Pentium[™] and Pentium II[™] Clock Synthesizer/Driver for the Intel 82430TX and ALI Chipsets with 3 DIMM Support ### **Features** - · Mixed 2.5V and 3.3V operation - Complete clock solution for Pentium[™], Pentium II[™], Cyrix, and AMD processor-based motherboards - Four CPU clocks at 2.5V or 3.3V - Twelve 3.3V SDRAM clocks - Seven synchronous PCI clocks, one free-running - One 3.3V 48 MHz USB clock - One 3.3V Ref. clock at 14.318 MHz - 1 ns-4 ns delay between CPU and PCI clocks on -1 and -2, no delay on -3. - I²C™ Serial Configuration Interface - Factory-EPROM programmable output drive and slew rate for optimal EMI control. Improved output drivers are designed for low EMI. - Factory-EPROM programmable CPU clock frequencies for custom configurations - · Power-down, CPU stop and PCI stop pins - Low CPU clock jitter ≤ 250 ps cycle-cycle. - · Available in space-saving 48-pin SSOP package # **Functional Description** The CY2273 family are clock Synthesizer/Driver devices for a Pentium, Pentium II, Cyrix, or AMD processor-based PC using Intel's 82430TX, Aladdin IV or Aladdin V chipsets. The CY2273-1 outputs four CPU clocks at 2.5V or 3.3V. There are seven PCI clocks, running at one half the CPU clock frequency. One of the PCI clocks is free-running. Additionally, the part outputs twelve 3.3V SDRAM clocks, one 3.3V USB clock at 48 MHz, and one 3.3V reference clock at 14.318 MHz. All output clocks meet Intel's drive strength, rise/fall time, jitter, accuracy, and skew requirements. The CY2273-2 is similar, except that PCICLK4 and PCICLK5 are now AGP clocks. The CY2273-3 is more suited to Pentium II systems, as it outputs one 2.5V IOAPIC clock. The part possesses power-down, CPU stop, and PCI stop pins for power management control. These inputs are multiplexed with SDRAM clock outputs, and are selected when the MODE pin is driven low. Additionally, the signals are synchronized on-chip, and ensure glitch-free transitions on the outputs. When the CPU_STOP input is asserted, the CPU clock outputs are driven LOW. When the PCI_STOP input is asserted, the PCI clock outputs (except the free-running PCI clock) are driven LOW. When the PWR_DWN pin is asserted, the reference oscillator and PLLs are shut down, and all outputs are driven LOW. The CY2273 clock outputs are designed for low EMI emissions. Controlled rise and fall times, unique output driver circuits, and innovative circuit layout techniques enable the CY2273 to have lower EMI than clock devices from other manufacturers. Additionally, factory-EPROM programmable output drive and slew-rate control enable optimal configurations. Intel and Pentium II are registered trademarks of Intel Corporation. Pentium is a trademark of Intel Corporation. I²C is a trademark of Philips Corporation. # Pin Configurations (continued) # Pin Summary | Name | Pins (-1, -2) | Pins (-3) | Description | |------------------------|--|--|--| | V _{DDQ3} | 6, 14, 19, 30,
36, 48 | 6, 14, 19, 30,
36 | 3.3V Digital voltage supply | | V_{DDQ2} | N/A | 48 | IOAPIC Digital voltage supply, 2.5V | | V _{DDCPU} | 42 | 42 | CPU Digital voltage supply, 2.5V or 3.3V | | AV_{DD} | 1 | 23 | Analog voltage supply, 3.3V | | V _{SS} | 3, 9, 16, 22,
27, 33, 39, 45 | 3, 9, 16, 22,
27, 33, 39, 45 | Ground | | XTALIN ^[1] | 4 | 4 | Reference crystal input | | XTALOUT ^[1] | 5 | 5 | Reference crystal feedback | | SDRAM7/
PCI_STOP | 28 | 28 | SDRAM clock output. Also, active low control input to stop PCI clocks, enabled when MODE is Low | | SDRAM6/
CPU_STOP | 29 | 29 | SDRAM clock output. Also, active low control input to stop CPU clocks, enabled when MODE is Low. | | SDRAM5/
PWR_DWN | 31 | 31 | SDRAM clock output. Also, active low control input to power down device, enabled when MODE is Low. | | SDRAM[0:4],[8:11] | 38, 37, 35, 34,
32, 21, 20, 18,
17 | 38, 37, 35,
34, 32, 21,
20, 18, 17 | SDRAM clock outputs | | SEL0 | 26 | 46 | CPU frequency select input, bit 0 (See table below.) | | SEL1 | 46 | N/A | CPU frequency select input, bit 0 (See table below.) | | CPUCLK[0:3] | 44, 43, 41, 40 | 44, 43, 41, 40 | CPU clock outputs | | PCICLK[0:5] | 8, 10, 11, 12,
13, 15 | 8, 10, 11, 12,
13, 15 | PCI clock outputs, at one-half the CPU frequency. Pins 13 and 15 are AGP clocks in -2 | | PCICLK_F | 7 | 7 | Free-running PCI clock output | | IOAPIC | N/A | 47 | IOAPIC clock output | | REF0 | 2 | 2 | 3.3V Reference clock output | | USBCLK | 47 | 1 | USB Clock output | | SDATA | 23 | 24 | Serial data input for serial configuration port | | SCLK | 24 | 25 | Serial clock input for serial configuration port | | MODE | 25 | 26 | Mode Select pin for enabling power management features | | Noto: | | | | # Note: # **Function Table** | SEL1 | SEL0 | CPU/PCI
Ratio | CPUCLK[0:3]
SDRAM[0:11] | PCICLK[0:5]
PCICLK_F | AGP
(-2 Only) | REF0
IOAPIC | USBCLK | |------|------|------------------|----------------------------|-------------------------|------------------|----------------|--------| | 0 | 0 | 2 | 60.0 MHz | 30.0 MHz | 60.0 MHz | 14.318 MHz | 48 MHz | | 0 | 1 | 2 | 66.67 MHz | 33.33 MHz | 66.66 MHz | 14.318 MHz | 48 MHz | | 1 | 0 | 2.5 | 75.0 MHz | 30.0 MHz | 60.0 MHz | 14.318 MHz | 48 MHz | | 1 | 1 | 2.5 | 83.33 MHz | 33.33 MHz | 66.66 MHz | 14.318 MHz | 48 MHz | ^{1.} For best accuracy, use a parallel-resonant crystal, $C_{LOAD} = 18 \text{ pF}$. # **Actual Clock Frequency Values** | Clock Output | Target
Frequency
(MHz) | Actual
Frequency
(MHz) | РРМ | |--------------|------------------------------|------------------------------|-------| | CPUCLK | 66.67 | 66.654 | -195 | | CPUCLK | 60.0 | 60.0 | 0 | | CPUCLK | 75.0 | 75.0 | 0 | | CPUCLK | 83.33 | 83.138 | -1947 | | USBCLK | 48.0 | 48.008 | 167 | # **CPU and PCI Clock Driver Strengths** - · Matched impedances on both rising and falling edges on the output drivers - Output impedance: 25Ω (typical) measured at 1.5V. # Power Management Logic^[2] - Active when MODE pin is held 'LOW' | CPU_STOP | PCI_STOP | PWR_DWN | CPUCLK | PCICLK | PCICLK_F | Other
Clocks | Osc. | PLLs | |----------|----------|---------|-----------------|-----------------|----------|-----------------|---------|---------| | X | Х | 0 | Low | Low | Stopped | Stopped | Off | Off | | 0 | 0 | 1 | Low | Low | Running | Running | Running | Running | | 0 | 1 | 1 | Low | 33/30 MHz | Running | Running | Running | Running | | 1 | 0 | 1 | 60/66/75/83 MHz | Low | Running | Running | Running | Running | | 1 | 1 | 1 | 60/66/75/83 MHz | 30/33/30/33 MHz | Running | Running | Running | Running | # **Serial Configuration Map** • The Serial bits will be read by the clock driver in the following order: Byte 0 - Bits 7, 6, 5, 4, 3, 2, 1, 0 Byte 1 - Bits 7, 6, 5, 4, 3, 2, 1, 0 Byte N - Bits 7, 6, 5, 4, 3, 2, 1, 0 - · Reserved and unused bits should be programmed to "0". - I²C Address for the CY2273 is: | A6 | A 5 | A 4 | A 3 | A 2 | A 1 | A 0 | R/W | |-----------|------------|------------|------------|------------|------------|------------|-----| | 1 | 1 | 0 | 1 | 0 | 0 | 1 | | # Byte 0: Functional and Frequency Select Clock Register (1 = Enable, 0 = Disable) | Bit | Pin# | Description | | | |----------------|------|---------------------------|---|--| | Bit 7 | | (Rese | rved) drive to '0' | | | Bit 6 | | (Rese | rved) drive to '0' | | | Bit 5 | | (Rese | rved) drive to '0' | | | Bit 4 | | (Reserved) drive to '0' | | | | Bit 3 | | (Reserved) drive to '0' | | | | Bit 2 | | (Reserved) drive to '0' | | | | Bit 1
Bit 0 | | Bit 1
1
1
0
0 | Bit 0
1 - Three-State
0 - N/A
1 - Testmode
0 - Normal Operation | | ### **Select Functions** | | Outputs | | | | | | |--------------------------|-----------------------|------------|--------|------|--------|--------| | Functional Description | CPU | PCI, PCI_F | SDRAM | Ref | IOAPIC | USBCLK | | Three-State | Hi-Z | Hi-Z | Hi-Z | Hi-Z | Hi-Z | Hi-Z | | Test Mode ^[4] | TCLK/2 ^[3] | TCLK/4 | TCLK/2 | TCLK | TCLK | TCLK/2 | - AGP clocks are driven on PCICLK5 and PCICLK4 on -2 option. These clocks behave similar to the PCICLK_F output, in that they are free-running and stop only when the PWR_DWN pin is asserted. The frequency of the AGP clocks is as shown in the Function Table. TCLK supplied on the XTALIN pin in Test Mode. Valid only for SEL1=0 # Byte 1: CPU Active/Inactive Register (1 = Active, 0 = Inactive), Default = Active | Bit | Pin# | Description | |-------|----------------------|---------------------------| | Bit 7 | 47 (-1/-2)
1 (-3) | USBCLK | | Bit 6 | N/A | (Reserved) drive to '0' | | Bit 5 | N/A | (Reserved) drive to '0' | | Bit 4 | N/A | Not used - drive to '0' | | Bit 3 | 40 | CPUCLK3 (Active/Inactive) | | Bit 2 | 41 | CPUCLK2 (Active/Inactive) | | Bit 1 | 43 | CPUCLK1 (Active/Inactive) | | Bit 0 | 44 | CPUCLK0 (Active/Inactive) | # Byte 3: SDRAM Active/Inactive Register (1 = Active, 0 = Inactive), Default = Active | Bit | Pin # | Description | |-------|-------|--------------------------| | Bit 7 | 28 | SDRAM7 (Active/Inactive) | | Bit 6 | 29 | SDRAM6 (Active/Inactive) | | Bit 5 | 31 | SDRAM5 (Active/Inactive) | | Bit 4 | 32 | SDRAM4 (Active/Inactive) | | Bit 3 | 34 | SDRAM3 (Active/Inactive) | | Bit 2 | 35 | SDRAM2 (Active/Inactive) | | Bit 1 | 37 | SDRAM1 (Active/Inactive) | | Bit 0 | 38 | SDRAM0 (Active/Inactive) | Byte 5: Peripheral Active/Inactive Register (1 = Active, 0 = Inactive), Default = Active | Bit | Pin# | Description | |-------|------|------------------------------------| | Bit 7 | N/A | (Reserved) drive to '0' | | Bit 6 | N/A | (Reserved) drive to '0' | | Bit 5 | N/A | (Reserved) drive to '0' | | Bit 4 | 47 | IOAPIC (Active/Inactive) (-3 ONLY) | | Bit 3 | N/A | (Reserved) drive to '0' | | Bit 2 | N/A | (Reserved) drive to '0' | | Bit 1 | N/A | (Reserved) drive to '0' | | Bit 0 | 2 | REF0 (Active/Inactive) | Byte 2: PCI Active/Inactive Register (1 = Active, 0 = Inactive), Default = Active | Bit | Pin # | Description | |-------|-------|---| | Bit 7 | | (Reserved) drive to '0' | | Bit 6 | 7 | PCICLK_F (Active/Inactive) | | Bit 5 | 15 | PCICLK5 (Active/Inactive) (-1 and -3)
AGP1 (Active/Inactive) (-2 only) | | Bit 4 | 14 | PCICLK4 (Active/Inactive) (-1 and -3)
AGP0 (Active/Inactive) (-2 only) | | Bit 3 | 12 | PCICLK3 (Active/Inactive) | | Bit 2 | 11 | PCICLK2 (Active/Inactive) | | Bit 1 | 10 | PCICLK1 (Active/Inactive) | | Bit 0 | 8 | PCICLK0 (Active/Inactive) | Byte 4: SDRAM Active/Inactive Register (1 = Active, 0 = Inactive), Default = Active | Bit | Pin # | Description | |-------|-------|-------------------------| | Bit 7 | N/A | Not used - drive to '0' | | Bit 6 | N/A | Not used - drive to '0' | | Bit 5 | N/A | Not used - drive to '0' | | Bit 4 | N/A | Not used - drive to '0' | | Bit 3 | 17 | SDRAM11 | | Bit 2 | 18 | SDRAM10 | | Bit 1 | 20 | SDRAM9 | | Bit 0 | 21 | SDRAM8 | Byte 6: Reserved, for future use # **Maximum Ratings** (Above which the useful life may be impaired. For user guidelines, not tested.) Supply Voltage-0.5 to +7.0V Input Voltage -0.5V to V_{DD}+0.5 | Storage Temperature (Non-Condensing)65°C to +15 | 50°C | |---|------| | Max. Soldering Temperature (10 sec)+26 | 30°C | | Junction Temperature+15 | 50°C | | Package Power Dissipation | . 1W | | Static Discharge Voltage | V00V | | | | # Operating Conditions^[5] | Parameter | Description | Min. | Max. | Unit | |--------------------------------------|--|--------------------|----------------|------| | AV _{DD} , V _{DDQ3} | Analog and Digital Supply Voltage | 3.135 | 3.465 | ٧ | | V _{DDCPU} | CPU Supply Voltage | 2.375
3.135 | 2.9
3.465 | V | | V_{DDQ2} | IOAPIC Supply Voltage | 2.375 | 2.9 | ٧ | | T _A | Operating Temperature, Ambient | 0 | 70 | ô | | C _L | Max. Capacitive Load on CPUCLK, USBCLK, IOAPIC PCICLK, AGP, SDRAM REF0 | 10
30, 20
20 | 20
30
45 | pF | | f _(REF) | Reference Frequency, Oscillator Nominal Value | 14.318 | 14.318 | MHz | # Electrical Characteristics Over the Operating Range | Parameter | Description | Test Conditions | | | Min. | Max. | Unit | |------------------|-------------------------------------|--|-------------------------|--------|------|------|------| | V _{IH} | High-level Input Voltage | Except Crystal Inputs | | | 2.0 | | ٧ | | V _{IL} | Low-level Input Voltage | Except Crystal Inputs | | | | 8.0 | ٧ | | V _{OH} | High-level Output Voltage | Itage $V_{DDCPU} = V_{DDQ2} = 2.375V$ $I_{OH} = 16 \text{ mA } CPUCLK$ | | 2.0 | | ٧ | | | | | | I _{OH} = 18 mA | IOAPIC | | | | | V_{OL} | Low-level Output Voltage | $V_{DDCPU} = V_{DDQ2} = 2.375V$ $I_{OL} = 27 \text{ mA}$ CPUCLK | | | 0.4 | ٧ | | | | | | I _{OL} = 29 mA | IOAPIC | | | | | V _{OH} | High-level Output Voltage | V_{DDQ3} , AV_{DD} , $V_{DDCPU} = 3.135V$ | I _{OH} = 16 mA | CPUCLK | 2.4 | | ٧ | | | | | I _{OH} = 36 mA | SDRAM | | | | | | | | I _{OH} = 32 mA | PCICLK | | | | | | | | I _{OH} = 26 mA | USBCLK | | | | | | | | I _{OH} = 36 mA | REF0 | | | | | V_{OL} | Low-level Output Voltage | V_{DDQ3} , AV_{DD} , $V_{DDCPU} = 3.135V$ | I _{OL} = 27 mA | CPUCLK | | 0.4V | ٧ | | | | | I _{OL} = 29 mA | SDRAM | | | | | | | | I _{OL} = 26 mA | PCICLK | | | | | | | | I _{OL} = 21 mA | USBCLK | | | | | | | | I _{OL} = 29 mA | REF0 | | | | | I _{IH} | Input High Current | $V_{IH} = V_{DD}$ | | | -10 | +10 | μΑ | | I _{IL} | Input Low Current | V _{IL} = 0V | | | | 10 | μΑ | | l _{OZ} | Output Leakage Current | Three-state | | | -10 | +10 | μΑ | | I _{DD} | Power Supply Current ^[6] | V _{DD} = 3.465V, V _{IN} = 0 or V _{DD} , Loaded Outputs,
CPU clocks = 66.67 MHz | | | | 300 | mΑ | | I _{DD} | Power Supply Current ^[6] | V _{DD} = 3.465V, V _{IN} = 0 or V _{DD} , Unloaded Outputs | | | | 120 | mA | | I _{DDS} | Power-down Current | Current draw in power-down state | | | | 50 | μΑ | Electrical parameters are guaranteed with these operating conditions. Power supply current will vary with number of outputs which are running. Therefore, power supply current can be calculated with the following formula: TBD # Switching Characteristics^[7] | Parameter | Output | Description | Test Conditions | Min. | Тур. | Max. | Unit | |-----------------|-------------------------------------|---|--|------------|------|------------|------| | t ₁ | All | Output Duty Cycle ^[8] | $t_1 = t_{1A} \div t_{1B}$ | 45 | 50 | 55 | % | | t ₂ | CPUCLK,
IOAPIC | CPU and IOAPIC Clock
Rising and Falling Edge
Rate | Between 0.4V and 2.0V, V _{DDCPU} = 2.5V
Between 0.4V and 2.4V, V _{DDCPU} = 3.3V | 1.0 | | 4.0 | V/ns | | t ₂ | PCICLK,
AGP,
REF0 | PCI, AGP, REF0 Clock
Rising and Falling Edge
Rate | Between 0.4V and 2.4V | 1.0 | | 4.0 | V/ns | | t ₂ | SDRAM | SDRAM Rising and Fall-
ing Edge Rate | Between 0.4V and 2.4V | 1.0 | | 4.0 | V/ns | | t ₃ | CPUCLK | CPU Clock Rise Time | Between 0.4V and 2.0V, V _{DDCPU} = 2.5V
Between 0.4V and 2.4V, V _{DDCPU} = 3.3V | 0.4
0.5 | | 1.6
2.0 | ns | | t ₄ | CPUCLK | CPU Clock Fall Time | Between 2.0V and 0.4V, V _{DDCPU} = 2.5V
Between 2.4V and 0.4V, V _{DDCPU} = 3.3V | 0.4
0.5 | | 1.6
2.0 | ns | | t ₅ | CPUCLK | CPU-CPU Clock Skew | Measured at 1.25V, V _{DDCPU} = 2.5V
Measured at 1.5V, V _{DDCPU} = 3.3V | | 100 | 250 | ps | | t ₆ | CPUCLK,
PCICLK | CPU-PCI Clock Skew (-1, -2) | Measured at 1.25V for 2.5V clocks, and at 1.5V for 3.3V clocks | 1.0 | 2.0 | 4.0 | ns | | t ₆ | CPUCLK,
PCICLK | CPU-PCI Clock Skew (-3) | Measured at 1.25V for 2.5V clocks, and at 1.5V for 3.3V clocks | | | 0.5 | ns | | t ₇ | CPUCLK,
SDRAM | CPU-SDRAM Clock
Skew | Measured at 1.25V for 2.5V clocks, and at 1.5V for 3.3V clocks | | | 500 | ps | | t ₈ | PCICLK,
PCICLK | PCI-PCI Clock Skew | Measured at 1.5V | | | 250 | ps | | t ₉ | PCICLK,
AGP | PCICLK-AGP Clock
Skew | Measured at 1.5V | | | 250 | ps | | t ₁₀ | CPUCLK,
SDRAM | Cycle-Cycle Clock Jitter | Measured at 1.25V for 2.5V clocks, and at 1.5V for 3.3V clocks | | | 250 | ps | | t ₁₀ | PCICLK,
AGP | Cycle-Cycle Clock Jitter | Measured at 1.5V | | | 500 | ps | | t ₁₁ | CPUCLK,
PCICLK,
AGP,
SDRAM | Power-up Time | CPU, PCI, AGP, and SDRAM clock stabilization from power-up | | | 3 | ms | All parameters specified with loaded outputs. Duty cycle is measured at 1.5V when V_{DD} = 3.3V. When V_{DDCPU} = 2.5V, CPUCLK duty cycle is measured at 1.25V. # Timing Requirement for the I^2C Bus | Parameter | Description | Min. | Max. | Unit | |-----------------|--|--------|------|------| | t ₁₂ | SCLK Clock Frequency | | 100 | kHz | | t ₁₃ | Time the bus must be free before a new transmission can start | 4.7 | | μs | | t ₁₄ | Hold time start condition. After this period the first clock pulse is generated. | 4 | | μs | | t ₁₅ | The Low period of the clock. | 4.7 | | μs | | t ₁₆ | The High period of the clock. | 4 | | μs | | t ₁₇ | Set-up time for start condition. (Only relevant for a repeated start condition.) | 4.7 | | μs | | t ₁₈ | Hold time DATA for CBUS compatible masters. for I ² C devices | 5
0 | | μs | | t ₁₉ | DATA input set-up time | 250 | | ns | | t ₂₀ | Rise time of both SDATA and SCLK inputs | | 1 | μs | | t ₂₁ | Fall time of both SDATA and SCLK inputs | | 300 | ns | | t ₂₂ | Se-up time for stop condition | 4.0 | | μs | # **Switching Waveforms** # Duty Cycle Timing # All Outputs Rise/Fall Time # **CPU-CPU Clock Skew** # Switching Waveforms (continued) # **CPU-SDRAM Clock Skew CPUCLK SDRAM** 2273-6 # **CPU-PCI Clock Skew** ### **PCI-PCI Clock Skew** # **AGP-PCI Clock Skew** - OPUCLK on and CPUCLK off latency is 2 or 3 CPUCLK cycles. CPU_STOP may be applied asynchronously. It is synchronized internally. # Switching Waveforms (continued) # **PWR_DOWN** Shaded section on the VCO and Crystal waveforms indicates that the VCO and crystal oscillator are active, and there is a valid clock. # Timing Requirements for the I²C Bus - 11. PCICLK on and PCICLK off latency is 1 rising edge of the external PCICLK. 12. PCI_STOP may be applied asynchronously. It is synchronized internally. # **Application Information** Clock traces must be terminated with either series or parallel termination, as they are normally done. # **Application Circuit** Cd = DECOUPLING CAPACITORS Ct = OPTIONAL EMI-REDUCING CAPACITORS CX = OPTIONAL LOAD MATCHING CAPACITOR Rs = SERIES TERMINATING RESISTORS # Summary - A parallel-resonant crystal should be used as the reference to the clock generator. The operating frequency and C_{LOAD} of this crystal should be as specified in the data sheet. Optional trimming capacitors may be needed if a crystal with a different C_{LOAD} is used. Footprints must be laid out for flexibility. - Surface mount, low-ESR, ceramic capacitors should be used for filtering. Typically, these capacitors have a value of 0.1 μF. In some cases, smaller value capacitors may be required. - The value of the series terminating resistor satisfies the following equation, where R_{trace} is the loaded characteristic impedance of the trace, R_{out} is the output impedance of the clock generator (specified in the data sheet), and R_{series} is the series terminating resistor. $$R_{\text{series}} \ge R_{\text{trace}} - R_{\text{out}}$$ - Footprints must be laid out for optional EMI-reducing capacitors, which should be placed as close to the terminating resistor as is physically possible. Typical values of these capacitors range from 4.7 pF to 22 pF. - A Ferrite Bead may be used to isolate the Board V_{DD} from the clock generator V_{DD} island. Ensure that the Ferrite Bead offers greater than 50Ω impedance at the clock frequency, under loaded DC conditions. Please refer to the application note "Layout and Termination Techniques for Cypress Clock Generators" for more details. - If a Ferrite Bead is used, a 10 μF- 22 μF tantalum bypass capacitor should be placed close to the Ferrite Bead. This capacitor prevents power supply droop during current surges. # **Test Circuit** Note: All Capacitors must be placed as close to the pins as is possible # **Ordering Information** | Ordering Code | Package
Name | Package Type | Operating
Range | |---------------|-----------------|--------------|--------------------| | CY2273PVC-1 | O48 | 48-Pin SSOP | Commercial | | CY2273PVC-2 | O48 | 48-Pin SSOP | Commercial | | CY2273PVC-3 | O48 | 48-Pin SSOP | Commercial | Document #: 38-00556-A # Package Diagram # 48-Lead Shrunk Small Outline Package O48 DIMENSIONS IN INCHES MIN.