DATASHEET

Description

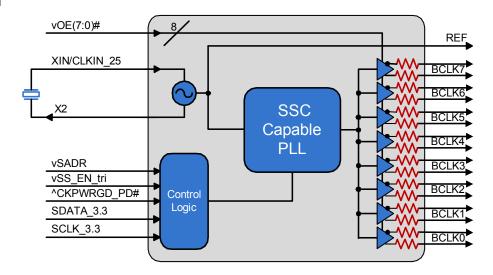
The 9SQL4958 is a member of IDT's 'Lite' family of server clocks. It generates 8 100MHz outputs that exceed the requirements of the CK420BQ CPU/SRC clocks. Each output has its own OE# pin for clock management and supports 2 different spread spectrum levels in addition to spread off. It also provides a copy of the 25MHz internal XO. The 9SQL4958 supports PCIe Common Clock (CC) and Independent Reference Clock (IR) architectures.

Recommended Application

PCle Gen1, Gen2, Gen3, Gen4 Server Clock

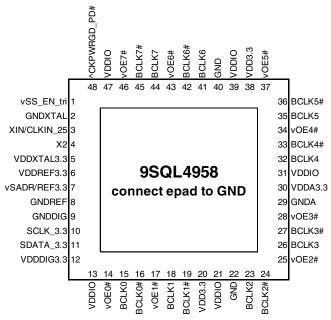
Output Features

- 8 -100MHz Low-power HCSL (LP-HCSL) CPU/SRC pairs
- Integrated terminations for 85Ω Zo
- 1 3.3V LVCMOS REF output w/Wake-On-LAN (WOL) support


Key Specifications

- BCLK outputs
 - Cycle-to-cycle jitter <50ps
 - Output-to-output skew <50ps
 - PCle Gen1, Gen2, Gen3, Gen4 CC compliant
 - PCle Gen2, Gen3 IR compliant
 - QPI/UPI compliant
 - SAS12G compliant (SSC off)
 - 12k-20M phase jitter <2ps rms (SSC off)
- REF output:
 - Phase jitter <200fs rms (SSC off)
- ±50ppm frequency accuracy on all clocks

Features/Benefits


- Direct connection to 85Ω transmission lines; saves 32 resistors and 55mm² compared to standard HCSL
- 132mW typ. power consumption; eases thermal concerns @ 1/10 the power of CK420BQ
- · Contains default configuration; SMBus interface not required for device operation
- OE# pins; support BLCK power management
- 25MHz input frequency; standard crystal frequency
- 25MHz REF output; eliminates XO from board
- Pin/SMBus selectable 0%, -0.25% or -0.5% spread on BLCK outputs; minimize EMI and phase jitter for each
- · BLCK outputs blocked until PLL is locked; clean system start-up
- Two selectable SMBus addresses; multiple devices can easily share an SMBus segment
- Space saving 48-pin 6x6mm VFQFPN; minimal board space

Block Diagram

Pin Configuration

48-pin VFQFPN, 6x6 mm, 0.4mm pitch

- vv prefix indicates internal 60KOhm pull down resistor
- v prefix indicates internal 120KOhm pull down resistor
- ^ prefix indicates internal 120KOhm pull up resistor

SMBus Address Selection Table

	SADR	Address	+ Read/Write Bit
State of SADR on first application	0	1101000	Х
of CKPWRGD_PD#	1	1101010	X

Power Management Table³

CKPWRGD PD#	SMBus	OEx# Pin	BCL	REF	
CKFWKGD_FD#	OE bit	True O/P		Comp. O/P	INLI
0	Х	Х	Low ¹	Low ¹	Hi-Z ²
1	1	0	Running	Running	Running
1	1	1	Disabled ¹	Disabled ¹	Running
1	0	Х	Disabled ¹	Disabled ¹	Disabled ⁴

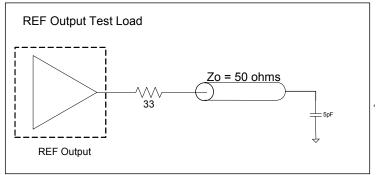
Notes

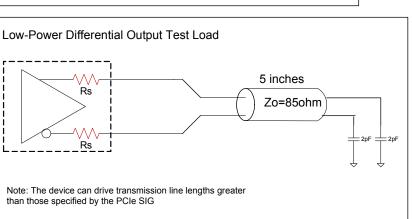
- 1. The output state is set by B11[1:0] (Low/Low default)
- 2. REF is Hi-Z until the 1st assertion of CKPWRGD_PD# high. After this, when CKPWRG_PD# is low, REF is disabled unless Byte3[5]=1, in which case REF is running.
- 3. Input polarities defined at default SMBus values.
- 4. See SMBus description for Byte 3, bit 4

Power Connections

Pin Number			Description
VDD	VDDIO	GND	Description
5		2	XTAL OSC
6		8	REF Power
12		9	Digital (dirty) Power
20,38	13,21,31,39, 47	22,29,40, 49	BCLK outputs
30		29	PLL Analog

Pin Descriptions


PIN#	DINNAME		DESCRIPTION
PIN#	PIN NAME	LATCHED	Latched select input to select spread spectrum amount at initial power up :
1	vSS_EN_tri		
2	GNDXTAL	IN GND	1 = -0.5% spread, M = -0.25%, 0 = Spread Off GND for XTAL
3	XIN/CLKIN_25	IN	Crystal input or Reference Clock input. Nominally 25MHz.
4			
5	X2 VDDXTAL3.3	OUT PWR	Crystal output.
			Power supply for XTAL, nominal 3.3V
6	VDDREF3.3	PWR	VDD for REF output. nominal 3.3V.
7	vSADR/REF3.3	LATCHED I/O	Latch to select SMBus Address/3.3V LVCMOS copy of X1/REFIN pin
8	GNDREF	GND	Ground pin for the REF outputs.
9	GNDDIG	GND	Ground pin for digital circuitry
10	SCLK_3.3	IN	Clock pin of SMBus circuitry, 3.3V tolerant.
11	SDATA_3.3	I/O	Data pin for SMBus circuitry, 3.3V tolerant.
12	VDDDIG3.3	PWR	3.3V digital power (dirty power)
13	VDDIO	PWR	Power supply for differential outputs
14	vOE0#	IN	Active low input for enabling output 0. This pin has an internal 120kohm pulldown.
			1 =disable outputs, 0 = enable outputs
15	BCLK0	OUT	True output of differential BCLK.
16	BCLK0#	OUT	Complement output of differential BCLK.
17	vOE1#	IN	Active low input for enabling output 1. This pin has an internal 120kohm pulldown.
			1 =disable outputs, 0 = enable outputs
18	BCLK1	OUT	True output of differential BCLK.
19	BCLK1#	OUT	Complement output of differential BCLK.
20	VDD3.3	PWR	Power supply, nominal 3.3V
21	VDDIO	PWR	Power supply for differential outputs
22	GND	GND	Ground pin.
23	BCLK2	OUT	True output of differential BCLK.
24	BCLK2#	OUT	Complement output of differential BCLK.
25	vOE2#	IN	Active low input for enabling output 2. This pin has an internal 120kohm pulldown. 1 = disable outputs, 0 = enable outputs
26	BCLK3	OUT	True output of differential BCLK.
27	BCLK3#	OUT	Complement output of differential BCLK.
	vOE3#	IN	Active low input for enabling output 3. This pin has an internal 120kohm pulldown. 1 = disable outputs, 0 = enable outputs
29	GNDA	GND	Ground pin for the PLL core.
30	VDDA3.3	PWR	3.3V power for the PLL core.
31	VDDA3.3	PWR	Power supply for differential outputs
32	BCLK4	OUT	True output of differential BCLK.
33	BCLK4#	OUT	Complement output of differential BCLK.
JJ	DOLIN##	001	Active low input for enabling output 4. This pin has an internal 120kohm pull-
34	vOE4#	IN	down. 1 =disable outputs, 0 = enable outputs
35	BCLK5	OUT	True output of differential BCLK.
36	BCLK5#	OUT	Complement output of differential BCLK.
37	vOE5#	IN	Active low input for enabling output 5. This pin has an internal 120kohm pulldown.
			1 =disable outputs, 0 = enable outputs
38	VDD3.3	PWR	Power supply, nominal 3.3V
39	VDDIO	PWR	Power supply for differential outputs



Pin Descriptions, cont.

PIN#	PIN NAME	TYPE	DESCRIPTION				
40	GND	GND	Ground pin.				
41	BCLK6	OUT	True output of differential BCLK.				
42	BCLK6#	OUT	Complement output of differential BCLK.				
			Active low input for enabling output 6. This pin has an internal 120kohm pull-				
43	vOE6#	IN	down.				
			1 =disable outputs, 0 = enable outputs				
44	BCLK7	OUT	True output of differential BCLK.				
45	BCLK7#	OUT	Complement output of differential BCLK.				
			Active low input for enabling output 7. This pin has an internal 120kohm pull-				
46	vOE7#	IN	down.				
			1 =disable outputs, 0 = enable outputs				
47	VDDIO	PWR	Power supply for differential outputs				
			Input notifies device to sample latched inputs and start up on first high				
48							
		Power Down Mode. This pin has internal 120kohm pull-up resistor.					
49	EPAD	GND	Connect to Ground.				

Test Loads

Terminations

Ζο (Ω)	Rs (Ω)
85	0
100	7.5

Alternate Terminations

The 9SQL family can easily drive LVPECL, LVDS, and CML logic. See <u>"AN-891 Driving LVPECL, LVDS, and CML Logic with IDT's "Universal" Low-Power HCSL Outputs"</u> for details.

Absolute Maximum Ratings

Stresses above the ratings listed below can cause permanent damage to the 9SQL4958. These ratings, which are standard values for IDT commercially rated parts, are stress ratings only. Functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods can affect product reliability. Electrical parameters are guaranteed only over the recommended operating temperature range.

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
3.3V Supply Voltage	VDDxxx	Applies to all VDD pins	-0.5		3.9	V	1,2
Input Voltage	V _{IN}		-0.5		V _{DD} + 0.5V	V	1, 3
Input High Voltage, SMBus	V_{IHSMB}	SMBus clock and data pins			3.9	V	1
Storage Temperature	Ts		-65		150	°C	1
Junction Temperature	Tj				125	°C	1
Input ESD protection	ESD prot	Human Body Model	2500			V	1

Notes

Electrical Characteristics-SMBus Parameters

TA = T_{AMB}: Supply Voltages per normal operation conditions, See Test Loads for Loading Conditions

Alvid, Capp.) Takagaa par hamar aparaman aanamana, aaa raar aadaa tar aadaanig aanamana							
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
SMBus Input Low Voltage	V_{ILSMB}	$V_{DDSMB} = 3.3V$			0.8	V	
SMBus Input High Voltage	V_{IHSMB}	$V_{DDSMB} = 3.3V$	2.1		3.6	V	
SMBus Output Low Voltage	V_{OLSMB}	@ I _{PULLUP}			0.4	V	
SMBus Sink Current	I _{PULLUP}	@ V _{OL}	4			mA	
Nominal Bus Voltage	V_{DDSMB}		2.7		3.6	V	
SCLK/SDATA Rise Time	t _{RSMB}	(Max VIL - 0.15) to (Min VIH + 0.15)			1000	ns	1
SCLK/SDATA Fall Time	t _{FSMB}	(Min VIH + 0.15) to (Max VIL - 0.15)			300	ns	1
SMBus Operating Frequency	f _{SMBMAX}	Maximum SMBus operating frequency			500	kHz	

¹Guaranteed by design and characterization, not 100% tested in production.

² Operation under these conditions is neither implied nor guaranteed.

³ Not to exceed 4.5V.

¹ Guaranteed by design and characterization, not 100% tested in production.

Electrical Characteristics-Input/Supply/Common Parameters-Normal Operating Conditions

TA = T_{AMB}; Supply Voltages per normal operation conditions, See Test Loads for Loading Conditions

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Supply Voltage	VDDxxx	Supply voltage for core, analog and single-ended LVCMOS outputs.	3.135	3.3	3.465	٧	
IO Supply Voltage	VDDIO	Supply voltage for differential Low Power outputs.	0.9975	1.05-3.3	3.465	V	
Ambient Operating Temperature	T _{AMB}	Industrial range	-40	25	85	°C	
Input High Voltage	V _{IH}	Single-ended inputs, except SMBus	0.75 V _{DDx}		V _{DDx} + 0.3	٧	
Input Low Voltage	V _{IL}	Single-ended inputs, except Sivibus	-0.3		0.25 V _{DDx}	٧	
Input High Voltage	V _{IHtri}		0.75 V _{DDx}		V _{DD} + 0.3	٧	
Input Mid Voltage	V_{IMtri}	Single-ended tri-level inputs ('_tri' suffix)	0.4 V _{DDx}	$0.5 V_{DDx}$	0.6 V _{DDx}	V	
Input Low Voltage	V_{ILtri}		-0.3		0.25 V _{DDx}	V	
	I _{IN}	Single-ended inputs, $V_{IN} = GND$, $V_{IN} = VDD$	-5		5	uA	
Input Current	I _{INP}	Single-ended inputs $V_{IN} = 0 \text{ V}$; Inputs with internal pull-up resistors $V_{IN} = \text{VDD}$; Inputs with internal pull-down resistors	-50		50	uA	
Input Frequency	F _{in}	XTAL, or X1 input		25		MHz	
Pin Inductance	L_{pin}				7	nΗ	1
Capacitance	C_{IN}	Logic Inputs, except DIF_IN	1.5		5	рF	1
Сараспансе	C _{OUT}	Output pin capacitance			6	рF	1
Clk Stabilization	T _{STAB}	From V _{DD} Power-Up and after input clock stabilization or de-assertion of PD# to 1st clock		0.35	1.8	ms	1,2
SS Modulation Frequency	f _{MOD}	(Triangular Modulation)	30	31.6	33	kHz	1
OE# Latency	t _{LATOE#}	DIF start after OE# assertion DIF stop after OE# deassertion	1	2	3	clocks	1,3
Tdrive_PD#	t _{DRVPD}	DIF output enable after PD# de-assertion		28	300	us	1,3
Tfall	t _F	Fall time of single-ended control inputs			5	ns	1,2
Trise	t _R	Rise time of single-ended control inputs			5	ns	1,2

¹ Guaranteed by design and characterization, not 100% tested in production.

² Control input must be monotonic from 20% to 80% of input swing.

³ Time from deassertion until outputs are >200 mV

Electrical Characteristics-BLCK Low-Power HCSL Outputs

TA = T_{AMB}: Supply Voltages per normal operation conditions, See Test Loads for Loading Conditions

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Slew rate	Т.4	Scope averaging on, fast setting	2	2.7	4	V/ns	2,3
Siew fate	Trf	Scope averaging, slow setting	1	1.9	3	V/ns	2,3
Crossing Voltage (abs)	Vcross_abs	Scope averaging off	250	409	550	mV	1,4,5
Crossing Voltage (var)	Δ-Vcross	Scope averaging off		14	140	mV	1,4,9
Avg. Clock Period Accuracy	T _{PERIOD_AVG}		-50	0.0	+2550	ppm	2,10,13
Absolute Period	T _{PERIOD_ABS}	Includes jitter and Spread Spectrum Modulation	9.9491	10.0	10.1011	ns	2,6
Jitter, Cycle to cycle	t _{icyc-cyc}			16	50	ps	2
Voltage High	V_{HIGH}	Statistical measurement on single-ended signal using oscilloscope math function. (Scope	660	761	850	mV	1
Voltage Low	V_{LOW}	averaging on)	-150	-7	150	1110	1
Absolute Max Voltage	Vmax	Measurement on single ended signal using		819	1150	mV	1,7,15
Absolute Min Voltage	Vmin	absolute value. (Scope averaging off)	-300	-46		1117	1,8,15
Duty Cycle	t _{DC}		45	49.2	55	%	2
Slew rate matching	ΔTrf			6	20	%	1,14
Skew, Output to Output	t _{sk3}	Averaging on, $V_T = 50\%$		35	50	ps	2

¹ Measured from single-ended waveform.

² Measured from differential waveform.

³ Measured from -150 mV to +150 mV on the differential waveform (derived from REFCLK+ minus REFCLK-). The signal must be monotonic through the measurement region for rise and fall time. The 300 mV measurement window is centered on the differential zero crossing.

⁴ Measured at crossing point where the instantaneous voltage value of the rising edge of REFCLK+ equals the falling edge of REFCLK-.

⁵ Refers to the total variation from the lowest crossing point to the highest, regardless of which edge is crossing. Refers to all crossing points for this measurement.

⁶ Defines as the absolute minimum or maximum instantaneous period. This includes cycle to cycle jitter, relative PPM tolerance, and spread spectrum modulation.

⁷ Defined as the maximum instantaneous voltage including overshoot.

⁸ Defined as the minimum instantaneous voltage including undershoot.

 $^{^{9}}$ Defined as the total variation of all crossing voltages of Rising REFCLK+ and Falling REFCLK-. This is the maximum allowed variance in V_{CROSS} for any particular system.

¹⁰ Refer to Section 4.3.7.1.1 of the PCI Express Base Specification, Revision 3.0 for information regarding PPM considerations.

¹¹ System board compliance measurements must use the test load. REFCLK+ and REFCLK- are to be measured at the load capacitors CL. Single ended probes must be used for measurements requiring single ended measurements. Either single ended probes with math or differential probe can be used for differential measurements. Test load CL = 2 pF.

¹² T_{STABLE} is the time the differential clock must maintain a minimum ±150 mV differential voltage after rising/falling edges before it is allowed to droop back into the VRB ±100 mV differential range.

¹³ PPM refers to parts per million and is a DC absolute period accuracy specification. 1 PPM is 1/1,000,000th of 100.000000 MHz exactly or 100 Hz. For 300 PPM, then we have an error budget of 100 Hz/PPM * 300 PPM = 30 kHz. The period is to be measured with a frequency counter with measurement window set to 100 ms or greater. The ±300 PPM applies to systems that do not employ Spread Spectrum Clocking, or that use common clock source. For systems employing Spread Spectrum Clocking, there is an additional 2,500 PPM nominal shift in maximum period resulting from the 0.5% down spread resulting in a maximum average period specification of +2,800 PPM.

¹⁴ Matching applies to rising edge rate for REFCLK+ and falling edge rate for REFCLK-. It is measured using a ±75 mV window centered on the median cross point where REFCLK+ rising meets REFCLK- falling. The median cross point is used to calculate the voltage thresholds the oscilloscope is to use for the edge rate calculations. The Rise Edge Rate of REFCLK+ should be compared to the Fall Edge Rate of REFCLK-; the maximum allowed difference should not exceed 20% of the slowest edge rate.

¹⁵ At default SMBus amplitude settings.

Electrical Characteristics–Filtered Phase Jitter Parameters - PCIe Common Clocked (CC) Architectures $^{1,\;2,\;5}$

T_{AMB} = over the specified operating range. Supply Voltages per normal operation conditions, See Test Loads for Loading Conditions

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	SPECIFICATION LIMIT	UNITS	NOTES
	t _{jphPCleG1-CC}	PCIe Gen 1		19	30	86	ps (p-p)	3
		PCIe Gen 2 Low Band 10kHz < f < 1.5MHz (PLL BW of 5-16MHz, 8-16MHz, CDR = 5MHz)		0.4	0.6	3	ps (rms)	
Phase Jitter, PLL Mode	T _{jphPCleG2-CC}	PCIe Gen 2 High Band 1.5MHz < f < Nyquist (50MHz) (PLL BW of 5-16MHz, 8-16MHz, CDR = 5MHz)		1.2	1.9	3.1	ps (rms)	
	t _{jphPCleG3-CC}	PCIe Gen 3 (PLL BW of 2-4MHz, 2-5MHz, CDR = 10MHz)		0.27	0.45	1	ps (rms)	
	t _{jphPCleG4-CC}	PCIe Gen 4 (PLL BW of 2-4MHz, 2-5MHz, CDR = 10MHz)		0.27	0.45	0.5	ps (rms)	

Electrical Characteristics–Filtered Phase Jitter Parameters - PCle Separate Reference Independent Spread (SRIS) Architectures 1, 5, 6

T_{AMB} = over the specified operating range. Supply Voltages per normal operation conditions, See Test Loads for Loading Conditions

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	INDUSTRY LIMIT	UNITS	NOTES
	t _{jphPCleG1} - SRIS	PCle Gen 1		n/a		None	ps (rms)	2, 7
	t _{jphPCleG2} - SRIS	PCIe Gen 2 (PLL BW of 16MHz , CDR = 5MHz)		0.7	1.2	2	ps (rms)	2
Phase Jitter, PLL Mode	t _{jphPCleG3} - SRIS	PCIe Gen 3 (PLL BW of 2-4MHz, CDR = 10MHz)		0.5	0.65	0.7	ps (rms)	2
	t _{jphPCleG4} -	PCIe Gen 4 (PLL BW of 2-4MHz, CDR = 10MHz)		n/a		None	ps (rms)	2, 7

Notes on PCle Filter Phase Jitter Tables

¹ Applies to all differential outputs, guaranteed by design and characterization.

² Based on PCle Base Specification Rev4.0 version 0.7draft. See http://www.pcisig.com for latest specifications.

³ Sample size of at least 100K cycles. This figures extrapolates to 108ps pk-pk @ 1M cycles for a BER of 1-12.

⁴ Additive jitter for RMS values is calculated by solving for b where $[b=sqrt(c^2-a^2)]$, a is rms input jitter and c is rms total jitter.

⁵ Driven by 9FGL0841 or equivalent

⁶ IR is the new name for Separate Reference Independent Spread (SRIS) and Separate Reference no Spread (SRNS) PCIe clock architectures.

⁷ According to the PCIe Base Specification Rev4.0 version 0.7 draft, the jitter transfer functions and corresponding jitter limits are not defined for the IR clock architecture. Widely accepted *industry* limits using widely accepted *industry* filters are used to populate this table. There are no accepted filters or limits for IR clock architectures at PCIe Gen1 or Gen4 data rates

Electrical Characteristics-Phase Jitter - QPI/UPI, SAS^{1, 2}

T_{AMB} = over the specified operating range. Supply Voltages per normal operation conditions, See Test Loads for Loading Conditions

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	SPECIFICATION LIMIT	UNITS	NOTES
5 5		QPI & UPI (100MHz or 133MHz, 4.8Gb/s, 6.4Gb/s 12UI)		0.13	0.2	0.5	ps (rms)	
Phase Jitter, PLL Mode	t _{jphQPI_UPI}	QPI & UPI (100MHz, 8.0Gb/s, 12UI)		0.10	0.15	0.3	ps (rms)	
		QPI & UPI (100MHz, ?9.6Gb/s, 12UI)		0.08	0.12	0.2	ps (rms)	
Phase Jitter, SAS12G BCLK Outputs	t _{jphSAS12G}	100MHz, SSC Off, REF output enabled		0.50	0.55	1.2	ps (rms)	1,2

Notes

Electrical Characteristics-12kHz-20MHz Phase Jitter

T_{AMB} = over the specified operating range. Supply Voltages per normal operation conditions, See Test Loads for Loading Conditions

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	SPECIFICATION LIMIT	UNITS	NOTES
Phase Jitter, 12kHz-20MHz BCLK Outputs	t _{jph12k-20M}	100MHz, SSC Off, REF output enabled		1.5	2	n/a	ps (rms)	1

Notes

Electrical Characteristics-Current Consumption

TA = T_{AMB}: Supply Voltages per normal operation conditions, See Test Loads for Loading Conditions

PARAMETER SYMBOL		CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
	I _{DDAOP}	VDDA, All outputs active @100MHz		13	18	mA	
Operating Supply Current	I _{DDOP}	All other VDD, except VDDA, All outputs active @100MHz		19	26	mA	
	I _{DDIOOP}	VDDIO, All outputs active @100MHz, Zo=85ohm		31	40	mA	
	I _{DDAPD}	VDDA, BCLK outputs off, REF output on		0.9	1.5	mA	1
Wake-on-LAN Current (Power down state and	I _{DDPD}	All other VDD, except VDDA, BCLK outputs off, REF output running		6.5	9	mA	1
Byte 3, bit 5 = '1')	I _{DDIOPD}	VDDIO, BCLK outputs off, REF output on, Zo=85ohm		0.05	0.1	mA	1
Powerdown Current	I _{DDAPD}	VDDA, all outputs off		0.9	1.5	mA	
(Power down state and	I _{DDPD}	All other VDD, except VDDA, all outputs off		2.4	3	mA	
Byte 3, bit 5 = '0')	I _{DDIOPD}	VDDIO, all outputs off, Zo=85ohm		0.05	0.1	mA	

¹ Applies to all differential outputs, guaranteed by design and characterization.

² Calculated from Intel-supplied Clock Jitter Tool

³ For RMS values additive jitter is calculated by solving for b where $[b=sqrt(c^2-a^2)]$, a is rms input jitter and c is rms total jitter.

¹ Applies to all differential outputs, guaranteed by design and characterization.

¹ This is the current required to have the REF output running in Wake-on-LAN mode (Byte 3, bit 5 = 1)

Electrical Characteristics- REF

TA = T_{AMB}: Supply Voltages per normal operation conditions, See Test Loads for Loading Conditions

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Long Accuracy	ppm	see Tperiod min-max values		0		ppm	1,2
Clock period	T _{period}	25 MHz output		40		ns	2
Output High Voltage	V_{IH}	$I_{OH} = -2mA$	0.8xV _{DDREF}			V	
Output Low Voltage	V _{IL}	I _{OL} = 2mA			0.2xV _{DDRE}	V	
Rise/Fall Slew Rate	t _{rf1}	Byte 3 = 1F, $V_{OH} = VDD-0.45V$, $V_{OL} = 0.45V$	0.5	0.8	1.1	V/ns	1
Rise/Fall Slew Rate	t _{rf1}	Byte 3 = 5F, $V_{OH} = VDD-0.45V$, $V_{OL} = 0.45V$	0.9	1.4	1.9	V/ns	1,3
Rise/Fall Slew Rate	t _{rf1}	Byte 3 = 9F, $V_{OH} = VDD-0.45V$, $V_{OL} = 0.45V$	1.3	2.0	2.7	V/ns	1
Rise/Fall Slew Rate	t _{rf1}	Byte 3 = DF, $V_{OH} = VDD-0.45V$, $V_{OL} = 0.45V$	1.7	2.6	3.5	V/ns	1
Duty Cycle	d _{t1X}	$V_T = VDD/2 V$	45	49.8	55	%	1,4
Duty Cycle Distortion	d _{tcd}	$V_T = VDD/2 V$	-1	0	0	%	1,5
Jitter, cycle to cycle	t _{jcyc-cyc}	$V_T = VDD/2 V$		70	250	ps	1,4
Noise floor	t _{jdBc1k}	1kHz offset			-137	dBc	1,4
Noise floor	t _{jdBc10k}	10kHz offset to Nyquist			-140	dBc	1,4
Jitter, phase	t _{jphREF}	12kHz to 5MHz, SSC Off		0.13	0.2	ps (rms)	1,4
Jitter, phase	t _{jphREF}	12kHz to 5MHz, SSC On		1.5	2	ps (rms)	1,4

¹Guaranteed by design and characterization, not 100% tested in production.

² All Long Term Accuracy and Clock Period specifications are guaranteed assuming that REF is trimmed to 25.00 MHz

³ Default SMBus Value

⁴ When driven by a crystal.

⁵ When driven by an external oscillator via the X1 pin, X2 should be floating.

General SMBus Serial Interface Information

How to Write

- · Controller (host) sends a start bit
- Controller (host) sends the write address
- IDT clock will acknowledge
- Controller (host) sends the beginning byte location = N
- IDT clock will acknowledge
- Controller (host) sends the byte count = X
- IDT clock will acknowledge
- Controller (host) starts sending Byte N through Byte N+X-1
- IDT clock will acknowledge each byte one at a time
- Controller (host) sends a Stop bit

	Index Blo	ock '	Write Operation
Controll	er (Host)		IDT (Slave/Receiver)
Т	starT bit		
Slave A	Address		
WR	WRite		
			ACK
Beginning	g Byte = N		
			ACK
Data Byte	Data Byte Count = X		
			ACK
Beginnir	g Byte N		
			ACK
0		×	
0		X Byte	0
0		Ю	0
			0
Byte N	+ X - 1		
			ACK
Р	stoP bit		

Note: SMBus Read/Write Address is Latched on SADR pin.

How to Read

- Controller (host) will send a start bit
- · Controller (host) sends the write address
- IDT clock will acknowledge
- Controller (host) sends the beginning byte location = N
- IDT clock will acknowledge
- Controller (host) will send a separate start bit
- · Controller (host) sends the read address
- IDT clock will acknowledge
- IDT clock will send the data byte count = X
- IDT clock sends Byte N+X-1
- IDT clock sends Byte 0 through Byte X (if X_(H) was written to Byte 8)
- · Controller (host) will need to acknowledge each byte
- Controller (host) will send a not acknowledge bit
- Controller (host) will send a stop bit

	Index Block Read Operation							
Cor	ntroller (Host)		IDT (Slave/Receiver)					
Т	starT bit							
SI	Slave Address							
WR	WRite							
			ACK					
Begi	nning Byte = N							
			ACK					
RT	Repeat starT							
SI	ave Address							
RD	ReaD							
			ACK					
	•		Data Byte Count=X					
	ACK							
			Beginning Byte N					
	ACK							
		<u>e</u>	0					
	0	X Byte	0					
	0	×	0					
	0							
			Byte N + X - 1					
N	Not acknowledge							
Р	stoP bit							

SMBus Table: Output Enable Register 1

Byte 0	Name	Control Function	Туре	0	1	Default
Bit 7	BCLK OE7	Output Enable	RW	See B11[1:0]	Pin Control	1
Bit 6	BCLK OE6	Output Enable	RW		Pin Control	1
Bit 5	BCLK OE5	Output Enable	RW		Pin Control	1
Bit 4	BCLK OE4	Output Enable	RW		Pin Control	1
Bit 3	BCLK OE3	Output Enable	RW	366 011[1.0]	Pin Control	1
Bit 2	BCLK OE2	Output Enable	RW	- - -	Pin Control	1
Bit 1	BCLK OE1	Output Enable	RW		Pin Control	1
Bit 0	BCLK OE0	Output Enable	RW		Pin Control	1

^{1.} A low on these bits will overide the OE# pin and force the differential output to the state indicated by B11[1:0] (Low/Low default)

SMBus Table: SS Readback and Control Register

Byte 1	Name	Control Function	Type	0	1	Default
Bit 7	SSENRB1	SS Enable Readback Bit1	R	00' for SS_EN_tri =	0, '01' for SS_EN_tri	Latch
Bit 6	SSENRB1	SS Enable Readback Bit0	R	= 'M', '11 for S	S_EN_tri = '1'	Latch
Bit 5	SSEN_SWCNTRL	Enable SW control of SS	RW	SS control locked	Values in B1[4:3] control SS amount.	0
Bit 4	SSENSW1	SS Enable Software Ctl Bit1	RW ¹	00' = SS Off, '0	1' = -0.25% SS,	0
Bit 3	SSENSW0	SS Enable Software Ctl Bit0	RW ¹	'10' = Reserved	, '11'= -0.5% SS	0
Bit 2		Reserved				Х
Bit 1	AMPLITUDE 1	Controls Output Amplitude	RW	00 = 0.6V	01= 0.68V	1
Bit 0	AMPLITUDE 0	Sontiols Output Amplitude	RW	10 = 0.75V	11 = 0.85V	0

^{1.} Spread must be selected OFF or ON with the hardware latch pin. These bits should not be used to turn spread ON or OFF after power up. These bits can be used to change the spread amount, and B1[5] must be set to a 1 for these bits to have any effect on the part. If These bits are used to turn spread OFF or ON, the system will need to be reset.

SMBus Table: BCLK Slew Rate Control Register

Byte 2	Name	Control Function	Type	0	1	Default
Bit 7	SLEWRATESEL BCLK7	Adjust Slew Rate of BCLK7	RW	Slow Setting	Fast Setting	1
Bit 6	SLEWRATESEL BCLK6	Adjust Slew Rate of BCLK6	RW	Slow Setting	Fast Setting	1
Bit 5	SLEWRATESEL BCLK5	Adjust Slew Rate of BCLK5	RW	Slow Setting	Fast Setting	1
Bit 4	SLEWRATESEL BCLK4	Adjust Slew Rate of BCLK4	RW	Slow Setting	Fast Setting	1
Bit 3	SLEWRATESEL BCLK3	Adjust Slew Rate of BCLK3	RW	Slow Setting	Fast Setting	1
Bit 2	SLEWRATESEL BCLK2	Adjust Slew Rate of BCLK2	RW	Slow Setting	Fast Setting	1
Bit 1	SLEWRATESEL BCLK1	Adjust Slew Rate of BCLK1	RW	Slow Setting	Fast Setting	1
Bit 0	SLEWRATESEL BCLK0	Adjust Slew Rate of BCLK0	RW	Slow Setting	Fast Setting	1

Note: See "Low-Power HCSL Outputs" table for slew rates.

SMBus Table: Nominal Vhigh Amplitude Control/ REF Control Register

Byte 3	Name	Control Function	Туре	0	1	Default
Bit 7	REF	Slew Rate Control	RW	00 = Slowest	01 =Slow	0
Bit 6	IXLI	Siew Nate Control	RW	10 = Fast	11 = Fastest	1
Bit 5	REF Power Down Function Wake-on-Lan Enable for REF		RW	REF disabled in	REF runs in Power	0
DIL 3	TALL I OWEL BOWITT direction	Wake-on-Lan Enable for IVET	1200	Power Down	Down	0
Bit 4	REF OE	REF Output Enable	RW	Disabled ¹	Enabled	1
Bit 3		Reserved				Χ
Bit 2		Reserved				X
Bit 1	Reserved					
Bit 0		Reserved				X

^{1.} The disabled state depends on Byte11[1:0]. '00' = Low, '01'=HiZ, '10'=Low, '11'=Hlgh

Byte 4 is Reserved

SMBus Table: Revision and Vendor ID Register

Byte 5	Name	Control Function	Туре	0	1	Default
Bit 7	RID3		R		0	
Bit 6	RID2	Revision ID	R	B rev	0	
Bit 5	RID1		R	D lev -	0	
Bit 4	RID0		R]	1	
Bit 3	VID3		R	R		
Bit 2	VID2	VENDOR ID	R	0001	0001 = IDT	
Bit 1	VID1	VENDOR ID	R	1 0001 - 101		0
Bit 0	VID0		R]	1	

SMBus Table: Device Type/Device ID

Byte 6	Name	Control Function	Type	0	1	Default
Bit 7	Device Type1	Device Type	R	00 = 9SQL49xx		0
Bit 6	Device Type0	Device Type	R	00 - 30	0	
Bit 5	Device ID5		R			0
Bit 4	Device ID4	Γ	R			0
Bit 3	Device ID3	Device ID	R	001000 bina	001000 binary or 08 hex	
Bit 2	Device ID2	Device ID	R	001000 billa		
Bit 1	Device ID1		R			0
Bit 0	Device ID0		R			0

SMBus Table: Byte Count Register

Byte 7	Name	Control Function	Type	0	1	Default
Bit 7	Reserved					
Bit 6		Reserved				Х
Bit 5		Reserved				X
Bit 4	BC4		RW			0
Bit 3	BC3		RW	Writing to this regist	er will configure how	1
Bit 2	BC2	Byte Count Programming	RW	many bytes will be r	read back, default is	0
Bit 1	BC1		RW	= 8 b	ytes.	0
Bit 0	BC0		RW			0

Bytes 8 and 9 are Reserved.

SMBus Table: PLL MN Enable, PD_Restore

Byte 10	Name	Control Function	Type	0	1	Default
Bit 7	PLL M/N En M/N Programming Enable		RW	M/N Prog. Disabled	M/N Prog. Enabled	0
Bit 6	Power-Down (PD) Restore	Restore Default Config. In PD	RW	Clear Config in PD	Keep Config in PD	1
Bit 5	Reserved					
Bit 4	Reserved					Χ
Bit 3		Reserved				Χ
Bit 2	Reserved					Χ
Bit 1	Reserved					Χ
Bit 0		Reserved				Χ

SMBus Table: Stop State Control

Byte 11	Name	Control Function	Type	0	1	Default
Bit 7	Reserved					
Bit 6		Reserved				Х
Bit 5		Reserved				Х
Bit 4	Reserved					
Bit 3		Reserved				Х
Bit 2		Reserved				Х
Bit 1	STP[1]	True/Complement BCLK Output	RW	00 = Low/Low	10 = High/Low	0
Bit 0	STP[0]	Disable State	RW	01 = HiZ/HiZ	11 = Low/High	0

SMBus Table: Impedance Control

Byte 12	Name	Control Function	Type	0	1	Default
Bit 7	BCLK3_imp[1]	BCLK3 Zo	RW	00=33 ohm Zo	10=100 ohm Zo	
Bit 6	BCLK3_imp[0]	BCLK3 Zo	RW	01=85 ohm Zo	11 = Reserved	
Bit 5	BCLK2_imp[1]	BCLK2 Zo	RW	00=33 ohm Zo	10=100 ohm Zo	
Bit 4	BCLK2_imp[0]	BCLK2 Zo	RW	01=85 ohm Zo	11 = Reserved	see Note
Bit 3	BCLK1_imp[1]	BCLK1 Zo	RW	00=33 ohm Zo	10=100 ohm Zo	SEE NOIE
Bit 2	BCLK1_imp[0]	BCLK1 Zo	RW	01=85 ohm Zo	11 = Reserved	
Bit 1	BCLK0_imp[1]	BCLK0 Zo	RW	00=33 ohm Zo	10=100 ohm Zo	
Bit 0	BCLK0_imp[0]	BCLK0 Zo	RW	01=85 ohm Zo	11 = Reserved	

SMBus Table: Impedance Control

Byte 13	Name	Control Function	Туре	0	1	Default
Bit 7	BCLK7_imp[1]	BCLK7 Zo	RW	00=33 ohm Zo	10=100 ohm Zo	
Bit 6	BCLK7_imp[0]	BCLK7 Zo	RW	01=85 ohm Zo	11 = Reserved	
Bit 5	BCLK6_imp[1]	BCLK6 Zo	RW	00=33 ohm Zo	10=100 ohm Zo	
Bit 4	BCLK6_imp[0]	BCLK6 Zo	RW	01=85 ohm Zo	11 = Reserved	see Note
Bit 3	BCLK5_imp[1]	BCLK5 Zo	RW	00=33 ohm Zo	10=100 ohm Zo	SEE NOIE
Bit 2	BCLK5_imp[0]	BCLK5 Zo	RW	01=85 ohm Zo	11 = Reserved	
Bit 1	BCLK4_imp[1]	BCLK4 Zo	RW	00=33 ohm Zo	10=100 ohm Zo	
Bit 0	BCLK4_imp[0]	BCLK4 Zo	RW	01=85 ohm Zo	11 = Reserved	

SMBus Table: Pull-up Pull-down Control

Byte 14	Name	Control Function	Type	0	1	Default
Bit 7	OE3_pu/pd[1]	OE3 Pull-up(PuP)/	RW	00=None	10=Pup	0
Bit 6	OE3_pu/pd[0]	Pull-down(Pdwn) control	RW	01=Pdwn	11 = Pup+Pdwn	1
Bit 5	OE2_pu/pd[1]	OE2 Pull-up(PuP)/	RW	00=None	10=Pup	0
Bit 4	OE2_pu/pd[0]	Pull-down(Pdwn) control	RW	01=Pdwn	11 = Pup+Pdwn	1
Bit 3	OE1_pu/pd[1]	OE1 Pull-up(PuP)/	RW	00=None	10=Pup	0
Bit 2	OE1_pu/pd[0]	Pull-down(Pdwn) control	RW	01=Pdwn	11 = Pup+Pdwn	1
Bit 1	OE0_pu/pd[1]	OE0 Pull-up(PuP)/	RW	00=None	10=Pup	0
Bit 0	OE0_pu/pd[0]	Pull-down(Pdwn) control	RW	01=Pdwn	11 = Pup+Pdwn	1

SMBus Table: Pull-up Pull-down Control

Byte 15	Name	Control Function	Type	0	1	Default
Bit 7	OE7_pu/pd[1]	OE7 Pull-up(PuP)/	RW	00=None	10=Pup	0
Bit 6	OE7_pu/pd0]	Pull-down(Pdwn) control	RW	01=Pdwn	11 = Pup+Pdwn	1
Bit 5	OE6_pu/pd[1]	OE6 Pull-up(PuP)/	RW	00=None	10=Pup	0
Bit 4	OE6_pu/pd[0]	Pull-down(Pdwn) control	RW	01=Pdwn	11 = Pup+Pdwn	1
Bit 3	OE5_pu/pd[1]	OE5 Pull-up(PuP)/	RW	00=None	10=Pup	0
Bit 2	OE5_pu/pd[0]	Pull-down(Pdwn) control	RW	RW 01=Pdwn 11 = Pup+Pdv		1
Bit 1	OE4_pu/pd[1]	OE4 Pull-up(PuP)/	RW	00=None	10=Pup	0
Bit 0	OE4_pu/pd[0]	Pull-down(Pdwn) control	RW	01=Pdwn	11 = Pup+Pdwn	1

SMBus Table: Pull-up Pull-down Control

Byte 16	Name	Control Function	Type	0	1	Default
Bit 7	Reserved					
Bit 6		Reserved				Χ
Bit 5		Reserved				Χ
Bit 4	Reserved					
Bit 3		Reserved				Χ
Bit 2		Reserved				Χ
Bit 1	CKPWRGD_PD_pu/pd[1]	CKPWRGD_PD Pull-up(PuP)/	RW	00=None	10=Pup	1
Bit 0	CKPWRGD_PD_pu/pd[0]	Pull-down(Pdwn) control	RW	01=Pdwn	11 = Pup+Pdwn	0

Bytes 17 is Reserved

SMBus Table: Polarity Control

Byte 18	Name	Control Function	Type 0		1	Default
Bit 7	OE7_polarity	Sets OE7 polarity	RW	Enabled when Low	Enabled when High	0
Bit 6	OE6_polarity	Sets OE6 polarity	RW	Enabled when Low	Enabled when High	0
Bit 5	OE5_polarity	Sets OE5 polarity	RW	Enabled when Low	Enabled when High	0
Bit 4	OE4_polarity	Sets OE4 polarity	RW	Enabled when Low	Enabled when High	0
Bit 3	OE3_polarity	Sets OE3 polarity	RW	Enabled when Low	Enabled when High	0
Bit 2	OE2_polarity	Sets OE2 polarity	RW	Enabled when Low	Enabled when High	0
Bit 1	OE1_polarity	Sets OE1 polarity	RW	Enabled when Low	Enabled when High	0
Bit 0	OE0_polarity	Sets OE0 polarity	RW	Enabled when Low	Enabled when High	0

SMBus Table: Polarity Control

Byte 19	Name	Control Function	Type	0	1	Default	
Bit 7	Reserved						
Bit 6		Reserved				Х	
Bit 5		Reserved				Х	
Bit 4	Reserved						
Bit 3		Reserved				Х	
Bit 2		Reserved				Х	
Bit 1		Reserved				Х	
Bit 0	CKPWRGD_PD	Determines CKPWRGD_PD polarity	RW	Power Down when Low	Power Down when High	0	

Recommended Crystal Characteristics (3225 package)

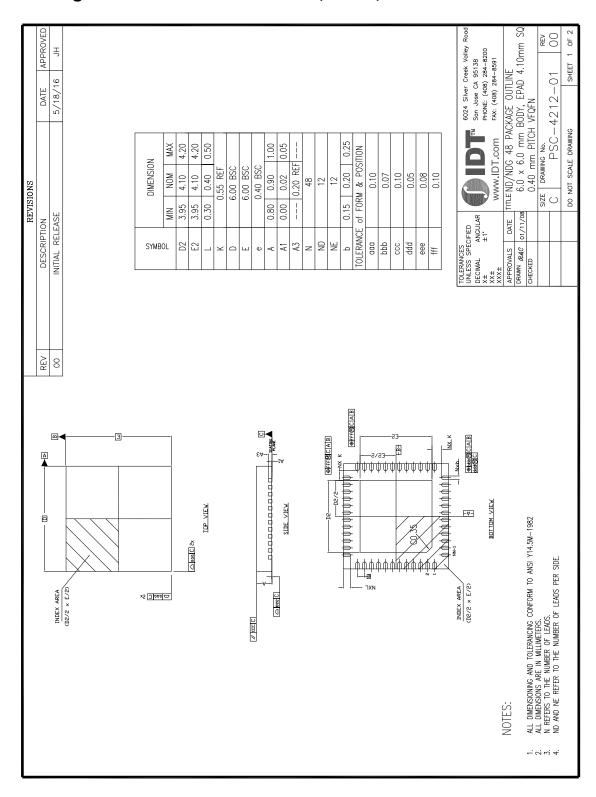
PARAMETER	VALUE	UNITS	NOTES
Frequency	25	MHz	1
Resonance Mode	Fundamental	ı	1
Frequency Tolerance @ 25°C	±20	PPM Max	1
Frequency Stability, ref @ 25°C Over Operating Temperature Range	±20	PPM Max	1
Temperature Range (commerical)	0~70	°C	1
Temperature Range (industrial)	-40~85	°C	1
Equivalent Series Resistance (ESR)	50	Ω Max	1
Shunt Capacitance (C _O)	7	pF Max	1
Load Capacitance (C _L)	8	pF Max	1
Drive Level	0.3	mW Max	1
Aging per year	±5	PPM Max	1

Marking Diagram

LOT

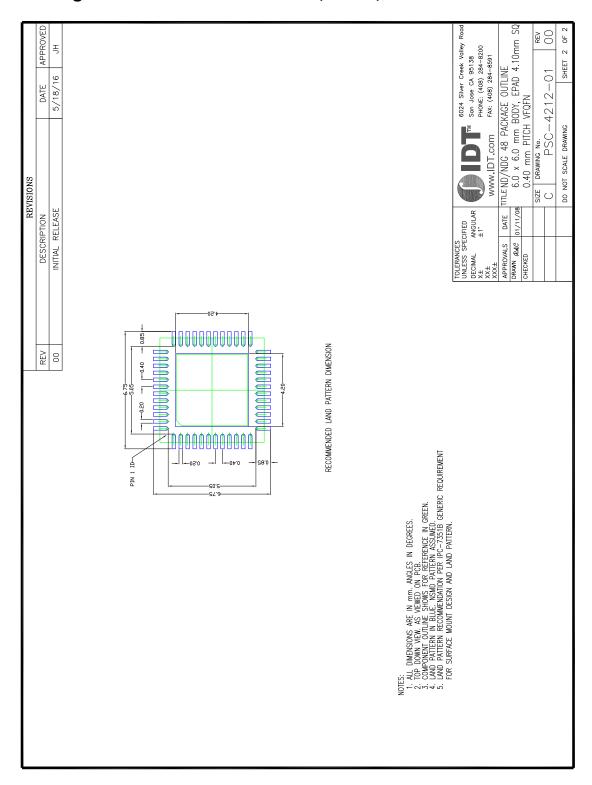
Notes

- 1. "YYWW" is the last two digits of the year and week that the part was assembled.
- 2. "\$" denotes the mark code.
- 3. "I" denotes industrial temperature range device.
- 4. "LOT" is the lot sequence number.


Thermal Characteristics

PARAMETER	SYMBOL	CONDITIONS	PKG	TYP.	UNITS	NOTES
	θ_{JC}	Junction to Case		33	°C/W	1
	θ_{Jb}	Junction to Base		2.1	°C/W	1
Thermal Resistance	θ_{JA0}	Junction to Air, still air	NDG48	37	°C/W	1
Theimai nesistance	θ_{JA1}	Junction to Air, 1 m/s air flow	NDG46	30	°C/W	1
	θ_{JA3}	Junction to Air, 3 m/s air flow		27	°C/W	1
	θ_{JA5}	Junction to Air, 5 m/s air flow		26	°C/W	1

¹ePad soldered to board



Package Outline and Dimensions (NDG48)

Package Outline and Dimensions (NDG48), cont.

Ordering Information

Part / Order Number	Shipping Packaging	Package	Temperature
9SQL4958BNDGI	Trays	48-pin VFQFPN	-40 to +85° C
9SQL4958BNDGI8	Tape and Reel	48-pin VFQFPN	-40 to +85° C

[&]quot;G" suffix to the part number are the Pb-Free configuration and are RoHS compliant.

Revision History

Rev.	Issue Date	Intiator	Description	Page #
А	10/28/2016	RDW	 Updated electrical tables per PCIe Base Spec 4.0v7 of Oct. 2016 to add PCIe Gen4 CC and PCIe Gen2-3 IR to the data sheet. Separated PCIe and QPI/UPI, SAS electrical tables Updated front page text for clarity Added note about hardware latching Spread Spectrum versus software control of on/off to Byte 1. Updated block diagram for formatting, and test loads Removed IDT Crystal Part numbers from DS. Changed pin name of DIF outputs to BCLK to better indicate usage 	Various

[&]quot;B" is the device revision designator (will not correlate with the datasheet revision).

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Rev.1.0 Mar 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit:

www.renesas.com/contact/