TLC274, TLC274A, TLC274B, TLC279 LinCMOS™ PRECISION QUAD OPERATIONAL AMPLIFIERS D3141, SEPTEMBER 1987-REVISED OCTOBER 1990 - Trimmed Offset Voltage: TLC279 . . . 900 μV Max at 25°C, VDD = 5 V - Input Offset Voltage Drift . . . Typically 0.1 μV/Month, Including the First 30 Days - Wide Range of Supply Voltages Over Specified Temperature Range: 0°C to 70°C...3 V to 16 V -40°C to 85°C...4 V to 16 V -55°C to 125°C...4 V to 16 V - Single-Supply Operation - Common-Mode Input Voltage Range Extends Below the Negative Rail (C-Suffix, I-Suffix types) - Low Noise . . . Typically 25 nV/√Hz at f = 1 kHz - Output Voltage Range Includes Negative Rail - High Input Impedance . . . 1012 Ω Typical - ESD-Protection Circuitry - Small-Outline Package Option Also Available in Tape and Reel - Designed-In Latch-Up Immunity #### D. J. OR N PACKAGE (TOP VIEW) 1 OUT ☐ 1 ◯ 14] 4 OUT 1 IN − ∏2 1 IN + 3 12 4 IN+ 11 GND 2 IN+ □5 10 \ 3 IN + 2 IN - ∏6 9∏3 IN – 2 OUT []7 8 3 OUT **FK PACKAGE** (TOP VIEW) 1 IN+ 18 4 IN+ NC D 5 NC 16 GND VDD NC 17 15 T NC 14[3 IN+ 2 IN+ 10 11 12 13 _N-0UT Z NC-No internal connection #### **AVAILABLE OPTIONS** | | V _{IO} max | | PACK | AGE | | |-------------|---------------------|-------------------------|-------------------------|-----------------------|-----------------------| | TA . | at
25°C | SMALL
OUTLINE
(D) | CHIP
CARRIER
(FK) | CERAMIC
DIP
(J) | PLASTIC
DIP
(N) | | 0°C | 900 μV | TLC279CD | | - | TLC279CN | | | 2 mV | TLC274BCD | - | _ | TLC274BCN | | to
70°C | 5 mV | TLC274ACD | | | TLC274ACN | | /0 C | 10 mV | TLC274CD | | _ | TLC274CN | | ~40°C | 900 μ∨ | TLC279ID | | | TLC279IN | | to | 2 mV | TLC274BID | | | TLC274BIN | | 85°C | 5 mV | TLC274AID | | | TLC274AIN | | _ 00 0 | 10 mV | TLC274ID | _ | _ | TLC274IN | | −55°C
to | 900 μ∨ | TLC279MD | TLC279MFK | TLC279MJ | TLC279MN | | 125°C | 10 mV | TLC274MD | TLC274MFK | TLC274MJ | TLC274MN | The D package is available in tape and reel. Add R suffix to the device type, (e.g., TLC279CDR). LinCMOS is a trademark of Texas Instruments Incorporated Texas Instruments # TLC274, TLC274A, TLC274B, TLC279 LinCMOS™ PRECISION QUAD OPERATIONAL AMPLIFIERS #### description The TLC274 and TLC279 quad operational amplifiers combine a wide range of input offset voltage grades with low offset voltage drift, high input impedance, low noise, and speeds approaching that of general-purpose BiFET devices. These devices use Texas Instruments silicon-gate LinCMOS™ technology, which provides offset voltage stability far exceeding the stability available with conventional metal-gate processes. The extremely high input impedance, low bias currents, and high slew rates make these cost-effective devices ideal for applications which have previously been reserved for BiFET and NFET products. Four offset voltage grades are available (C-suffix and I-suffix types), ranging from the low-cost TLC274 (10 mV) to the high-precision TLC279 (900 μ V). These advantages, in combination with good common-mode rejection and supply voltage rejection, make these devices a good choice for new state-of-the-art designs as well as for upgrading existing designs. In general, many features associated with bipolar technology are available on LinCMOS™ operational amplifiers, without the power penalties of bipolar technology. General applications such as transducer interfacing, analog calculations, amplifier blocks, active filters, and signal buffering are easily designed with the TLC274 and TLC279. The devices also exhibit low voltage single-supply operation, making them ideally suited for remote and inaccessible battery-powered applications. The common-mode input voltage range includes the negative rail. A wide range of packaging options is available, including small-outline and chip carrier versions for highdensity system applications. The device inputs and outputs are designed to withstand -100-mA surge currents without sustaining latch-up. The TLC274 and TLC279 incorporate internal ESD-protection circuits that prevent functional failures at voltages up to 2000 V as tested under MIL-STD-883C, Method 3015.2; however, care should be exercised in handling these devices as exposure to ESD may result in the degradation of the device parametric performance. C-suffix devices are characterized for operation from $0\,^{\circ}$ C to $70\,^{\circ}$ C. I-suffix devices are characterized for operation from $-40\,^{\circ}$ C to $85\,^{\circ}$ C. M-suffix devices are characterized for operation over the full military temperature range of $-55\,^{\circ}$ C to $125\,^{\circ}$ C. #### equivalent schematic (each amplifier) ## TLC274, TLC274A, TLC274B, TLC279 LinCMOS™ PRECISION QUAD OPERATIONAL AMPLIFIERS #### absolute maximum ratings over operating free-air temperature range (unless otherwise noted) | Supply voltage, VDD (see Note 1) | |---| | Differential input voltage (see Note 2) | | Input voltage range, V _I (any input) | | Input current, Ij | | Output current, IO (each output) | | Total current into VDD terminal | | Total current out of ground terminal | | Duration of short-circuit current at (or below) 25 °C (see Note 3) | | Continuous total dissipation | | Operating free-air temperature, TA: C-suffix | | I-suffix | | M-suffix | | Storage temperature range | | Case temperature for 60 seconds: FK package | | Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D and N package 260°C | | Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: J package 300°C | - NOTES: 1. All voltage values, except differential voltages, are with respect to network ground. - 2. Differential voltages are at the noninverting input with respect to the inverting input. - The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum dissipation rating is not exceeded (see application section). #### **DISSIPATION RATING TABLE** | PACKAGE | T _A ≤ 25°C
POWER RATING | DERATING FACTOR ABOVE TA = 25°C | TA = 70°C
POWER RATING | T _A ≈ 85°C
POWER RATING | TA = 125°C
POWER RATING | |---------|---------------------------------------|---------------------------------|---------------------------|---------------------------------------|----------------------------| | D | 950 mW | 7.6 mW/°C | 608 mW | 494 mW | | | FK | 1375 mW | 11 mW/°C | 880 mW | 715 mW | 275 mW | | J | 1375 mW | 11 mW/°C | 880 mW | 715 mW | 275 mW | | N | 1575 mW | 12.6 mW/°C | 1008 mW | 819 mW | | #### recommended operating conditions | | | C-SUFFIX I-SUFFIX M-SUFFIX | | UNIT | | | | | | | | |--|------------------------|----------------------------|-----|------|------|-----|-----|------|-----|-----|------| | | | MIN | NOM | MAX | MIN | NOM | MAX | MIN | NOM | MAX | UNIT | | Supply voltage, V _{DD} | | 3 | | 16 | 4 | | 16 | 4 | | 16 | ٧ | | Common modelines to the control of | $V_{DD} = 5 V$ | -0.2 | | 3.5 | -0.2 | | 3.5 | 0 | | 3.5 | V | | Common-mode input voltage, V _{IC} | V _{DD} = 10 V | -0.2 | | 8.5 | -0.2 | | 8.5 | 0 | | 8.5 | v | | Operating free-air temperature, TA | | 0 | | 70 | -40 | | 85 | - 55 | | 125 | °C | ## TLC274M, TLC279M LinCMOS™ PRECISION QUAD OPERATIONAL AMPLIFIERS ## electrical characteristics at specified free-air temperature, VDD = 5 V (unless otherwise noted) | | PARAMETER | | TEST CON | DITIONS | TAT | MIN | TYP | MAX | UNIT | |-----------------|--|--------------|--|----------------------------|------------|-----|------|------|---------| | | | TLC274M | $V_0 = 1.4 V$, | V _{IC} = 0, | 25°C | | 1.1 | 10 | | | V ₁₀ | Input offset voltage | TLC274IVI | $R_S = 50 \Omega,$
$V_O = 1.4 V,$ | $R_L = 10 k\Omega$ | Full range | | | 12 | mV | | 100 | input onset voitage | TLC279M | V _O = 1.4 V, | V _{IC} = 0, | 25°C | , | 320 | 900 | μV | | | | 11027510 | $R_S = 50
\Omega$, | $R_L = 10 k\Omega$ | Full range | | | 3750 | μ ν | | | Average temperature | coefficient | | | 25°C to | | 2.1 | | μV/°C | | αVIO | of input offset voltage | je | | | 125°C | | 2.1 | | μν/-C | | 10 | Input offset current (| eee Note 41 | $V_0 = 2.5 V_1$ | V.o 25 V | 25°C | | 0.1 | | pА | | 10 | Input onset current (| 366 14016 47 | VO - 2.5 V, | VIC = 2.5 V | 125°C | | 1.4 | 15 | nA | | | Input bias current (se | o Noto 4) | $V_{\Omega} = 2.5 V_{r}$ | V _{IC} = 2.5 V | 25 °C | | 0.6 | | pA | | IВ | input bias current (se | e Note 4) | V() = 2.5 V, | VIC = 2.5 V | 125°C | | 9 | 35 | nA . | | | | | | | | 0 | -0.3 | | | | | | | | | 25°C | to | to | | v | | 1// | Common-mode input | | | | | 4 | 4.2 | | l | | VICR | voltage range (see N | ote 5) | | | | 0 | | - | | | | | | | | Full range | to | | | v | | | | | | | | 3.5 | | | | | | | | | | 25 °C | 3.2 | 3.8 | | | | VOH | High-level output vol | tage | $V_{ID} = 100 \text{ mV},$ | $R_L = 10 \text{ k}\Omega$ | – 55 °C | 3 | 3.8 | |] v | | | | | | | 125°C | 3 | 3.8 | | <u></u> | | | | | | | 25 °C | | 0 | 50 | | | VOL | Low-level output volt | tage | $V_{ID} = -100 \text{ mV},$ | $I_{OL} = 0$ | - 55 °C | | 0 | 50 | m∨ | | | | | | | 125°C | | 0 | 50 | | | | 1 | | | | 25 °C | 5 | 23 | | | | AVD | Large-signal different | laı | $V_0 = 0.25 \text{ V to 2 V},$ | $R_L = 10 k\Omega$ | - 55 °C | 3.5 | 35 | | V/mV | | | voltage amplification | | | | 125°C | 3.5 | 16 | | | | | | | | | 25°C | 65 | 80 | | | | CMRR | Common-mode reject | tion ratio | VIC = VICR min | | - 55 °C | 60 | 81 | | d₿ | | | | | | | 125°C | 60 | 84 | |] | | | Constitution | | | | 25°C | 65 | 95 | | | | ksvr | Supply-voltage reject | ion ratio | $V_{DD} = 5 \text{ V to } 10 \text{ V},$ | $V_0 = 1.4 V$ | -55°C | 60 | 90 | | dB | | | (ΔV _{DD} /ΔV _{IO}) | | | | 125°C | 60 | 97 | | | | | Constitution of the consti | | V- 25V | \/ 2.E.\/ | 25°C | | 2.7 | 6.4 | | | IDD | Supply current | | $V_0 = 2.5 \text{ V},$ | AIC = 5.2 A' | - 55°C | | 4 | 10 | mA | | | (four amplifiers) | | No load | | 125°C | | 1.9 | 4.4 | Ì | [†] Full range is -55°C to 125°C. NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically. ^{5.} This range also applies to each input individually. ## electrical characteristics at specified free-air temperature, Vpp = 10 V (unless otherwise noted) | | PARAMETER | | TEST CON | DITIONS | TA [†] | MIN | TYP | MAX | UNIT | |-----------------|---------------------------------|--------------|--|----------------------------|-----------------|-----|------|------|-------| | | | TLC274M | | V _{IC} = 0, | 25°C | | 1.1 | 10 | | | V/10 | Input offset voltage | TLC274W | $R_S = 50 \Omega$ | $R_L = 10 \text{ k}\Omega$ | Full range | | | 12 | mV | | VIO | input onset voitage | TLC279M | $V_0 = 1.4 V$ | $V_{IC} = 0$, | 25°C | | 370 | 1200 | μ∨ | | | | 1 LC2 / 9101 | $R_S = 50 \Omega$, | $R_L = 10 k\Omega$ | Full range | | | 4300 | μν | | | Average temperature | coefficient | | | 25°C to | | 2.2 | | μV/°C | | αVIO | of input offset voltage | je | | | 125°C | | 2.2 | | μν/ C | | lio | Input offset current (| see Note (1) | V _O = 5 V, | V _{IC} = 5 V | 25°C | | 0.1 | | pΑ | | 10 | input onset current (| See Note 4/ | VO = 5 V, | Δ C = 2 Δ | 125°C | | 1.8 | 15 | nA | | lin | Input him ourrant for | na Nota 4) | V _O = 5 V, | V _{IC} = 5 V | 25°C | | 0.7 | | pΑ | | IВ | Input bias current (se | ee Note 4) | ν ₀ = 5 ν, | AIC = 2 A | 125°C | | 10 | 35 | nA | | | | | | | : | 0 | -0.3 | | | | | | | | | 25°C | to | to | | V | | \/ | Common-mode input | | | | | 9 | 9.2 | | | | VICR | voltage range (see N | ote 5) | | | | 0 | | | | | | | | | | Full range | to | | | V | | | | | | | | 8.5 | | | | | | | | | | 25°C | 8 | 8.5 | | | | V _{OH} | High-level output vol | tage | $V_{ID} = 100 \text{ mV},$ | $R_L = 10 \text{ k}\Omega$ | - 55°C | 7.8 | 8.5 | | V | | | | | | | 125°C | 7.8 | 8.4 | | | | | | | | | 25°C | | 0 | 50 | | | VOL | Low-level output vol | tage | $V_{ID} = -100 \text{ mV},$ | $I_{OL} = 0$ | - 55 °C | | 0 | 50 | mV | | | | | | | 125°C | | 0 | 50 | | | | 1: 1 4:66 | | | | 25°C | 10 | 36 | | | | AVD | Large-signal different | | $V_0 = 1 \ V \ to 6 \ V,$ | $R_L = 10 \text{ k}\Omega$ | -55°C | 7 | 50 | | V/mV | | | voltage amplification | | | | 125°C | 7 | 27 | | | | | | | | | 25°C | 65 | 85 | | | | CMRR | Common-mode rejec | tion ratio | VIC = VICR min | | - 55°C | 60 | 87 | | dB | | | | | | | 125°C | 60 | 86 | |] | | | Constitution of the | | | | 25°C | 65 | 95 | | | | ksvr | Supply-voltage reject | ion ratio | $V_{DD} = 5 \text{ V to } 10 \text{ V},$ | $V_O = 1.4 V$ | - 55°C | 60 | 90 | | dB | | | $(\Delta V_{DD}/\Delta V_{IO})$ | | | | 125°C | 60 | 97 | | 1 | | | C | | W- 5.W | V - 5 V | 25°C | | 3.8 | 8 | | | IDD | Supply current | | 1 - | $V_{IC} = 5 V$ | - 55 °C | | 6.0 | 12 | mA | | | (four amplifiers) | | No load | | 125°C | | 2.5 | 5.6 | | [†] Full range is -55°C to 125°C. NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically. ^{5.} This range also applies to each input individually. ## TLC274I, TLC274AI, TLC274BI, TLC279I LINCMOS™ PRECISION QUAD OPERATIONAL AMPLIFIERS ## electrical characteristics at specified free-air temperature, VDD = 5 V (unless otherwise noted) | | PARAMETER | | TEST CON | DITIONS | TA [†] | MIN | TYP | MAX | UNIT | |-----------------|---------------------------------|--------------|--|------------------------------|-----------------|------|------|------|-------| | | | TLC2741 | $V_0 = 1.4 V$ | $V_{IC} = 0$, | 25 °C | | 1.1 | 10 | | | l | | 1102741 | $R_S = 50 \Omega$ | $R_L = 10 \text{ k}\Omega$ | Full range | | | 13 | 1 | | | | TLC274AI | $R_S = 50 \Omega,$
$V_O = 1.4 V,$ | V _{IC} = 0, | 25°C | | 0.9 | 5 | mV | | _{VIO} | Input offset voltage | TEC274AI | $R_S = 50 \Omega$ | $R_L = 10 k\Omega$ | Full range | | | 7 | 1 | | 10 | input onset voitage | TLC274BI | $R_S = 50 \Omega,$
$V_O = 1.4 V,$ | V _{IC} = 0, | 25°C | | 340 | 2000 | | | | | TLC2/4BI | $R_S = 50 \Omega$ | $R_L = 10 k\Omega$ | Full range | | | 3500 | 1 | | | | TLC2791 | $R_S = 50 \Omega,$
$V_O = 1.4 V,$ | V _{IC} = 0, | 25°C | | 320 | 900 | μ∨ | | | | 1202791 | $R_S = 50 \Omega$ | $R_L = 10 k\Omega$ | Full range | | | 2000 | 1 | | 01.410 | Average temperature | coefficient | | | 25°C to | | | | | | αVI0 | of input offset voltage | je | | | 85°C | | 1.8 | | μV/°C | | li o | Input offeet ourrent / | (see Nets 4) | V- 25V | V 05 V | 25°C | | 0.1 | | | | 10 | Input offset current (| (See Note 4) | $V_{O} = 2.5 V,$ | VIC = 2.5 V | 85°C | | 24 | 1000 | pΑ | | 1 | Immus bina access to | N. 4. 4) | 14 0514 | | 25°C | | 0.6 | | | | İΙΒ | Input bias current (se | ee Note 4) | $V_0 = 2.5 V,$ | $V_{IC} = 2.5 V$ | 85°C | | 200 | 2000 | pΑ | | | | | | | | -0.2 | -0.3 | | | | | | | | | 25°C | to | to | | l v | | ١,, | Common-mode input | | | | 1 | 4 | 4.2 | | | | VICR | voltage range (see N | ote 5) | | | | -0.2 | | | _ | | | | | | | Full range | to | | | V | | | | | | | | 3.5 | | | · | | | | | | | 25°C | 3.2 | 3.8 | | | | Voн | High-level output vol | tage | V _{ID} = 100 mV, | $R_i = 10 \text{ k}\Omega$ | -40°C | 3 | 3.8 | | V | | | | | " | L | 85°C | 3 | 3.8 | | · | | | | | | | 25°C | | 0 | 50 | | | VOL | Low-level output volt | tage | $V_{ID} = -100 \text{ mV},$ | 101 = 0 | - 40 °C | | 0 | 50 | mV | | | | | " | OL . | 85°C | | 0 | 50 | | | | | | | | 25°C | 5 | 23 | | | | AVD | Large-signal different | ial | $V_{O} = 0.25 \text{ V to 2 V}_{c}$ | $R_{I} = 10 \text{ k}\Omega$ | -40°C | 3.5 | 32 | | V/mV | | | voltage amplification | | | - | 85 °C | 3.5 | 19 | | | | | | | * | | 25 °C | 65 | 80 | | | | CMRR | Common-mode reject | tion ratio | V _{IC} = V _{ICR} min | | -40°C | 60 | 81 | | dB | | | · | | | | 85 °C | 60 | 86 | - | | | | 0 1 | | | | 25°C | 65 | 95 | | | | ksvr | Supply-voltage reject | ion ratio | V _{DD} = 5 V to 10 V, | $V_0 = 1.4 \text{ V}$ | -40°C | 60 | 92 | | dB | | | $(\Delta V_{DD}/\Delta V_{IO})$ | | | • | 85°C | 60 | 96 | | | | | 2 | | | | 25°C | | 2.7 | 6.4 | | | ^l DD | Supply current | | $V_0 = 2.5 V$ | $V_{IC} = 2.5 V$, | -40°C | | 3.8 | 8.8 | mA | | | (four amplifiers) | | No load | | 85 °C | | 2.1 | 4.8 | | | | | | L | | 1 55 6 | | 4.1 | 7.0 | | † Full range is $-40\,^{\circ}\text{C}$ to $85\,^{\circ}\text{C}$. NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically. ^{5.} This range also applies to each input individually. ## TLC274I, TLC274AI, TLC274BI, TLC279I LinCMOS™ PRECISION QUAD OPERATIONAL AMPLIFIERS ## electrical characteristics at specified free-air temperature, VDD = 10 V (unless otherwise noted) | | PARAMETER | | TEST CON | DITIONS | TA [†] | MIN | TYP | MAX | UNIT | |---------------------------------------|---------------------------------|--------------|--------------------------------------|----------------------------|-----------------|----------|------|-------------|--| | | | TLC2741 | $V_0 = 1.4 V$ | V _{IC} = 0, | 25°C | | 1.1 | 10 | | | | | 1102741 | $R_S = 50 \Omega$, | $R_L = 10 \text{ k}\Omega$ | Full range | | | 13 | | | | | TICOZANI | $R_S = 50 \Omega,$
$V_O = 1.4 V,$ | $V_{\dagger C} = 0$, | 25°C | | 0.9 | 5 | mV | | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | l | TLC274AI | $R_S = 50 \Omega$, | $R_L = 10 k\Omega$ | Full range | | | 7 | | | ٧ı٥ | Input offset voltage | TI COZAD) | $R_S = 50 \Omega,$
$V_O = 1.4 V,$ | V _{IC} = 0, | 25°C | | 390 | 2000 | | | | | TLC274B) | | | Full range | | | 3500 | ., | | ļ | | T. 0070 | $R_S = 50 \Omega,$
$V_O = 1.4 V,$ | V _{IC} = 0, | 25°C | | 370 | 1200 | μV | | | | TLC279I | $R_S = 50 \Omega$, | $R_L = 10 \text{ k}\Omega$ | Full range | | | 2900 | | | | Average temperature | coefficient | | | 25°C to | | • | | \//0C | | αVIO | of input offset voltage | je | | | 85°C | | 2 | | μV/°C
 | 1. | | | | + | 25°C | | 0.1 | | | | 110 | Input offset current | (see Note 4) | $V_0 = 5 V$ | $V_{IC} = 5 V$ | 85°C | | 26 | 1000 | ρA | | | | | | | 25°C | | 0.7 | | | | ¹ IB | Input bias current (se | ee Note 4) | $V_0 = 5 V$ | $V_{IC} = 5 V$ | 85 °C | | 220 | 2000 | pΑ | | | | | | | | -0.2 | -0.3 | | | | | | | | | 25 °C | to | to | | V | | | Common-mode input | t | | | | 9 | 9.2 | | | | VICR | voltage range (see N | ote 5) | | | | -0.2 | | | | | | | | | | Full range | to | | | l v | | | | | | | _ | 8.5 | | | · · | | | | | | | 25 °C | 8 | 8.5 | | | | V _{OH} | High-level output vol | tage | $V_{ID} = 100 \text{ mV},$ | $R_I = 10 k\Omega$ | - 40 °C | 7.8 | 8.5 | | l v | | " | , | J | | - | 85°C | 7.8 | 8.5 | | 1 | | | 1947 | | <u> </u> | | 25°C | | 0 | 50 | | | VOL | Low-level output vol | tage | $V_{ID} = -100 \text{ mV},$ | $I_{OI} = 0$ | - 40 °C | | 0 | 50 | m∨ | | " | , | J | | OL. | 85 °C | | 0 | 50 | 1 | | | | | | | 25 °C | 10 | 36 | | | | AVD | Large-signal differen | | $V_0 = 1 \text{ V to 6 V},$ | $R_1 = 10 \text{ k}\Omega$ | -40°C | 7 | 47 | | V/mV | | | voltage amplification | | | - | 85°C | 7 | 31 | - | 1 | | | | | | | 25°C | 65 | 85 | | | | CMRR | Common-mode rejec | tion ratio | VIC = VICE min | | -40°C | 60 | 87 | | dB | | | | | ic ici | | 85°C | 60 | 88 | | 1 | | | | | | | 25°C | 65 | 95 | | | | ksvr | Supply-voltage reject | tion ratio | V _{DD} = 5 V to 10 V, | Vo = 1.4 V | -40°C | 60 | 92 | | dB | | 344 | $(\Delta V_{DD}/\Delta V_{IO})$ | | | O | 85°C | 60 | 96 | | 1 | | | | | | | 25°C | | 3.8 | 8 | | | IDD | Supply current | | $V_0 = 5 V$ | $V_{IC} = 5 V$, | -40°C | - | 5.5 | 10 | mA | | 1.00 | (four amplifiers) | | No load | | 85°C | | 2.9 | 6.4 | 1 | | L | | | <u> </u> | | 1 00 0 | <u> </u> | | V. T | | [†] Full range is -40°C to 85°C. NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically. ^{5.} This range also applies to each input individually. ## TLC274C, TLC274AC, TLC274BC, TLC279C Lincmos™ Precision Quad Operational Amplifiers ## electrical characteristics at specified free-air temperature, VDD = 5 V (unless otherwise noted) | | PARAMETER | | TEST CONE | ITIONS | TA [†] | MIN | TYP | MAX | UNIT | |-------------|---------------------------------|-------------|--|---------------------------------------|-----------------|----------|------|------|-------------| | | | TLC274C | | V _{IC} = 0, | 25°C | | 1.1 | 10 | | | 1 | | 1102/40 | $R_S \simeq 50 \Omega$, | $R_L = 10 \text{ k}\Omega$ | Full range | | | 12 | m∨ | | | | TI 007440 | $R_S \approx 50 \Omega,$ $V_O = 1.4 V,$ | V _{IC} = 0, | 25°C | | 0.9 | 5 | iii v | | l | | TLC274AC | $R_S = 50 \Omega$, | $R_L = 10 \text{ k}\Omega$ | Full range | | | 6.5 | | | Vio | Input offset voltage | 71.007.400 | $R_S = 50 \Omega,$ $V_O = 1.4 V,$ | V _{IC} = 0, | 25 °C | | 340 | 2000 | | | | | TLC274BC | | | Full range | | | 3000 | μ∨ | | | | TI 00700 | $R_S = 50 \Omega,$ $V_O = 1.4 V,$ | V _{IC} = 0, | 25 °C | | 320 | 900 | μ ν | | | | TLC279C | $R_S = 50 \Omega$, | $R_L = 10 k\Omega$ | Full range | | | 1500 | | | | Average temperature | coefficient | | | 25°C to | | 1.0 | | V//0C | | ανιο | of input offset voltage | ie | | | 70°C | | 1.8 | | μV/°C | | | | | | | 25°C | | 0.1 | | | | lιο | Input offset current | see Note 4) | $V_0 = 2.5 V$ | $V_{IC} = 2.5 V$ | 70°C | | 7 | 300 | pΑ | | | | | | V 0.5.V | 25°C | | 0.6 | | - ^ | | IВ | Input bias current (se | ee Note 4) | $V_0 = 2.5 V,$ | $V_{IC} = 2.5 V$ | 70°C | | 40 | 600 | pΑ | | | | | | | <u> </u> | -0.2 | -0.3 | | | | | | | | | 25°C | to | to | | V | | | Common-mode input | : | | | | 4 | 4.2 | | | | VICR | voltage range (see N | | | | | -0.2 | | | | | | 3 | | | | Full range | to | | | V | | | | | | | | 3.5 | | | | | | | | | 1100 | 25°C | 3.2 | 3.8 | | | | VOH | High-level output vol | tage | V _{ID} = 100 mV, | $R_I = 10 \text{ k}\Omega$ | 0°C | 3 | 3.8 | • | 1 v | | 1 '0" | , g ., | | "" | - | 70°C | 3 | 3.8 | | | | | | | | # # # # # # # # # # # # # # # # # # # | 25°C | | 0 | 50 | | | VOL | Low-level output vol | tage | V _{ID} = -100 mV, | loi = 0 | 0°C | | 0 | 50 | mV | | 1.05 | | 9- | | OL. | 70°C | | 0 | 50 | | | | | | | | 25°C | 5 | 23 | | | | AVD | Large-signal differen | | $V_{\Omega} = 0.25 \text{ V to 2 V},$ | $R_1 = 10 \text{ k}\Omega$ | 0°C | 4 | 27 | | V/mV | | 1 | voltage amplification | İ | | - | 70°C | 4 | 20 | | 1 | | | | o | 1 | | 25°C | 65 | 80 | | | | CMRR | Common-mode rejec | tion ratio | V _{IC} = V _{ICR} min | | 0°C | 60 | 84 | _ | dB | | | | | 10 101 | | 70°C | 60 | 85 | | 1 | | | | | | | 25°C | 65 | 95 | | 1 | | ksvr | Supply-voltage rejec | tion ratio | $V_{DD} = 5 \text{ V to } 10 \text{ V},$ | $V_0 = 1.4 \text{ V}$ | 0°C | 60 | 94 | | dB | | "SVR | $(\Delta V_{DD}/\Delta V_{IO})$ | | 55 | 5 | 70°C | 60 | 96 | | 1 | | | | | | | 25°C | T | 2.7 | 6.4 | | | IDD | Supply current | | $V_0 = 2.5 V,$ | $V_{IC} = 2.5 V$, | 0°C | † | 3.1 | 7.2 | mA | | טטי ן | (four amplifiers) | | No load | | 70°C | † | 2.3 | 5.2 | 1 | | Ц | | | L | | 1 ,00 | | | | | [†] Full range is 0°C to 70°C. NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically. ^{5.} This range also applies to each input individually. ## TLC274C, TLC274AC, TLC274BC, TLC279C LinCMOS™ PRECISION QUAD OPERATIONAL AMPLIFIERS ## electrical characteristics at specified free-air temperature, VDD = 10 V (unless otherwise noted) | | PARAMETER | | TEST CON | DITIONS | TA [†] | MIN | TYP | MAX | UNIT | |----------------|---------------------------------|-------------|--|-----------------------------|-----------------|------|-------|------|----------| | | | TLC274C | $V_0 = 1.4 V_1$ | V _{IC} = 0, | 25 °C | | 1.1 | 10 | | | | | 1102740 | $R_S = 50 \Omega$, | $R_L = 10 k\Omega$ | Full range | | | 12 | 1 | | | | TLC274AC | $R_S = 50 \Omega,$
$V_O = 1.4 V,$ | V _{IC} = 0, | 25°C | | 0.9 | 5 | mV | | 1 | Input offeet valtage | 1LC274AC | $R_S = 50 \Omega$, | $R_L = 10 \text{ k}\Omega$ | Full range | | | 6.5 | İ | | Vio | Input offset voltage | TLC274BC | $R_S = 50 \Omega,$
$V_O = 1.4 V,$ | $V_{IC} = 0$, | 25 °C | | 390 | 2000 | | | | | TLC274BC | $R_S = 50 \Omega$, | $R_L = 10 k\Omega$ | Full range | | | 3000 | , , | | } | | TLC279C | $R_S = 50 \Omega$, $V_O = 1.4 V$, | $V_{IC} = 0$, | 25°C | | 370 | 1200 | μV | | | | TLC2/9C | $R_S = 50 \Omega$ | $R_L = 10 k\Omega$ | Full range | | | 1900 | | | | Average temperature | coefficient | | | 25°C to | | | | | | αVIO | of input offset voltage | je | | | 70°C | | 2 | | μV/°C | | | | | | | 25 °C | | 0.1 | | | | 10 | Input offset current (| see Note 4) | $V_0 = 5 V$, | $V_{IC} = 5 V$ | 70°C | | 7 | 300 | pΑ | | | | | | | 25°C | | 0.7 | | | | 11B | Input bias current (se | e Note 4) | $V_O = 5 V$ | $V_{IC} = 5 V$ | 70°C | | 50 | 600 | pΑ | | | | | | | | -0.2 | - 0.3 | | | | | | | | | 25°C | to | to | | V | | | Common-mode input | | | | | 9 | 9.2 | | | | VICR | voltage range (see N | ote 5) | | | | -0.2 | | - | | | İ | • • | | | | Full range | to | | | v | | İ | | | | | | 8.5 | | | · | | | | | | | 25 °C | 8 | 8.5 | | | | _{∨oh} | High-level output vol | tage | V _{ID} = 100 mV, | $R_1 = 10 \text{ k}\Omega$ | 0°C | 7.8 | 8.5 | | l v | | 0,, | 9 | 3- | 1 - 10 | | 70°C | 7.8 | 8.4 | | • | | | · | | | | 25°C | 7.0 | 0 | 50 | | | VOL | Low-level output volt | age | V _{ID} = -100 mV, | lou = 0 | 0°C | | 0 | 50 | mV | | 102 | | | , 55 1, | OL U | 70°C | | 0 | 50 | 1110 | | | | | | | 25°C | 10 | 36 | | | | AVD | Large-signal different | ial | V _O = 1 V to 6 V, | $R_{\rm b} = 10 \text{ kg}$ | 0°C | 7.5 | 42 | | V/mV | | 1.00 | voltage amplification | | 0 - 1 1 10 0 1, | 116 - 10 411 | 70°C | 7.5 | 32 | | V/IIIV | | | | · | | | 25°C | 65 | 85 | | | | CMBB | Common-mode reject | ion ratio | V _{IC} = V _{ICR} min | | 0°C | 60 | 88 | | dB | | Civilian | Common mode reject | aon ratio | AIC = AICH IIIII | | 70°C | 60 | 88 | | ub | | | | | | | 25°C | 65 | 95 | | | | kove | Supply-voltage reject | ion ratio | V _{DD} = 5 V to 10 V, | Vo = 1.4.V | | | | | .d⊓ | | ksvr | $(\Delta V_{DD}/\Delta V_{IO})$ | | ν _{DD} = 9 ν το 10 ν, | ν _O = 1.4 V | 0°C | 60 | 94 | | dB | | | | | | | 70°C | 60 | 96 | | | | | Supply current | | $V_0 = 5 V_1$ | $V_{IC} = 5 V$, | 25 °C | | 3.8 | 8 | | | lDD | (four amplifiers) | | No load | - | 0°C | | 4.5 | 8.8 | mA | | L | | | L | | 70°C | | 3.2 | 6.8 | | [†] Full range is 0°C to 70°C. NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically. ^{5.} This range also applies to each input individually. ## operating characteristics, $V_{DD} = 5 \text{ V}$ | | PARAMETER | TEST C | CONDITIONS | TA | MIN TYP MAX | UNIT | |---|---|----------------------------|------------------------|---------|-------------|--------| | | | | | 25°C | 3.6 | | | | Slew rate at unity gain Equivalent input noise voltage | D 1010 | $V_{IPP} = 1 V$ | - 55 °C | 4.7 | 1 | | | | $R_L = 10 \text{ k}\Omega$ | | 125°C | 2.3 | V/μs | | SR | Slew rate at unity gain | C _L = 20 pF, | • | 25 °C | 2.9 |] V/μS | | | | See Figure 1 | $V_{IPP} = 2.5 V$ | 55 °C | 3.7 | 1 | | | | | | 125°C | 2 | 1 | | Vn | Equivalent input noise voltage | f = 1 kHz,
See Figure 2 | $R_S = 100 \Omega$, | 25°C | 25 | nV/√Hz | | | | | 0 00 5 | 25 °C | 320 | | | Вом | Maximum output swing bandwidth | $V_0 = V_{OH}$ | $C_L = 20 \text{ pF},$ | -55°C | 400 | kHz | | • | | $R_L = 10 k\Omega$, | See Figure 1 | 125°C | 230 | 1 | | | | 10 -11 | 0 00 -5 | 25°C | 1.7 | | | Βı | Unity-gain bandwidth | V _i = 10 mV, | $C_L = 20 pF$, | -55°C | 2.9 | MHz | | | | See Figure 3 | | 125°C | 1.1
| 1 | | | | | , 5 | 25°C | 46° | | | ϕ_{m} | Phase margin | | $f = B_1$, | - 55 °C | 49° | 7 | | | | C _L = 20 pF, | See Figure 3 | 125°C | 41° | | ## operating characteristics, $V_{DD} = 10 \text{ V}$ | | PARAMETER | TEST (| CONDITIONS | TA | MIN TYP MAX | UNIT | |----------------|--------------------------------|------------------------------------|---|---------|-------------|--------| | | | - | | 25 °C | 5.3 | | | | | B 1010 | V _{iPP} = 1 V | − 55 °C | 7.1 | | | | | $R_L = 10 k\Omega$, | | 125°C | 3.1 | N// | | SR | Slew rate at unity gain | C _L = 20 pF, | | 25°C | 4.6 | V/μs | | | | See Figure 1 | $V_{IPP} = 5.5 V$ | − 55 °C | 6.1 | | | | | | | 125°C | 2.7 | | | v _n | Equivalent input noise voltage | f = 1 kHz,
See Figure 2 | $R_S = 100 \Omega$, | 25°C | 25 | nV/√Hz | | | | | 2 22 5 | 25 °C | 200 | | | Вом | Maximum output swing bandwidth | VO = VOH, | C _L = 20 pF,
See Figure 1 | − 55 °C | 280 | kHz | | | | $R_{\perp} = 10 \text{ k}\Omega$, | | 125°C | 110 | | | | | 40 | 0 00 5 | 25°C | 2.2 | | | B ₁ | Unity-gain bandwidth | $V_i = 10 \text{ mV},$ | $C_L = 20 pF$, | - 55 °C | 3.4 | MHz | | • | | See Figure 3 | | 125°C | 1.6 | | | | | | | 25°C | 49° | | | ϕ_{m} | Phase margin | $V_i = 10 \text{ mV},$ | $f = B_1,$ | -55°C | 52° | | | | - | $C_L = 20 pF$, | See Figure 3 | 125°C | 440 | | ## TLC274I, TLC274AI, TLC274BI, TLC279I LinCMOS™ PRECISION QUAD OPERATIONAL AMPLIFIERS ## operating characteristics, V_{DD} = 5 V | | PARAMETER | TEST C | ONDITIONS | TA | MIN TYP MAX | UNIT | |----------------|--------------------------------|--|-------------------------|-------|-------------|--------| | SR | Slew rate at unity gain | | | 25°C | 3.6 | | | | | R _L = 10 kΩ,
C _L = 20 pF,
See Figure 1 | VIPP = 1 V | -40°C | 4.5 | | | | | | | 85 °C | 2.8 | | | | | | | 25°C | 2.9 | V/μs | | | | | $V_{IPP} = 2.5 V$ | -40°C | 3.5 |]] | | | | | | 85°C | 2.3 | | | V _n | Equivalent input noise voltage | f = 1 kHz,
See Figure 2 | $R_S = 100 \Omega$, | 25°C | 25 | nV/√Hz | | | Maximum output swing bandwidth | | 0 20 - | 25°C | 320 | kHz | | Вом | | $V_O = V_{OH}$, $R_L = 10 \text{ k}\Omega$, | C _L = 20 pF, | -40°C | 380 | | | | | | See Figure 1 | 85 °C | 250 | | | | Unity-gain bandwidth | V _i = 10 mV,
See Figure 3 | C 20 - F | 25°C | 1.7 | MHz | | B ₁ | | | $C_L = 20 pF$, | -40°C | 2.6 | | | | | | | 85 °C | 1.2 | | | | Phase margin | V _i = 10 mV, | f - D. | 25°C | 46° | | | φm | | $V_1 = 10 \text{ mV},$ $C_1 = 20 \text{ pF},$ | • | -40°C | 49° | | | | | CL - 20 pr, | See Figure 3 | 85°C | 43° | | ## operating characteristics, V_{DD} = 10 V | PARAMETER | | TEST C | TEST CONDITIONS | | MIN TYP | MAX | UNIT | |----------------|--------------------------------|--|--------------------------|---------|---------|-----|--------| | SR | Slew rate at unity gain | R _L = 10 kΩ,
C _L = 20 pF,
See Figure 1 | | 25 °C | 5.3 | | - V/μs | | | | | V _{IPP} = 1 V | -40°C | 6.7 | | | | | | | | 85 °C | 4 | | | | Sh. | | | | 25°C | 4.6 | | | | | | | V _{IPP} = 5.5 V | -40°C | 5.8 | | | | | | | | 85°C | 3.5 | | | | ٧n | Equivalent input noise voltage | f = 1 kHz,
See Figure 2 | $R_S = 100 \Omega$, | 25°C | 25 | | nV/√Hz | | | Maximum output swing bandwidth | N- N | C 20 - F | 25 °C | 200 | | kHz | | Вом | | $V_O = V_{OH}$,
$R_L = 10 \text{ k}\Omega$, | C _L = 20 pF, | -40°C | 260 | | | | | | | See Figure 1 | 85°C | 130 | | | | | Unity-gain bandwidth | V _i = 10 mV,
See Figure 3 | C: 20 -F | 25 °C | 2.2 | | MHz | | B ₁ | | | $C_L = 20 pF$, | -40°C | 3.1 | | | | | | | | 85°C | 1.7 | | | | | Phase margin | margin | • | 25 °C | 49° | | | | φm | | | | - 40 °C | 52° | | | | | | | See Figure 3 | 85°C | 46° | | | ## TLC274C, TLC274AC, TLC274BC, TLC279C LinCMOS™ PRECISION QUAD OPERATIONAL AMPLIFIERS ## operating characteristics, V_{DD} = 5 V | PARAMETER | | TEST CONDITIONS | | TA | MIN TYP MA | X UNIT | |----------------|--------------------------------|---|---|-------|------------|--------------------| | SR | | | | 25°C | 3.6 | | | | | $R_L = 10 \text{ k}\Omega$,
$C_L = 20 \text{ pF}$,
See Figure 1 | V _{IPP} = 1 V | 0°C | 4 | Ti I | | | | | | 70°C | 3 | V//-a | | | | | | 25 °C | 2.9 | V/μs | | | | | V _{IPP} = 2.5 V | 0°C | 3.1 | | | | | | | 70°C | 2.5 | | | ٧n | Equivalent input noise voltage | f = 1 kHz,
See Figure 2 | $R_S = 100 \Omega$, | 25°C | 25 | nV/√ Hz | | | Maximum output swing bandwidth | | 0 00 -5 | 25°C | 320 | | | ВОМ | | $V_O = V_{OH}$, $R_L = 10 \text{ k}\Omega$, | C _L = 20 pF,
See Figure 1 | 0°C | 340 | kHz | | | | | | 70°C | 260 | | | | Unity-gain bandwidth |)/ ₋ 10)/ | C - 20 - F | 25°C | 1.7 | | | B ₁ | | V _i = 10 mV,
See Figure 3 | $C_L = 20 pF$, | 0°C | 2 | MHz | | | | | | 70°C | 1.3 | | | | Phase margin | se margin $ \begin{array}{c} V_i \ = \ 10 \ mV, \\ C_L \ = \ 20 \ pF, \end{array} $ | f = B ₁ , | 25°C | 46° | | | φm | | | | 0°C | 47° | | | | | | See Figure 3 | 70°C | 44° | | ## operating characteristics, V_{DD} = 10 V | PARAMETER | | TEST CONDITIONS | | TA | MIN TYP MAX | UNIT | |-----------|--------------------------------|--|---|------|-------------|--------| | SR | Slew rate at unity gain | | | 25°C | 5.3 | | | | | D 1010 | V _{IPP} = 1 V | 0°C | 5.9 | 1 | | | | $R_L = 10 \text{ k}\Omega$,
$C_L = 20 \text{ pF}$,
See Figure 1 | | 70°C | 4.3 | V/μs | | | | | V _{IPP} = 5.5 V | 25°C | 4.6 | | | | | | | 0°C | 5.1 | | | | | | | 70°C | 3.8 | | | ٧n | Equivalent input noise voltage | f = 1 kHz,
See Figure 2 | $R_S = 100 \Omega$, | 25°C | 25 | nV/√Hz | | | Maximum output swing bandwidth | andwidth! ~ | 0 00 5 | 25°C | 25°C 200 | kHz | | BOM | | | C _L = 20 pF,
See Figure 1 | 0°C | 220 | | | | | | | 70°C | 140 | | | | Unity-gain bandwidth | $V_i = 10 \text{ mV},$ $C_L = 20 \text{ pF}$ See Figure 3 | 0 00 5 | 25°C | 2.2 | MHz | | В1 | | | CL = 20 pr, | 0°C | 2.5 | | | | | | | 70°C | 1.8 | | | φm | Phase margin | margin $ \begin{array}{c} V_i = 10 \text{ mV}, \\ C_L = 20 \text{ pF}, \end{array} $ | , , | 25°C | 49° | | | | | | f = B ₁ , | 0°C | 50° | 7 | | | | | See Figure 3 | 70°C | 46° | 1 | #### PARAMETER MEASUREMENT INFORMATION #### single-supply versus split-supply test circuits Because the TLC274 and TLC279 are optimized for single-supply operation, circuit configurations used for the various tests often present some inconvenience since the input signal, in many cases, must be offset from ground. This inconvenience can be avoided by testing the device with split supplies and the output load tied to the negative rail. A comparison of single-supply versus split-supply test circuits is shown below. The use of either circuit will give the same result. FIGURE 1. UNITY-GAIN AMPLIFIER FIGURE 2. NOISE TEST CIRCUIT FIGURE 3. GAIN-OF-100 INVERTING AMPLIFIER #### PARAMETER MEASUREMENT INFORMATION #### input bias current Because of the high input impedance of the TLC274 and TLC279 op amps, attempts to measure the input bias current can result in erroneous readings. The bias current at normal room ambient temperature is typically less than 1 pA, a value that is easily exceeded by leakages on the test socket. Two suggestions are offered to avoid erroneous measurements: - Isolate the device from other potential leakage sources. Use a grounded shield around and between the device inputs (see Figure 4). Leakages that would otherwise flow to the inputs will be shunted away. - 2. Compensate for the leakage of the test socket by actually performing an input bias current test (using a picoammeter) with no device in the test socket. The actual input bias current can then be calculated by subtracting the "open-socket" leakage readings from the readings obtained with a device in the test socket. One word of caution . . . many automatic testers as well as some bench-top op amp testers use the servo-loop technique with a resistor in series with the device input to measure the input bias current (the voltage drop across the series resistor is measured and the bias current is calculated). This method requires that a device be inserted into the test socket to obtain a correct reading; therefore, an "open-socket" reading is not feasible using this method. FIGURE 4. ISOLATION METAL AROUND DEVICE INPUTS (J AND N DUAL-IN-LINE-PACKAGE) #### low-level output voltage To obtain low-supply-voltage operation, some compromise was necessary in the input stage. This compromise results in the device low-level output being dependent on both the common-mode input voltage level as well as the differential input voltage level. When attempting to correlate low-level output readings with those quoted in the electrical specifications, these two conditions should be observed. If conditions other than these are to be used, please refer to Figures 14 through 19 in the Typical Characteristics of this data sheet. #### input offset voltage temperature coefficient Erroneous readings often result from attempts to measure temperature coefficient of input offset voltage. This parameter is actually a calculation using input offset voltage measurements obtained at two different temperatures. When one (or both) of the temperatures is below freezing, moisture can collect on both the device and the test socket. This moisture will result in leakage and contact resistance, which can cause erroneous input offset voltage readings. The isolation techniques previously mentioned have no effect on the leakage since the moisture also covers the isolation metal itself, thereby rendering it useless. It is suggested that these measurements be performed at temperatures above freezing
to minimize error. # TLC274, TLC274A, TLC274B, TLC279 LinCMOS™ PRECISION QUAD OPERATIONAL AMPLIFIERS #### full-power response Full-power response, the frequency above which the op amp slew rate limits the output voltage swing, is often specified two ways . . . full-linear response and full-peak response. The full-linear response is generally measured by monitoring the distortion level of the output while increasing the frequency of a sinusoidal input signal until the maximum frequency is found above which the output contains significant distortion. The full-peak response is defined as the maximum output frequency, without regard to distortion, above which full peak-to-peak output swing cannot be maintained. Because there is no industry-wide accepted value for "significant" distortion, the full-peak response is specified in this data sheet and is measured using the circuit of Figure 1. The initial setup involves the use of a sinusoidal input to determine the maximum peak-to-peak output of the device (the amplitude of the sinusoidal wave is increased until clipping occurs). The sinusoidal wave is then replaced with a square wave of the same amplitude. The frequency is then increased until the maximum peak-to-peak output can no longer be maintained (Figure 5). A square wave is used to allow a more accurate determination of the point at which the maximum peak-to-peak output is reached. FIGURE 5. FULL-POWER-RESPONSE OUTPUT SIGNAL #### test time Inadequate test time is a frequent problem, especially when testing CMOS devices in a high-volume, short-test-time environment. Internal capacitances are inherently higher in CMOS than in bipolar and BiFET devices and require longer test times than their bipolar and BiFET counterparts. The problem becomes more pronounced with reduced supply levels and lower temperatures. #### TYPICAL CHARACTERISTICS # DISTRIBUTION OF TLC274 INPUT OFFSET VOLTAGE DISTRIBUTION OF TLC274 AND TLC279 INPUT OFFSET VOLTAGE DISTRIBUTION OF TLC274 AND TLC279 INPUT OFFSET VOLTAGE TEMPERATURE COEFFICIENT $V_{DD} - 2.4$ -50 - 25 0 FIGURE 13 25 50 75 TA-Free-Air Temperature-°C 100 125 0 0 2 10 12 VDD-Supply Voltage-V FIGURE 12 14 16 Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. [†]Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. LOW-LEVEL OUTPUT VOLTAGE LOW-LEVEL OUTPUT CURRENT 3.0 V_{ID} = -1 V Vol - Low-Level Output Voltage - V V_{IC} = 0.5 V 2.5 TA = 25°C V_{DD} = 16 V 2.0 $V_{DD} = 10$ 1.5 1.0 0.5 10 15 20 25 30 IOL-Low-Level Output Current-mA LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION FIGURE 19 †Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. †Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. NOTE 4: The typical values of input bias current and input offset current below 5 pA were determined mathematically. ## NORMALIZED SLEW RATE FREE-AIR TEMPERATURE [†]Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. FIGURE 32 FIGURE 33 [†]Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. FIGURE 36 Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. #### single-supply operation While the TLC274 and TLC279 perform well using dual power supplies (also called balanced or split supplies), the design is optimized for single-supply operation. This design includes an input common-mode voltage range that encompasses ground as well as an output voltage range that pulls down to ground. The supply voltage range extends down to 3 V (C-suffix types), thus allowing operation with supply levels commonly available for TTL and HCMOS; however, for maximum dynamic range, 16-V single-supply operation is recommended. Many single-supply applications require that a voltage be applied to one input to establish a reference level that is above ground. A resistive voltage divider is usually sufficient to establish this reference level (see Figure 38). The low input bias current of the TLC274 and TLC279 permits the use of very large resistive values to implement the voltage divider, thus minimizing power consumption. The TLC274 and TLC279 work well in conjunction with digital logic; however, when powering both linear devices and digital logic from the same power supply, the following precautions are recommended: - Power the linear devices from separate bypassed supply lines (see Figure 39); otherwise the linear device supply rails can fluctuate due to voltage drops caused by high switching currents in the digital logic. - 2. Use proper bypass techniques to reduce the probability of noise-induced errors. Single capacitive decoupling is often adequate; however, high-frequency applications may require RC decoupling. FIGURE 38. INVERTING AMPLIFIER WITH VOLTAGE REFERENCE (b) Separate Bypassed Supply Rails (preferred) FIGURE 39. COMMON VS SEPARATE SUPPLY RAILS #### input characteristics The TLC274 and TLC279 are specified with a minimum and a maximum input voltage that, if exceeded at either input, could cause the device to malfunction. Exceeding this specified range is a common problem, especially in single-supply operation. Note that the lower range limit includes the negative rail, while the upper range limit is specified at $V_{DD} - 1$ V at $T_{A} = 25$ °C and at $V_{DD} - 1.5$ V at all other temperatures. The use of the polysilicon-gate process and the careful input circuit design gives the TLC274 and TLC279 very good input offset voltage drift characteristics relative to conventional metal-gate processes. Offset voltage drift in CMOS devices is highly influenced by threshold voltage shifts caused by polarization of the phosphorus dopant implanted in the oxide. Placing the phosphorus dopant in a conductor (such as a polysilicon gate) alleviates the polarization problem, thus reducing threshold voltage shifts by more than an order of magnitude. The offset voltage drift with time has been calculated to be typically 0.1 μ V/month, including the first month of operation. Because of the extremely high input impedance and resulting low bias current requirements, the TLC274 and TLC279 are well suited for low-level signal processing; however, leakage currents on printed circuit boards and sockets can easily exceed bias current requirements and cause a degradation in device performance. It is good practice to include guard rings around inputs (similar to those of Figure 4 in the Parameter Measurement Information section). These guards should be driven from a low-impedance source at the same voltage level as the common-mode input (see Figure 40). The inputs of any unused amplifiers should be tied to ground to avoid possible oscillation. #### noise performance The noise specifications in op amp circuits are greatly dependent on the current in the first-stage differential amplifier. The low input bias current requirements of the TLC274 and TLC279 result in a very low noise current, which is insignificant in most applications. This feature makes the devices especially favorable over bipolar devices when using values of circuit impedance greater than 50 k Ω , since bipolar devices exhibit greater noise currents. (a) Noninverting Amplifier (b) Inverting Amplifier (c) Unity-Gain Amplifier FIGURE 40. GUARD-RING SCHEMES #### output characteristics The output stage of the TLC274 and TLC279 is designed to sink and source relatively high amounts of current (see typical characteristics). If the output is subjected to a short-circuit condition, this high current capability can cause device damage under certain conditions. Output current capability increases with supply voltage. All operating characteristics of the TLC274 and TLC279 were measured using a 20-pF load. The devices will drive higher capacitive loads; however, as output load capacitance increases, the resulting response pole occurs at lower frequencies, thereby causing ringing, peaking, or even oscillation (see Figure 41). In many cases, adding a small amount of resistance in series with the load capacitance will alleviate the problem. (d) Test Circuit FIGURE 41. EFFECT OF CAPACITIVE LOADS AND TEST CIRCUIT Although the TLC274 and TLC279 possess excellent high-level output voltage and current capability, methods for boosting this capability are available, if needed. The simplest method involves the use of a pullup resistor (Rp) connected from the output to the positive supply rail (see Figure 42). There are two disadvantages to the use of this circuit. First, the NMOS pulldown transistor N4 (see equivalent schematic) must sink a comparatively large amount of current. In this circuit, N4 behaves like a linear resistor with an on-resistance between approximately $60~\Omega$ and $180~\Omega$, depending on how hard the op amp input is driven. With very low values of Rp, a voltage offset from 0 V at the output will occur. Second, pullup resistor Rp acts as a drain load to N4 and the gain of the op amp is reduced at output voltage levels where N5 is not supplying the output current. #### feedback Op amp circuits nearly always employ feedback, and since feedback is the first prerequisite for oscillation, some caution is appropriate. Most oscillation problems result from driving capacitive loads (discussed previously) and ignoring stray input capacitance. A small-value capacitor connected in parallel with the feedback resistor is an effective remedy (see Figure 43). The value of this capacitor is optimized empirically. FIGURE 42. RESISTIVE PULLUP TO INCREASE VOH FIGURE
43. COMPENSATION FOR INPUT CAPACITANCE #### electrostatic discharge protection The TLC274 and TLC279 incorporate an internal electrostatic discharge (ESD) protection circuit that prevents functional failures at voltages up to 2000 V as tested under MIL-STD-883C, Method 3015.2. Care should be exercised, however, when handling these devices as exposure to ESD may result in the degradation of the device parametric performance. The protection circuit also causes the input bias currents to be temperature-dependent and have the characteristics of a reverse-biased diode. #### latch-up Because CMOS devices are susceptible to latch-up due to their inherent parasitic thyristors, the TLC274 and TLC279 inputs and outputs were designed to withstand -100-mA surge currents without sustaining latch-up; however, techniques should be used to reduce the chance of latch-up whenever possible. Internal protection diodes should not, by design, be forward biased. Applied input and output voltage should not exceed the supply voltage by more than 300 mV. Care should be exercised when using capacitive coupling on pulse generators. Supply transients should be shunted by the use of decoupling capacitors (0.1 μ F typical) located across the supply rails as close to the device as possible. The current path established if latch-up occurs is usually between the positive supply rail and ground and can be triggered by surges on the supply lines and/or voltages on either the output or inputs that exceed the supply voltage. Once latch-up occurs, the current flow is limited only by the impedance of the power supply and the forward resistance of the parasitic thyristor and usually results in the destruction of the device. The chance of latch-up occurring increases with increasing temperature and supply voltages. NOTES: A. d = damping factor, 1/QB. Normalized to 10 k Ω and f_C = 1 kHz ## FIGURE 44. STATE VARIABLE FILTER FIGURE 45. POSITIVE-PEAK DETECTOR NOTES: A. $V_I = 3.5$ to 15 V B. $V_O = 2.0$ V, 0 to 1 A FIGURE 46. LOGIC ARRAY POWER SUPPLY NOTES: A. $V_{OPP} = 8 V$ B. $V_{OPP} = 4 V$ FIGURE 47. SINGLE-SUPPLY FUNCTION GENERATOR NOTE A: CMRR adjustment (must be noninductive). #### FIGURE 48. LOW-POWER INSTRUMENTATION AMPLIFIER FIGURE 49. SINGLE-SUPPLY TWIN-T NOTCH FILTER