

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All recreations are done with the approval of the OCM.

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceed the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-35835
 - Class Q Military
 - Class V Space Level
- Qualified Suppliers List of Distributors (QSLD)
- Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OEM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

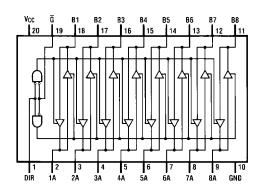
September 1986 Revised February 2000

DM74ALS245A Octal 3-STATE Bus Transceiver

General Description

This advanced low power Schottky device contains 8 pairs of 3-STATE logic elements configured as octal bus transceivers. These circuits are designed for use in memory, microprocessor systems and in asynchronous bidirectional data buses. Two way communication between buses is controlled by the (DIR) input. Data transmits either from the A bus to the B bus or from the B bus to the A bus. Both the driver and receiver outputs can be disabled via the $(\overline{\rm G})$ enable input which causes outputs to enter the high impedance mode so that the buses are effectively isolated.

Features


- Advanced oxide-isolated, ion-implanted Schottky TTL process
- Non-inverting logic output
- Glitch free bus during power up and down
- 3-STATE outputs independently controlled on A and B buses
- \blacksquare Low output impedance to drive terminated transmission lines to 133 Ω
- \blacksquare Switching response specified into 500 $\!\Omega/50$ pF
- Specified to interface with CMOS at $V_{OH} = V_{CC} 2V$
- PNP inputs to reduce input loading
- \blacksquare Switching specifications guaranteed over full temperature and V_{CC} range

Ordering Code:

Order Number	Package Number	Package Description
DM74ALS245AWM	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300 Wide
DM74ALS245ASJ	M20D	20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
DM74ALS245AMSA	MSA20	20-Lead Shrink Small Outline Package (SSOP), EIAJ TYPE II, 5.3mm Wide
DM74ALS245AN	N20A	20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Connection Diagram

Function Table

Control Inputs			Operation
	G	DIR	
	L	L	B Data to A Bus
	L	Н	A Data to B Bus
	Н	X	Hi-Z

- H = HIGH Logic Level
- L = LOW Logic Level
- X = Either HIGH or LOW Logic Level

Absolute Maximum Ratings(Note 1)

Supply Voltage 7V

Input Voltage

Control Inputs 7V

I/O Ports 5.5V

Operating Free Air Temperature Range 0°C to +70°C Storage Temperature Range -65°C to +150°C

Typical θ_{JA}

53.0°C/W N Package M Package 72.0°C/W

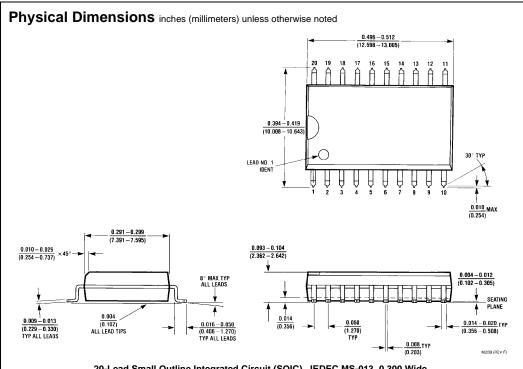
Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

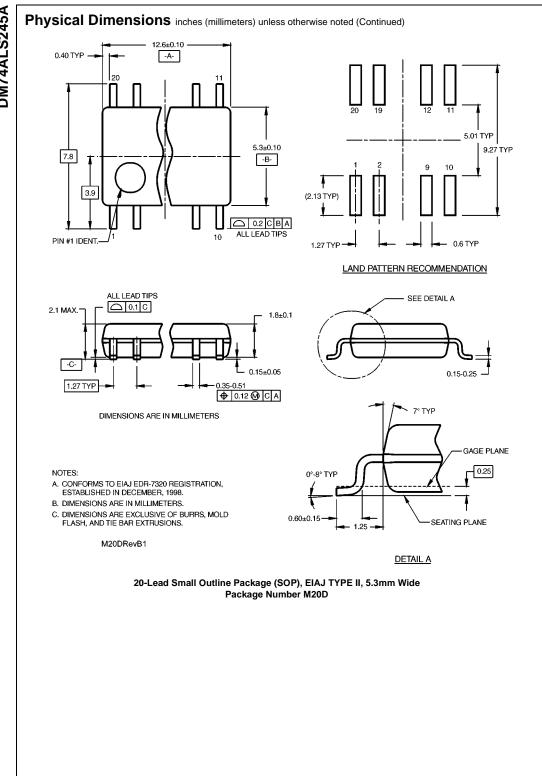
Symbol	Parameter	Min	Тур	Max	Units
V _{CC}	Supply Voltage	4.5	5	5.5	V
V _{IH}	HIGH Level Input Voltage	2			V
V _{IL}	LOW Level Input Voltage			0.8	V
I _{OH}	HIGH Level Output Current			-15	mA
I _{OL}	LOW Level Output Current			24	mA
T _A	Operating Free Air Temperature	0		70	°C

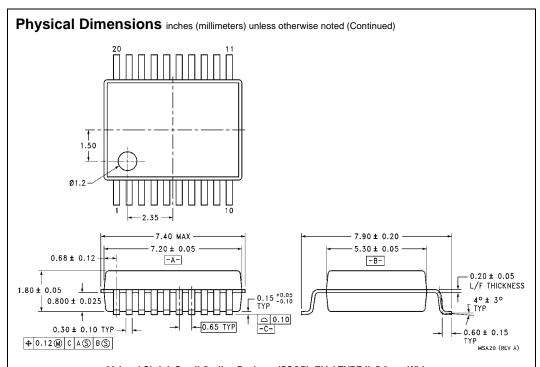
Electrical Characteristics

over recommended operating free air temperature range. All typical values are measured at $V_{CC} = 5V$, $T_A = 25^{\circ}C$.

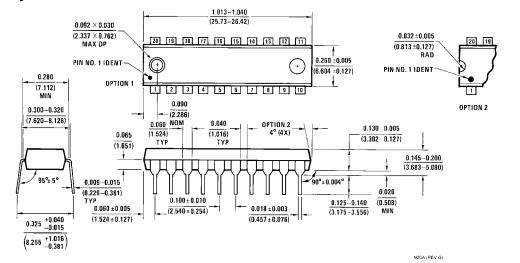

Symbol	Parameter		Conditions			Тур	Max	Units
V _{IK}	Input Clamp Voltage	V _{CC} = 4.5V, I _{IN}	V _{CC} = 4.5V, I _{IN} = -18 mA				-1.5	V
V _{OH}	HIGH Level	$V_{CC} = 4.5V$, I_{OH}	$V_{CC} = 4.5V, I_{OH} = -3 \text{ mA}$			3.2		V
	Output Voltage	$V_{CC} = 4.5V$, I_{OH}	$V_{CC} = 4.5V$, $I_{OH} = Max$			2.3		V
		$I_{OH} = -0.4 \text{ mA},$	$I_{OH} = -0.4 \text{ mA}, V_{CC} = 4.5 \text{V to } 5.5 \text{V}$					V
V _{OL}	LOW Level Output Voltage	$V_{CC} = 4.5V$	$I_{OL} = 24 \text{ mA}$			0.35	0.5	V
I	Input Current at Maximum	V _{CC} = 5.5V	$V_{IN} = 7V$	Control Inputs			0.1	mA
	Input Voltage		$V_{IN} = 5.5V$	A or B Ports			0.1	IIIA
I _{IH}	HIGH Level Input Current	$V_{CC} = 5.5V, V_{IN}$	= 2.7V	•			20	μΑ
I _{IL}	LOW Level Input Current	$V_{CC} = 5.5V, V_{IN}$	$V_{CC} = 5.5V, V_{IN} = 0.4V$				-0.1	mA
Io	Output Drive Current	$V_{CC} = 5.5V, V_{Ol}$	V _{CC} = 5.5V, V _{OUT} = 2.25V		-30		-112	mA
I _{CC}	Supply Current	V _{CC} = 5.5V Outpu	Outputs HIGH			30	45	mA
			Outputs LOW			36	55	mA
			3-STATE			38	58	mA

Switching Characteristics (Note 2)


over recommended operating free air temperature range


Symbol	Parameter	Circuit Configuration	Min	Max	Units
t _{PLH}	Propagation Delay Time		3	10	ns
	LOW-to-HIGH Level Output		3	10	115
t _{PHL}	Propagation Delay Time	IN A OR B OR A OUT	3	10	ns
	HIGH-to-LOW Level Output		3	10	115
t _{PZL}	Output Enable Time to LOW Level		5	20	ns
t _{PZH}	Output Enable Time to HIGH Level		5	20	ns
t _{PLZ}	Output Disable Time from LOW Level	A OR B	4	15	ns
t _{PHZ}	Output Disable Time from HIGH Level		2	10	ns

Note 2: Switching characteristic conditions are V_{CC} = 4.5V to 5.5V, R_L = 500 Ω , C_L = 50 pF.


20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300 Wide Package Number M20B

20-Lead Shrink Small Outline Package (SSOP), EIAJ TYPE II, 5.3mm Wide Package Number MSA20

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide Package Number N20A

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com