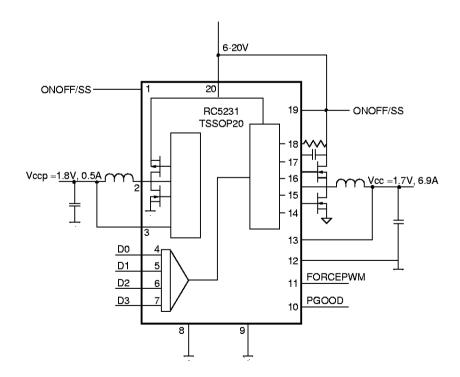


RC5231

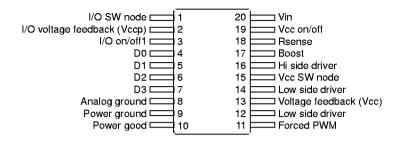
CPU Voltage Regulator for Mobile PC's

Features

- Synchronous rectification
- · High precision
- · High efficiency
- Voltage mode
- 6V to 20V input voltage range
- ±10% current limit precision
- TSSOP20
- 1.7V CPU and 1.8V CACHE
- UVLO
- OVP


Applications

- · Notebook and PDA PC's
- Hand-held portable instruments


Description

The RC5231 is a high efficiency and high precision DC/DC controller for notebooks. The tightly controller current limit threshold allows for a tight design of magnetics and discrete transistors for minimum cost and space at maximum performance.

Block Diagram

Pin Assignments

Pin Description

Pin Number	Pin Name
1	I/O SW node
2	I/O voltage feedback (Vccp)
3	I/O on/off1
4	D0
5	D1
6	D2
7	D3
8	Analog ground
9	Power ground
10	Power good
11	Forced PWM
12	Low side driver
13	Voltage feedback (Vcc)
14	Low side driver
15	Vcc SW node
16	Hi side driver
17	Boost
18	Rsense
19	Vcc on/off
20	Vin

PRODUCT SPECIFICATION RC5231

Absolute Maximum Ratings (Beyond which the device may be damaged)¹

Parameter	Conditions	Min.	Тур.	Max.	Units
Vs	Input Supply Voltage			30	٧
Ambient Temperature, Ta		0		70	Deg. C

Note: 1. Functional Operation under any of these conditions is NOT implied. Performance and reliability are guaranteed only if Operating Conditions are not exceeded.

Operating Conditions (DCIN = 19VV, Ta = 0-70°C unless otherwise specified)

Parameter	Conditions	Min.	Тур.	Max.	Units
Supply and Regulator					
Vs Input Supply Voltage		6		20	V
Input Quiescent Current	Operation Sleep			2 1	mA μA
5V regulator accuracy	0 to 70 Deg. C	- 2		+2	%

Note: 1. Functional Operation under any of these conditions is NOT implied. Performance and reliability are guaranteed only if Operating Conditions are not exceeded.

Applications

Figure 1 below shows the system block diagram.

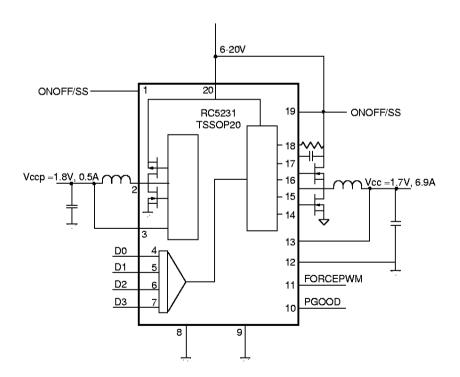


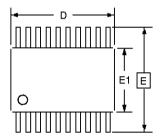
Figure 1

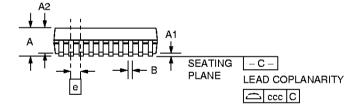
Notes:

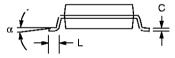
Notes:

Notes:

Preliminary Information


Mechanical Dimensions


20 Lead TSSOP


Symbol	Inches		Millin	Notes	
	Min.	Max.	Min.	Max.	Notes
Α	_	.047	_	1.20	
A1	.002	.006	0.05	0.15	
A2	.031	.041	0.80	1.05	
В	.007	.012	0.19	0.30	5
С	.004	.008	0.09	0.20	5
D	.250	.257	6.40	6.60	2, 4
E	.240	.264	6.10	6.70	
E1	.168	.176	4.30	4.50	
е	.026	BSC	0.65	BSC	
L	.018	.029	0.45	0.75	3
N	20		20		6
α	0°	10°	0°	10°	
ccc	_	.004	_	0.10	·

Notes:

- 1. Dimensioning and tolerancing per ANSI Y14.5M-1982.
- "D" and "E1" do not include mold flash. Mold flash or protrusions shall not exceed .010 inch (0.25mm).
- 3. "L" is the length of terminal for soldering to a substrate.
- 4. Terminal numbers are shown for reference only.
- 5. "B" & "C" dimensions include solder finish thickness.
- 6. Symbol "N" is the maximum number of terminals.

RC5231 PRODUCT SPECIFICATION

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com