

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All recreations are done with the approval of the OCM.

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceed the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-35835
 - Class Q Military
 - Class V Space Level
- Qualified Suppliers List of Distributors (QSLD)

• Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OEM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

74F253 Dual 4-Input Multiplexer with 3-STATE Outputs

74F253 Dual 4-Input Multiplexer with 3-STATE Outputs

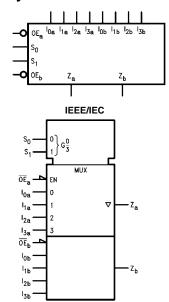
General Description

FAIRCHILD

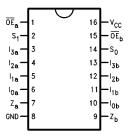
SEMICONDUCTOR

Features

Multifunction capability


■ Non-inverting 3-STATE outputs

The 74F253 is a dual 4-input multiplexer with 3-STATE outputs. It can select two bits of data from four sources using common select inputs. The output may be individually switched to a high impedance state with a HIGH on the respective Output Enable (\overline{OE}) inputs, allowing the outputs to interface directly with bus oriented systems.


Ordering Code:

Order Number	Package Number	Package Description
74F253SC	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150 Narrow
74F253SJ	M16D	16-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
74F253PC	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide
Devices also available	in Tape and Reel. Specify	by appending the suffix letter "X" to the ordering code.

Logic Symbols

Connection Diagram

© 2000 Fairchild Semiconductor Corporation DS009505

74F253

Unit Loading/Fan Out

Pin Names	Description	U.L.	Input I _{IH} /I _{IL}		
	Description	HIGH/LOW	Output I _{OH} /I _{OL}		
_{0a} –I _{3a}	Side A Data Inputs	1.0/1.0	20 μA/–0.6 mA		
I _{0b} –I _{3b}	Side B Data Inputs	1.0/1.0	20 µA/–0.6 mA		
S ₀ –S ₁	Common Select Inputs	1.0/1.0	20 µA/–0.6 mA		
OEa	Side A Output Enable Input (Active LOW)	1.0/1.0	20 µA/–0.6 mA		
OEb	Side B Output Enable Input (Active LOW)	1.0/1.0	20 µA/–0.6 mA		
Z _a , Z _b	3-STATE Outputs	150/40(33.3)	–3 mA/24 mA (20 mA)		

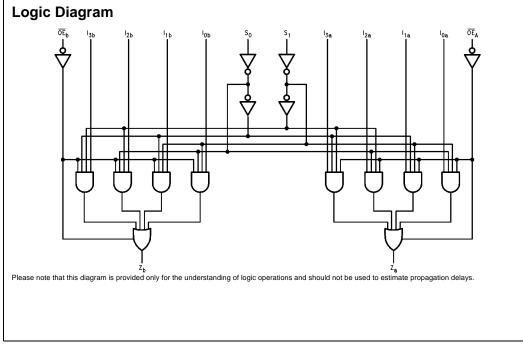
Functional Description

This device contains two identical 4-input multiplexers with 3-STATE outputs. They select two bits from four sources selected by common Select inputs (S₀, S₁). The 4-input multiplexers have individual Output Enable (\overline{OE}_a , \overline{OE}_b) inputs which, when HIGH, force the outputs to a high impedance (High Z) state. This device is the logic implementation of a 2-pole, 4-position switch, where the position of the switch is determined by the logic levels supplied to the two select inputs. The logic equations for the outputs are shown below:

$$\begin{split} Z_a &= \overline{OE}_a \bullet (I_{0a} \bullet \overline{S}_1 \bullet \overline{S}_0 + I_{1a} \bullet \overline{S}_1 \bullet S_0 + \\ & I_{2a} \bullet S_1 \bullet \overline{S}_0 + I_{3a} \bullet S_1 \bullet S_0) \\ Z_b &= \overline{OE}_b \bullet (I_{0b} \bullet \overline{S}_1 \bullet \overline{S}_0 + I_{1b} \bullet \overline{S}_1 \bullet S_0 + \\ & I_{2b} \bullet S_1 \bullet S_0 + I_{3b} \bullet S_1 \bullet S_0) \end{split}$$

If the outputs of 3-STATE devices are tied together, all but one device must be in the high impedance state to avoid high currents that would exceed the maximum ratings. Designers should ensure that Output Enable signals to 3-STATE devices whose outputs are tied together are designed so that there is no overlap.

Select Inputs			Data I	nputs	Output Enable	Output			
S ₀	S ₁	I ₀	I ₁	l ₂	l ₃	OE	z		
Х	Х	Х	Х	Х	Х	Н	Z		
L	L	L	Х	Х	Х	L	L		
L	L	н	Х	Х	Х	L	н		
н	L	х	L	Х	Х	L	L		
н	L	х	н	х	х	L	н		
L	н	Х	Х	L	Х	L	L		
L	н	Х	Х	н	Х	L	н		
н	н	х	Х	Х	L	L	L		
н	н	х	Х	Х	н	L	н		
ddress inputs S ₀ and S ₁ are common to both sections.									


H = HIGH Voltage Level

Truth Table

L = LOW Voltage Level

X = Immaterial

Z = High Impedance

Absolute Maximum Ratings(Note 1)

Storage Temperature	-65°C to +150°C
Ambient Temperature under Bias	-55°C to +125°C
Junction Temperature under Bias	-55°C to +150°C
V _{CC} Pin Potential to Ground Pin	-0.5V to +7.0V
Input Voltage (Note 2)	-0.5V to +7.0V
Input Current (Note 2)	-30 mA to +5.0 mA
Voltage Applied to Output	
in HIGH State (with $V_{CC} = 0V$)	
Standard Output	–0.5V to V _{CC}
3-STATE Output	-0.5V to +5.5V
Current Applied to Output	
in LOW State (Max)	twice the rated I _{OL} (mA)
ESD Last Passing Voltage (Min)	4000V

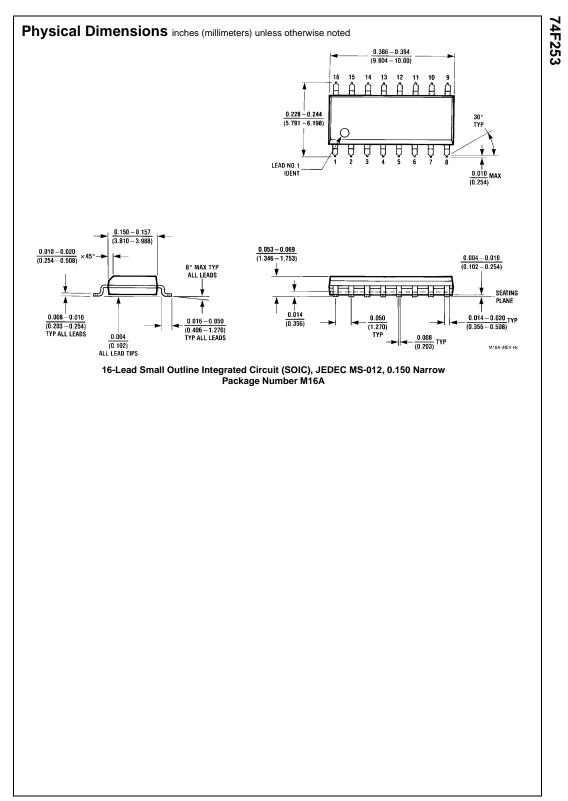
Recommended Operating Conditions

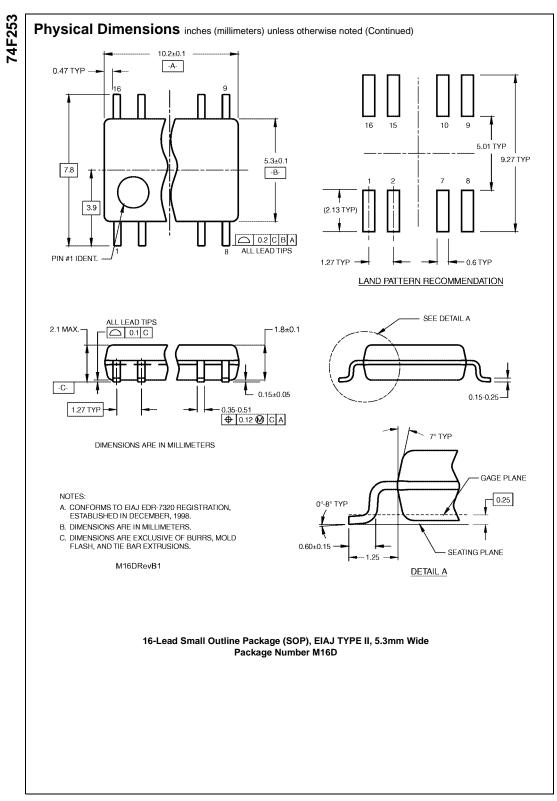
Free Air Ambient Temperature Supply Voltage 74F253

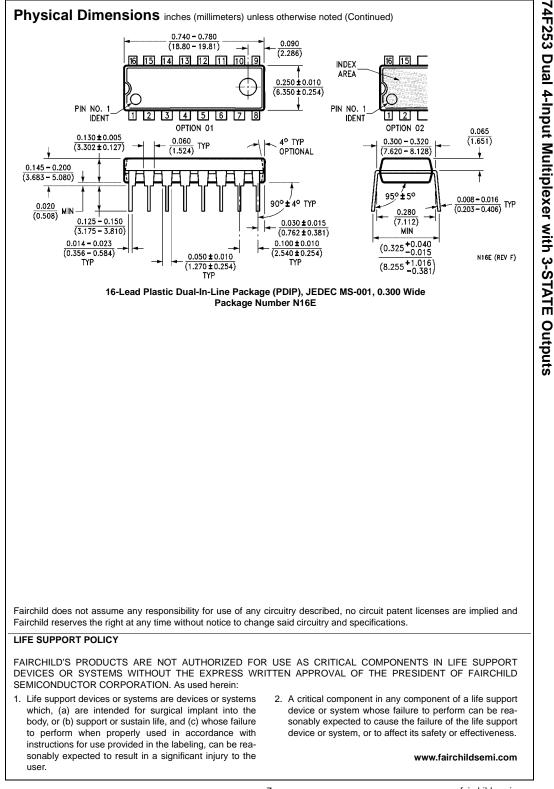
0°C to +70°C +4.5V to +5.5V

Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

Note 2: Either voltage limit or current limit is sufficient to protect inputs.


DC Electrical Characteristics


Symbol	Paramete	r	Min	Тур	Max	Units	V _{cc}	Conditions
V _{IH}	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal
V _{IL}	Input LOW Voltage				0.8	V		Recognized as a LOW Signal
V _{CD}	Input Clamp Diode Voltag	e			-1.2	V	Min	I _{IN} = -18 mA
V _{OH}	Output HIGH	10% V _{CC}	2.5					I _{OH} = -1 mA
	Voltage	10% V _{CC}	2.4			v	Min	I _{OH} = -3 mA
		5% V _{CC}	2.7			v	IVIITI	$I_{OH} = -1 \text{ mA}$
		5% V _{CC}	2.7					I _{OH} = -3 mA
V _{OL}	Output LOW Voltage	10% V _{CC}			0.5	V	Min	I _{OL} = 24 mA
I _{IH}	Input HIGH				5.0	A	Max	V _{IN} = 2.7V
	Current				5.0	μA	iviax	$v_{IN} = 2.7 v$
I _{BVI}	Input HIGH Current				7.0	μA Max		V - 7 0V
	Breakdown Test				7.0	μΑ	iviax	V _{IN} = 7.0V
ICEX	Output HIGH				50		Maria	V _{OUT} = V _{CC}
	Leakage Current				50	μA Max		
V _{ID}	Input Leakage		4.75			V	0.0	I _{ID} = 1.9 μA
	Test		4.75			v	0.0	All Other Pins Grounded
I _{OD}	Output Leakage				3.75	μA	0.0	$V_{IOD} = 150 \text{ mV}$
	Circuit Current				3.75	μΑ	0.0	All Other Pins Grounded
I _{IL}	Input LOW Current				-0.6	mA	Max	V _{IN} = 0.5V
I _{OZH}	Output Leakage Current				50	μΑ	Max	$V_{OUT} = 2.7V$
I _{OZL}	Output Leakage Current				-50	μA	Max	$V_{OUT} = 0.5V$
l _{os}	Output Short-Circuit Current		-60		-150	mA	Max	$V_{OUT} = 0V$
			-100		-225			$V_{OUT} = 0V$
I _{ZZ}	Bus Drainage Test				500	μA	0.0V	$V_{OUT} = V_{CC}$
I _{CCH}	Power Supply Current			11.5	16	mA	Max	V _O = HIGH
I _{CCL}	Power Supply Current			16	23	mA	Max	$V_0 = LOW$
I _{CCZ}	Power Supply Current			16	23	mA	Max	$V_{\Omega} = HIGH Z$


3
ŝ
2
ш
4
N

AC Electrical Characteristics

Symbol	Parameter		$T_{A} = +25^{\circ}C$ $V_{CC} = 5.0V$ $C_{L} = 50 \text{ pF}$		$T_A = -55^{\circ}C \text{ to } +125^{\circ}C$ $V_{CC} = 5.0V$ $C_L = 50 \text{ pF}$		$T_A = 0^{\circ}C \text{ to } +70^{\circ}C$ $V_{CC} = 5.0V$ $C_L = 50 \text{ pF}$		Units
		Min	Тур	Max	Min	Max	Min	Max	
t _{PLH}	Propagation Delay	4.5	8.5	11.5	3.5	15.0	4.5	13.0	ns
t _{PHL}	S _n to Z _n	3.0	6.5	9.0	2.5	11.0	3.0	10.0	
t _{PLH}	Propagation Delay	3.0	5.5	7.0	2.5	9.0	3.0	8.0	
t _{PHL}	I _n to Z _n	2.5	4.5	6.0	2.5	8.0	2.5	7.0	ns
t _{PZH}	Output Enable Time	3.0	6.0	8.0	2.5	10.0	3.0	9.0	
t _{PZL}		3.0	6.0	8.0	2.5	10.0	3.0	9.0	ns
t _{PHZ}	Output Disable Time	2.0	3.7	5.0	2.0	6.5	2.0	6.0	115
t _{PLZ}		2.0	4.4	6.0	2.0	8.0	2.0	7.0	

