IH}	Guaranteed Logic HIGH Level		2.0	-	5.5	٧
Input LOW Voltage (Input and I/O Pins)	V _{IL}	Guaranteed Logic LOW Level		-0.5		0.8	٧
Input HIGH Current (Input Pins)	lін	V _{CC} = Max	V _{IN} = 5.5V	-	-	±1	μА
Input HIGH Current (I/O Pins)	łін	V _{CC} = Max	V _{IN} = V _{CC}	-	-	±1	μА
Input LOW Current (Input Pins)	1 _{IL}	V _{CC} = Max	V _{IN} = GND	-	-	±1	μА
Input LOW Current (I/O Pins)	l _{IL}	V _{CC} = Max	V _{IN} = GND	-	-	±1	μА
High Impedance	lоzн	V _{CC} = Max	V _{OUT} = 5.5V	-	-	±1	μА
Output Current (Three-State Output Pins)	lozl	V _{CC} = Max	V _{OUT} = GND	-	-	±1	μА
Clamp Diode Voltage	VIK	V _{CC} = Min, I _{IN} = -18mA		-	-0.7	-1.2	٧
Output HIGH Current	IODH	V _{CC} = 3.3V, V _{IN} = V _{IH} or V _{IL} , V	O = 1.5V (Note 7)	-36	-60	-110	mA
Output LOW Current	IODL	V _{CC} = 3.3V, V _{IN} = V _{IH} or V _{IL} , V	O = 1.5V (Note 7)	50	90	200	mA
Output HIGH Voltage	V _{OH}	V _{CC} = Min, V _{IN} = V _{IH} or V _{IL}	I _{OH} = -0.1mA	V _{CC} - 0.2	-		٧
			I _{OH} = -3mA	2.4	3.0	-	V
		V _{CC} = 3.0V, V _{IN} = V _{IH} or V _{IL}	I _{OH} = -8mA	2.4 (Note 9)	3.0	-	٧
			i _{OH} = -24mA	2.0		-	٧
Output LOW Voltage	V _{OL}	V _{CC} = Min, V _{IN} = V _{IH} or V _{IL}	I _{OL} = 0.1mA		-	0.2	٧
			I _{OL} = 16mA		0.2	0.4	٧
			I _{OL} = 24mA	-	0.3	0.5	V

CD74LPT543

Electrical Specifications (Continued)

PARAMETER	SYMBOL	(NOTE 5) TEST CONDITIONS		MIN	(NOTE 6) TYP	MAX	UNITS
Short Circuit Current (Note 8)	los	V _{CC} = Max (Note 7), V _{OUT} = GND		-60	-85	-240	mA
Power Down Disable	OFF	V _{CC} = 0V, V _{IN} or V _{OUT} ≤4.5V		-		±100	μА
Input Hysteresis	V _H			-	150	-	mV
CAPACITANCE TA =	25°C, f = 1M	Hz					
Input Capacitance (Note 10)	C _{IN}	V _{IN} = 0V		•	4.5	6	pF
Output Capacitance (Note 10)	C _{OUT}	V _{OUT} = 0V		-	5.5	8	pF
POWER SUPPLY SPI	ECIFICATIO	NS .		_			
Quiescent Power Supply Current	lcc	V _{CC} = Max	V _{IN} = GND or V _{CC}	-	0.1	10	μА
Quiescent Power Supply Current TTL Inputs HIGH	ΔICC	V _{CC} = Max	V _{IN} = V _{CC} - 0.6V (Note 11)	-	2.0	30	μА
Dynamic Power Supply (Note 12)	ICCD	V _{CC} = Max, Outputs Open CEAB and OEAB = GND CEBA = V _{CC} One Bit Toggling 50% Duty Cycle	V _{IN} = V _{CC} V _{IN} = GND	-	50	75	μA/ MHz
Total Power Supply Current (Note 14)	lc	V_{CC} = Max, Outputs Open f_1 = 10MHz, 50% Duty Cycle $\overline{\text{CEAB}}$ and $\overline{\text{OEAB}}$ = GND $\overline{\text{CEBA}}$ = V_{CC} One Bit Toggling	$V_{IN} = V_{CC} \cdot 0.6V$ $V_{IN} = GND$	-	0.6	2.3	mA
		V _{CC} = Max, Outputs Open 1 _j = 2.5MHz, 50% Duty Cycle CEAB and OEAB = GND CEBA = V _{CC} 8 Bits Toggling	V _{IN} = V _{CC} - 0.6V V _{IN} = GND		2.1	4.7 (Note 13)	mA

Switching Specifications Over Operating Range (NOTE 15)

		(NOTE 16)	CD74LPT543		CD74LPT543A		CD74LPT543C		T
PARAMETER	SYMBOL	TEST	(NOTE 17) MIN	MAX	(NOTE 17) MIN	MAX	(NOTE 17) MIN	MAX	UNITS
Propagation Delay Transparent Mode A _N to B _N or B _N to A _N	t _{PLH,} t _{PHL}	C _L = 50pF R _L = 500Ω	2.5	8.5	2.5	6.5	2.5	5.3	ns
Propagation Delay LEBA to A _N LEAB to B _N	t _{PLH,} t _{PHL}		2.5	12.5	2.5	8.0	2.5	7.0	ns
Output Enable Time OEBA or OEAB to A _N or B _N CEBA or CEAB to A _N or B _N			2.0	12.0	2.0	9.0	2.0	8.0	ns
Output Disable Time OEBA or OEAB to A _N or B _N CEBA or CEAB to A _N or B _N			2.0	9.0	2.0	7.5	2.0	6.5	ns
Setup Time HIGH or LOW, AN or B _N to LEAB or LEBA	t _{SU}	1	3.0	-	2.0	•	2.0	-	пŝ
Hold Time HIGH or LOW, A _N or B _N to LEAB or LEBA	^t H		2.0	-	2.0	-	2.0	-	ns
LEAB or LEBA Pulse Width LOW	t₩		5.0	-	5.0	-	5.0	-	ns

NOTES:

- 5. For conditions shown as Max or Min, use appropriate value specified under Electrical Specifications for the applicable device type.
- 6. Typical values are at V_{CC} = 3.3V, 25°C ambient and maximum loading.
- 7. Not more than one output should be shorted at one time. Duration of the test should not exceed one second.
- 8. This parameter is guaranteed but not tested.
- 9. VOH = VCC 0.6V at rated current.
- 10. This parameter is determined by device characterization but is not production tested.
- 11. Per TTL driven input; all other inputs at VCC or GND.
- 12. This parameter is not directly testable, but is derived for use in Total Power Supply Calculations.
- 13. Values for these conditions are examples of the ICC formula. These limits are guaranteed but not tested
- 14. IC = IQUIESCENT + INPUTS + IDYNAMIC
 - IC = ICC + AICC DHNT + ICCD (ICP/2 + INI)
 - I_{CC} = Quiescent Current
 - ΔI_{CC} = Power Supply Current for a TTL High Input (V_{IN} = 3.4V)
 - DH = Duty Cycle for TTL Inputs High
 - NT = Number of TTL Inputs at DH
 - I_{CCD} = Dynamic Current Caused by an Input Transition Pair (HLH or LHL)
 - f_{CP} = Clock Frequency for Register Devices (Zero for Non-Register Devices)
 - f_i = Input Frequency
 - N_I = Number of inputs at f_I
 - All currents are in milliamps and all frequencies are in megahertz.
- Propagation Delays and Enable/Disable times are with V_{CC} = 3.3V 0.3V, normal range. For V_{CC} = 2.7V, extended range, all Propagation Delays and Enable/Disable times should be degraded by 20%.
- 16. See test circuit and wave forms
- 17. Minimum limits are guaranteed but not tested on Propagation Delays.

Test Circuits and Waveforms

NOTE:

18. Pulse Generator for All Pulses: Rate \leq 1.0MHz; $Z_{OUT} \leq$ 50 Ω ; t_{f_1} , $t_r \leq$ 2.5ns.

FIGURE 1. TEST CIRCUIT

TEST	SWITCH
t _{PLZ} , t _{PZL} , Open Drain	6V
[†] РНZ, [†] РZН	GND
t _{PLH} , t _{PHL}	Open

SWITCH POSITION

DEFINITIONS:

 C_L = Load capacitance, includes jig and probe capacitance. R_T = Termination resistance, should be equal to Z_{OUT} of the Pulse Generator.

FIGURE 2. SETUP, HOLD, AND RELEASE TIMING

FIGURE 3. PULSE WIDTH

FIGURE 4. ENABLE AND DISABLE TIMING

FIGURE 5. PROPAGATION DELAY