256K x 36, 512K x 18
2.5V Synchronous ZBT ${ }^{\text {TM }}$ SRAMs
2.5V I/O, Burst Counter

Pipelined Outputs

Preliminary
 IDT71T65612
 IDT71T65812

Features

- $256 \mathrm{~K} \times 36,512 \mathrm{~K}$ x 18 memory configurations
- Supports high performance system speed - 200 MHz (3.2 ns Clock-to-Data Access)
- $\mathrm{ZBT}^{\text {TM }}$ Feature - No dead cycles between write and read cycles
- Internally synchronized output buffer enable eliminates the need to control OE
- Single R/W (READ/WRITE) control pin
- Positive clock-edge triggered address, data, and control signal registers for fully pipelined applications
- 4-word burst capability (interleaved or linear)
- Individual byte write (BW1 - BW4) control (May tie active)
- Three chip enables for simple depth expansion
- 2.5 V power supply ($\pm 5 \%$)
- 2.5V I/O Supply (VDDQ)
- Power down controlled by ZZ input
- Packaged in a JEDEC standard 100-pin plastic thin quad flatpack (TQFP) and 119 ball grid array (BGA) and a 165 fine pitch ball grid array

Description

The IDT71T65612/5812 are 2.5V high-speed 9,437,184-bit (9 Megabit) synchronous SRAMS. They are designed to eliminate dead bus cycles when turning the bus around between reads and writes, or writes and reads. Thus, they have been given the name $\mathrm{ZBT}^{\top \mathrm{M}}$, or Zero Bus Turnaround.

Address and control signals are applied to the SRAM during one clock cycle, and two cycles later the associated data cycle occurs, be it read or write.

The IDT71T65612/5812 contain datal/O, address and control signal registers. Outputenable is the only asynchronous signal and can be used to disable the outputs at any given time.

A ClockEnable(CEN) pin allows operation ofthe IDT71T65612/5812 to be suspended as long as necessary. All synchronous inputs are ignored when ($\overline{\mathrm{CEN}}$) is high and the internal device registers will hold their previous values.

There are three chip enable pins ($\overline{\mathrm{CE}} 1, \mathrm{CE} 2, \overline{\mathrm{CE}} 2$) that allow the user to deselect the device when desired. If any one of these three are not asserted when ADV/LD is low, no new memory operation can be initiated. However, any pending data transfers (reads or writes) will be completed. The databus will tri-state two cycles after chip is deselected or a write is initiated.

The IDT71T65612/5812 has an on-chip burst counter. In the burst mode, the IDT71T65612/5812 can provide four cycles of datafor asingle address presented to the SRAM. The order of the burst sequence is defined by the LBO input pin. The LBO pin selects between linear and interleaved burst sequence. The ADV/LD signal is used to load a new external address (ADV/LD=LOW) or increment the internal burstcounter (ADV/ $\overline{\mathrm{LD}}=\mathrm{HIGH}$).

The IDT71T65612/5812SRAMutilizes IDT'slatesthigh-performance 2.5V CMOS process, and are packaged in a JEDEC Standard $14 \mathrm{~mm} x$ 20mm 100-pin thin plastic quad flatpack (TQFP) as well as a 119 ball grid array (BGA) and 165 fine pitch ball grid array (fBGA).

Pin Description Summary

A0-A 18	Address Inputs	Input	Synchronous
$\overline{\mathrm{CE}} 1, \mathrm{CE} 2, \overline{C E}_{2}$	Chip Enables	Input	Synchronous
$\overline{\mathrm{OE}}$	Output Enable	Input	Asynchronous
$\mathrm{R} \bar{W}$	Read/Write Signal	Input	Synchronous
$\overline{C E N}$	Clock Enable	Input	Synchronous
	Individual Byte Write Selects	Input	Synchronous
CLK	Clock	Input	NA
ADV/̄D	Advance burst address / Load new address	Input	Synchronous
$\overline{\text { LBO }}$	Linear / Interleaved Burst Order	Input	Static
TMS	Test Mode Select	Input	NA
TDI	Test Data Input	Input	NA
TCK	Test Clock	Input	NA
TDO	Test Data Output	Output	NA
ZZ	Sleep Mode	Input	Asynchronous
VO0-VO31, VOP1-VOP4	Data Input / Output	VO	Synchronous
Vdd, VdDQ	Core Power, VO Power	Supply	Static
Vss	Ground	Supply	Static

Pin Definitions ${ }^{(1)}$

Symbol	Pin Function	1/0	Active	Description
A0-A18	Address Inputs	1	N/A	Synchronous Address inputs. The address register is triggered by a combination of the rising edge of CLK, ADV/ $\overline{\mathrm{D}}$ low, $\overline{\mathrm{CEN}}$ low, and true chip enables.
ADV/LD	Advance / Load	1	N/A	ADV/ $\overline{\mathrm{LD}}$ is a synchronous input that is used to load the internal registers with new address and control when it is sampled low at the rising edge of clock with the chip selected. When ADV/ $\overline{\mathrm{LD}}$ is low with the chip deselected, any burst in progress is terminated. When ADV/LD is sampled high then the internal burst counter is advanced for any burst that was in progress. The external addresses are ignored when ADV/L्̄L is sampled high.
R / \bar{W}	Read / Write	1	N/A	R / \bar{W} signal is a synchronous input that identifies whether the current load cycle initiated is a Read or Write access to the memory array. The data bus activity for the current cycle takes place two clock cycles later.
$\overline{C E N}$	Clock Enable	1	LOW	Synchronous Clock Enable Input. When $\overline{\mathrm{CEN}}$ is sampled high, all other synchronous inputs, including clock are ignored and outputs remain unchanged. The effect of $\overline{C E N}$ sampled high on the device outputs is as if the low to high clock transition did not occur. For normal operation, $\overline{\mathrm{CEN}}$ must be sampled low at rising edge of clock.
	Individual Byte Write Enables	1	LOW	Synchronous byte write enables. Each 9-bit byte has its own active low byte write enable. On load write cycles (When R/W and ADV/LD are sampled low) the appropriate byte write signal ($\left.\overline{\mathrm{BW}_{1}} 1-\overline{\mathrm{BW}} 44\right)$ must be valid. The byte write signal must also be valid on each cycle of a burst write. Byte Write signals are ignored when $\mathrm{R} / \overline{\mathrm{W}}$ is sampled high. The appropriate byte(s) of data are written into the device two cycles later. $\overline{\mathrm{BW}} 1-\overline{\mathrm{BW}} 4$ can all be tied low if always doing write to the entire 36 -bit word.
$\overline{\mathrm{C}} \overline{1}_{1}, \overline{\mathrm{C}} \overline{\mathrm{E}}_{2}$	Chip Enables	1	LOW	Synchronous active low chip enable. $\overline{\mathrm{C}}_{1}$ and $\overline{\mathrm{C}}_{2}$ are used with CE_{2} to enable the IDT71T65612/5812. ($\overline{\mathrm{CE}} 1$ or $\overline{\mathrm{C}} \mathrm{E}_{2}$ sampled high or CE_{2} sampled low) and ADV/ $\overline{\mathrm{LD}}$ low at the rising edge of clock, initiates a deselect cycle. The $Z_{B T M}$ has a two cycle deselect, i.e., the data bus will tri-state two clock cycles after deselect is initiated.
CE 2	Chip Enable	1	HIGH	Synchronous active high chip enable. CE_{2} is used with $\overline{\mathrm{C}} \bar{E}_{1}$ and $\overline{\mathrm{C}}_{2}$ to enable the chip. CE 2 has inverted polarity but otherwise identical to $\overline{\mathrm{C}}_{1}$ and $\overline{\mathrm{C}}_{2}$.
CLK	Clock	1	N/A	This is the clock input to the IDT71T65612/5812. Except for $\overline{\mathrm{OE}}$, all timing references for the device are made with respect to the rising edge of CLK.
$\begin{gathered} \text { /Oo-I/O31 } \\ \text { //Op1-//Op4 } \end{gathered}$	Data Input/Output	VO	N/A	Synchronous data input/output (/O) pins. Both the data input path and data output path are registered and triggered by the rising edge of CLK.
$\overline{\text { LBO }}$	Linear Burst Order	1	LOW	Burst order selection input. When $\overline{\mathrm{LBO}}$ is high the Interleaved burst sequence is selected. When $\overline{\mathrm{LBO}}$ is low the Linear burst sequence is selected. $\overline{\mathrm{LBO}}$ is a static input and it must not change during device operation.
$\overline{\mathrm{OE}}$	Output Enable	1	LOW	Asynchronous output enable. $\overline{\mathrm{OE}}$ must be low to read data from the $71765612 / 5812$. When $\overline{\mathrm{OE}}$ is high the VO pins are in a high-impedance state. $\overline{\mathrm{OE}}$ does not need to be actively controlled for read and write cycles. In normal operation, $\overline{\mathrm{OE}}$ can be tied low.
TMS	Test Mode Select	1	N/A	Gives input command for TAP controller; sampled on rising edge of TCK.
TDI	Test Data Input	1	N/A	Serial input of registers placed between TDI and TDO. Sampled on rising edge of TCK.
TCK	Test Clock	I	N/A	Clock input of TAP controller. Each TAP event is clocked. Test inputs are captured on rising edge of TCK, while test outputs are driven from the falling edge of TCK.
TDO	Test Data Output	0	N/A	Serial output of registers placed between TDI and TDO. This output is active depending on state of TAP controller.
ZZ	Sleep Mode	I	HIGH	Asynchronous sleep mode input. Z HIGH will gate CLK internally and power down the IDT71T65612/5812 to its lowest power consumption level. Data retention is guaranteed in Sleep Mode.
VdD	Power Supply	N/A	N/A	2.5 V core power supply.
VDDQ	Power Supply	N/A	N/A	2.5V I/O Supply.
Vss	Ground	N/A	N/A	Ground.

NOTE:

1. All synchronous inputs must meet specified setup and hold times with respect to CLK.

Functional Block Diagram

Functional Block Diagram

Data I/O [0:15],
I/O P[1:2]

Recommended DC Operating Conditions

Symbol	Parameter	Min.	Typ.	Max.	Unit
VDD	Core Supply Voltage	2.375	2.5	2.625	V
VDDQ	I/O Supply Voltage	2.375	2.5	2.625	V
Vss	Supply Voltage	0	0	0	V
V/H	Input High Voltage - Inputs	1.7	-	VdD +0.3	V
VIH	Input High Voltage - //O	1.7	-	VDDQ +0.3	V
VIL	Input Low Voltage	$-0.3{ }^{(1)}$	-	0.7	V

NOTES:

1. VIL (min.) $=-0.8 \mathrm{~V}$ for pulse width less than tcyc/2, once per cycle.

Recommended Operating Temperature and Supply Voltage

Grade	Temperature $^{(1)}$	Vss	VdD	VDDQ
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	0 V	$2.5 \mathrm{~V} \pm 5 \%$	$2.5 \mathrm{~V} \pm 5 \%$

NOTES:

1. T_{A} is the "instant on" case temperature.

Pin Configuration-256K x 36

Top View TQFP

NOTES:

1. Pins 14,16 , and 66 do not have to be connected directly to $\mathrm{VDD}_{\mathrm{D}}$ as long as the input voltage is $\geq \mathrm{V} H$.
2. Pin 84 is reserved for a future 16M.
3. $\operatorname{DNU}=$ Do not use. Pins $38,39,42$ and 43 are reserved for respective JTAG pins: TMS, TDI, TDO and TCK. Within the current version these pins can be left unconnected, tied LOW (Vss), or tied HIGH (VDD).

Pin Configuration-512K x 18

Top View TQFP

NOTES:

1. Pins 14, 16, and 66 do not have to be connected directly to VdD as long as the input voltage is $\geq \mathrm{VIH}_{\mathrm{I}}$.
2. Pin 84 is reserved for a future 16 M .
3. $\mathrm{DNU}=$ Do not use. Pins $38,39,42$ and 43 are reserved for respective JTAG pins: TMS, TDI, TDO and TCK. Within the current version these pins can be left unconnected, tied LOW (Vss), or tied HIGH (VdD).

TQFP Capacitance ${ }^{(1)}$

($\mathrm{TA}=+\mathbf{2 5}{ }^{\circ} \mathrm{C}, \mathrm{f}=\mathbf{1 . 0 M H z}$)

Symbol	Parameter ${ }^{(1)}$	Conditions	Max.	Unit
CIN	Input Capacitance	VIN $=$ 3dV	5	pF
CI/O	I/O Capacitance	Vout $=3 \mathrm{dV}$	7	pF

Absolute Maximum Ratings ${ }^{(1)}$

Symbol	Rating	Commercial	Unit
VTERM $^{(2)}$	Terminal Voltage with Respect to GND	-0.5 to +3.6	V
VTERM $^{(3,6)}$	Terminal Voltage with Respect to GND	-0.5 to VDD	V
VTERM $^{(4,6)}$	Terminal Voltage with Respect to GND	-0.5 to VDD +0.5	V
VTERM $^{(5,6)}$	Terminal Voltage with Respect to GND	-0.5 to VDDQ +0.5	V
TAA $^{(7)}$	Operating Temperature	-0 to +70	${ }^{\circ} \mathrm{C}$
TBIAS	Temperature Under Bias	-55 to +125	${ }^{\circ} \mathrm{C}$
TSTG	Storage Temperature	-55 to +125	${ }^{\circ} \mathrm{C}$
PT	Power Dissipation	2.0	W
lOUT	DC Output Current	50	mA

NOTES:

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
2. VDD terminals only.
3. VDDQ terminals only.
4. Input terminals only.
5. I/O terminals only.
6. This is a steady-state DC parameter that applies after the power supply has reached its nominal operating value. Power sequencing is not necessary; however, the voltage on any input or I/O pin cannot exceed VDDQ during power supply ramp up.
7. TA is the "instant on" case temperature.

BGA Capacitance ${ }^{(1)}$

($\mathrm{TA}=+25^{\circ} \mathrm{C}, \mathrm{f}=\mathbf{1 . 0 M H z)}$

Symbol	Parameter ${ }^{(1)}$	Conditions	Max.	Unit
CIN	Input Capacitance	$\mathrm{VIN}=3 \mathrm{dV}$	7	pF
Cro	I/O Capacitance	Vout $=3 \mathrm{dV}$	7	pF

fBGA Capacitance ${ }^{(1)}$
($\mathrm{TA}=+\mathbf{2 5}{ }^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$)

Symbol	Parameter $^{(1)}$	Conditions	Max.	Unit
CIN	Input Capacitance	$\mathrm{VIN}=3 \mathrm{dV}$	TBD	pF
Cro	I/O Capacitance	Vout $=3 \mathrm{dV}$	TBD	pF

NOTE:

1. This parameter is guaranteed by device characterization, but not production tested.

Pin Configuration - 256K X 36, 119 BGA

| | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Pin Configuration - 512K X 18, 119 BGA

NOTES:

	1	2	3	4	5	6	7
A	\bigcirc						
	VDDQ	A6	A4	NC(2)	A8	A16	VDDQ
	\bigcirc	\bigcirc	\bigcirc	${ }^{\circ}$	\bigcirc	\bigcirc	\bigcirc
B	NC	CE_{2}	A3	ADV/ $\overline{L D}$	A9	CE2	NC
	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc
C	NC	A7	A2	VDD	A13	A17	NC
	\bigcirc						
D	I/O8	NC	VSS	NC	VSS	l/O7	NC
	\bigcirc						
E	NC	I/O9	VSS	$\overline{C E}_{1}$	VSS	NC	I/O6
	\bigcirc						
F	VDDQ	NC	VSS	OE	VSS	I/O5	VDDQ
	O	\bigcirc	\bigcirc	\bigcirc	O	O	O
G	NC	1/O10	BW2	A18	VSS	NC	I/O4
	\bigcirc	\bigcirc	O	\bigcirc	\bigcirc	\bigcirc	\bigcirc
H	l/O11	NC	VSS	R / \bar{W}	VSS	I/O3	NC
	\bigcirc						
J	VDDQ	VDD	VDD(1)	VDD	VDD(1)	VDD	VDDQ
	O	0	\bigcirc	O	\bigcirc	\bigcirc	\bigcirc
K	NC	1/O12	VSS	CLK	VSS	NC	1/O2
	\bigcirc						
L	I/O13	NC	VSS	NC	$\overline{B W}_{1}$	l/O1	NC
	\bigcirc						
M	VDDQ	I/O14	VSS	CEN	VSS	NC	VDDQ
	\bigcirc						
N	l/O15	NC	VSS	A1	VSS	I/O0	NC
	O	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
P	NC	1/OP2	VSS	A0	VSS	NC	I/OP1
	\bigcirc						
R	NC	A5	LBO	VDD	VDD(1)	A12	NC
	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	O	\bigcirc
T	NC	A10	A15	NC	A14	A11	ZZ
						$\mathrm{DNU}^{(3)}$	
U	VDDQ	DNU(3)	DNU(3)	DNU(3)	DNU(3)	DNU(3)	VDDQ

NOTS
Top View

1. J3, J5, and R5 do not have to be directly connected to VDD as long as the input voltage is $\geq \mathrm{VIH}$.
2. A4 is reserved for future 16 M .
3. $\operatorname{DNU}=$ Do not use; Pin U2, U3, U4, U5 and U6 are reserved for respective JTAG pins: TMS, TDI, TCK, TDO and TRST. Within the current version these pins can be left unconnected, tied LOW (Vss), or tied HIGH (VDD).

Pin Configuration - 256K X 36, 165 fBGA

	1	2	3	4	5	6	7	8	9	10	11
A	NC ${ }^{(2)}$	A7	$\overline{\mathrm{C}} \mathrm{E}_{1}$	$\overline{\mathrm{BW}} 3$	$\overline{\mathrm{BW}} 2$	CE2	$\overline{\mathrm{CEN}}$	ADVILD	A17	A8	NC
B	NC	A6	CE2	$\overline{\mathrm{BW}} 4$	$\overline{\mathrm{BW}} 1$	CLK	R / \bar{W}	$\overline{\mathrm{OE}}$	NC ${ }^{(2)}$	A9	NC ${ }^{(2)}$
C	/OP3	NC	VDDQ	Vss	Vss	Vss	Vss	Vss	VDDQ	NC	//Op2
D	//017	//016	VDDQ	VDD	Vss	Vss	Vss	VDD	VDDQ	//O15	//014
E	//019	//018	VDDQ	VDD	Vss	Vss	Vss	VDD	VDDQ	//013	//O12
F	1/021	1/O20	VDDQ	VDD	Vss	Vss	Vss	VDD	VDDQ	1/011	1/010
G	//023	//022	VDDQ	VDD	Vss	Vss	Vss	VDD	VDDQ	$1 / 0_{9}$	V/08
H	VDD ${ }^{(1)}$	VDD ${ }^{(1)}$	NC	VDD	VSs	Vss	Vss	VDD	NC	NC	ZZ
J	//O25	//O24	VDDQ	VDD	Vss	Vss	Vss	VDD	VDDQ	//07	V/06
K	//027	//026	VDDQ	VDD	Vss	Vss	Vss	VDD	VDDQ	//05	//04
L	//029	//028	VDDQ	VDD	Vss	Vss	Vss	VDD	VDDQ	//03	/O2
M	1/031	//030	VDDQ	VDD	Vss	Vss	Vss	VDD	VDDQ	1/01	V/00
N	V/Op4	NC	VDDQ	Vss	DNU ${ }^{(3)}$	NC	VDD ${ }^{(1)}$	Vss	VDDQ	NC	//OP1
P	NC	NC ${ }^{(2)}$	A5	A2	DNU ${ }^{(3)}$	A1	DNU ${ }^{(3)}$	A10	A13	A14	NC
R	$\overline{\text { LBO }}$	NC ${ }^{(2)}$	A4	A3	DNU ${ }^{(3)}$	A0	DNU ${ }^{(3)}$	A11	A12	A15	A16

5002 th 25a

Pin Configuration - 512K X 18, 165 fBGA

	1	2	3	4	5	6	7	8	9	10	11
A	NC ${ }^{(2)}$	A7	$\overline{\mathrm{C} E} 1$	$\overline{\mathrm{BW}} 2$	NC	$\overline{\mathrm{C}} \mathrm{E}_{2}$	$\overline{C E N}$	ADV/ $\overline{L D}$	A18	A8	A10
B	NC	A6	CE2	NC	$\overline{\mathrm{BW}} 1$	CLK	R / \bar{W}	$\overline{\mathrm{OE}}$	NC ${ }^{(2)}$	A9	NC ${ }^{(2)}$
C	NC	NC	VDDQ	Vss	Vss	Vss	Vss	Vss	VDDQ	NC	//Op1
D	NC	//08	VDDQ	VDD	Vss	Vss	Vss	VDD	VDDQ	NC	V/07
E	NC	I/09	VDDQ	VDD	Vss	VSS	Vss	VDD	VDDQ	NC	V/06
F	NC	/O10	VDDQ	VDD	Vss	Vss	Vss	VDD	VDDQ	NC	V/05
G	NC	//011	VDDQ	VDD	Vss	Vss	Vss	VDD	VDDQ	NC	V/04
H	VDD ${ }^{(1)}$	VDD ${ }^{(1)}$	NC	VDD	Vss	Vss	Vss	VDD	NC	NC	Z
J	//012	NC	VDDQ	VDD	Vss	Vss	Vss	VDD	VDDQ	//O3	NC
K	//013	NC	VDDQ	VDD	Vss	Vss	Vss	VDD	VDDQ	1/02	NC
L	//014	NC	VDDQ	VDD	Vss	Vss	Vss	VDD	VDDQ	VO1	NC
M	//O15	NC	VDDQ	VDD	Vss	Vss	Vss	VDD	VDDQ	1/00	NC
N	//OP2	NC	VDDQ	VSs	DNU ${ }^{(3)}$	NC	VDD(${ }^{(1)}$	Vss	VDDQ	NC	NC
P	NC	NC ${ }^{(2)}$	A5	A2	DNU ${ }^{(3)}$	A1	DNU ${ }^{(3)}$	A11	A14	A15	NC
R	$\overline{\text { LBO }}$	NC ${ }^{(2)}$	A4	A3	DNU ${ }^{(3)}$	A0	DNU ${ }^{(3)}$	A12	A13	A16	A17

NOTES:

1. $\mathrm{H} 1, \mathrm{H} 2$, and N 7 do not have to be directly connected to VDD as long as the input voltage is $\geq \mathrm{VIH}$.
2. $B 9, B 11, A 1, R 2$ and $P 2$ is reserved for future $18 \mathrm{M}, 36 \mathrm{M}, 72 \mathrm{M}, 144 \mathrm{M}$ and 288 M , respectively.
3. $\operatorname{DNU}=\mathrm{Do}$ not use. Pins P5, R5, P7, R7 and N5 are reserved for respective JTAG pins: TDI, TMS, TDO, TCK and TRST on future revisions. Within the current version these pins can be left unconnected, tied LOW (Vss), or tied HIGH (VDD).

Synchronous Truth Table ${ }^{(1)}$

$\overline{\text { CEN }}$	R/W	$\begin{aligned} & \text { Chip } \\ & \text { Enable } \end{aligned}$	ADV/ $\overline{L D}$	$\overline{\mathrm{B}} \mathrm{W} x$	ADDRESS USED	PREVIOUS CYCLE	CURRENT CYCLE	$\begin{gathered} 1 / 0 \\ (2 \text { cycles later) } \end{gathered}$
L	L	Select	L	Valid	External	X	LOAD WRITE	$D^{(7)}$
L	H	Select	L	X	External	X	LOAD READ	$Q^{(7)}$
L	X	X	H	Valid	Internal	LOAD WRITE / BURST WRITE	BURST WRITE (Advance burst counter) ${ }^{(2)}$	$D^{(7)}$
L	X	X	H	X	Internal	LOAD READ / BURST READ	BURST READ (Advance burst counter) ${ }^{(2)}$	$Q^{(7)}$
L	X	Deselect	L	X	X	X	DESELECT or STOP ${ }^{(3)}$	HiZ
L	X	X	H	X	X	DESELECT / NOOP	NOOP	Hiz
H	X	X	X	X	X	X	SUSPEND ${ }^{(4)}$	Previous Value

NOTES:

1. $\mathrm{L}=\mathrm{V}_{\mathrm{IL}}, \mathrm{H}=\mathrm{V}_{\mathrm{IH}}, \mathrm{X}=$ Don't Care.
2. When $\operatorname{ADV} / \overline{L D}$ signal is sampled high, the internal burst counter is incremented. The $R \bar{W}$ signal is ignored when the counter is advanced. Therefore the nature of the burst cycle (Read or Write) is determined by the status of the R / \bar{W} signal when the first address is loaded at the beginning of the burst cycle.
3. Deselect cycle is initiated when either ($\overline{C E} 1, ~ o r ~_{\mathrm{CE}}^{2} 2$ is sampled high or CE_{2} is sampled low) and $\mathrm{ADV} / \overline{\mathrm{LD}}$ is sampled low at rising edge of clock. The data bus will tri-state two cycles after deselect is initiated.
4. When CEN is sampled high at the rising edge of clock, that clock edge is blocked from propogating through the part. The state of all the internal registers and the I/ Os remains unchanged.
5. To select the chip requires $\overline{\mathrm{C}}_{1}=\mathrm{L}, \overline{\mathrm{CE}}_{2}=\mathrm{L}, \mathrm{CE} 2=\mathrm{H}$ on these chip enables. Chip is deselected if any one of the chip enables is false.
6. Device Outputs are ensured to be in High-Z after the first rising edge of clock upon power-up.
7. Q - Data read from the device, D - data written to the device.

Partial Truth Table for Writes ${ }^{(1)}$

OPERATION	R/W	$\overline{\mathrm{BW}} 1$	$\overline{\mathrm{BW}}_{2}$	$\overline{\mathrm{BW}}_{3}{ }^{(3)}$	$\overline{\mathrm{BW}} 4^{(3)}$
READ	H	X	X	X	X
WRITE ALL BYTES	L	L	L	L	L
WRITE BYTE 1 (//O[0:7], I/OPP1) ${ }^{(2)}$	L	L	H	H	H
WRITE BYTE 2 (//O[8:15], I/OP2) ${ }^{(2)}$	L	H	L	H	H
WRITE BYTE 3 (//O[16:23], I/OP3) ${ }^{(2,3)}$	L	H	H	L	H
WRITE BYTE 4 (I/O[24:31], I/OP4) ${ }^{(2,3)}$	L	H	H	H	L
NO WRITE	L	H	H	H	H

NOTES:

1. $\mathrm{L}=\mathrm{V} / \mathrm{L}, \mathrm{H}=\mathrm{V}_{\mathrm{I}}, \mathrm{X}=$ Don't Care.
2. Multiple bytes may be selected during the same cycle.
3. N/A for X18 configuration.

Interleaved Burst Sequence Table ($\overline{\text { LBO }}=$ Vdd)

	Sequence 1		Sequence 2		Sequence 3		Sequence 4	
	A1	A0	A1	A0	A1	A0	A1	A0
First Address	0	0	0	1	1	0	1	1
Second Address	0	1	0	0	1	1	1	0
Third Address	1	0	1	1	0	0	0	1
Fourth Address ${ }^{(1)}$	1	1	1	0	0	1	0	0

NOTE:

1. Upon completion of the Burst sequence the counter wraps around to its initial state and continues counting.

Linear Burst Sequence Table ($\overline{\text { LBO }}=$ Vss)

	Sequence 1		Sequence 2		Sequence 3		Sequence 4	
	A1	A0	A1	A0	A1	A0	A1	A0
First Address	0	0	0	1	1	0	1	1
Second Address	0	1	1	0	1	1	0	0
Third Address	1	0	1	1	0	0	0	1
Fourth Address ${ }^{(1)}$	1	1	0	0	0	1	1	0

NOTE:

1. Upon completion of the Burst sequence the counter wraps around to its initial state and continues counting.

Functional Timing Diagram ${ }^{(1)}$

NOTES:

1. This assumes $\overline{\mathrm{CEN}}, \overline{\mathrm{CE}} 1, \mathrm{CE} 2, \overline{\mathrm{CE}} 2$ are all true.
2. All Address, Control and Data_In are only required to meet set-up and hold time with respect to the rising edge of clock. Data_Out is valid after a clock-to-data delay from the rising edge of clock.

Device Operation - Showing Mixed Load, Burst, Deselect and NOOP Cycles ${ }^{(2)}$

Cycle	Address	R/T/	ADV/LD	$\overline{\mathrm{CE}}{ }^{(1)}$	CEN	$\overline{\mathrm{BW}} \mathrm{x}$	$\overline{O E}$	I/0	Comments
n	A0	H	L	L	L	X	X	X	Load read
n+1	X	X	H	X	L	X	X	X	Burst read
n+2	A1	H	L	L	L	X	L	Q0	Load read
n+3	X	X	L	H	L	X	L	Q0+1	Deselect or STOP
n+4	X	X	H	X	L	X	L	Q1	NOOP
n+5	A2	H	L	L	L	X	X	Z	Load read
n+6	X	X	H	X	L	X	X	Z	Burst read
n+7	X	X	L	H	L	X	L	Q2	Deselect or STOP
n+8	А3	L	L	L	L	L	L	Q2+1	Load write
n+9	X	X	H	X	L	L	X	Z	Burst write
n+10	A4	L	L	L	L	L	X	D3	Load write
n+11	X	X	L	H	L	X	X	D $3+1$	Deselect or STOP
$\mathrm{n}+12$	X	X	H	X	L	X	X	D4	NOOP
n+13	A5	L	L	L	L	L	X	Z	Load write
n+14	A6	H	L	L	L	X	X	Z	Load read
n+15	A7	L	L	L	L	L	X	D5	Load write
n+16	X	X	H	X	L	L	L	Q6	Burst write
n+17	A8	H	L	L	L	X	X	D7	Load read
n+18	X	X	H	X	L	X	X	D7+1	Burst read
$\mathrm{n}+19$	A9	L	L	L	L	L	L	Q8	Load write

NOTES:

1. $\overline{\mathrm{CE}}=\mathrm{L}$ is defined as $\overline{\mathrm{CE}}_{1}=\mathrm{L}, \overline{\mathrm{CE}}_{2}=\mathrm{L}$ and $\mathrm{CE} 2=\mathrm{H} . \overline{\mathrm{CE}}=\mathrm{H}$ is defined as $\overline{\mathrm{CE}}_{1}=\mathrm{H}, \overline{\mathrm{CE}}_{2}=\mathrm{H}$ or CE2 $=\mathrm{L}$.
2. $H=$ High; $L=$ Low; $X=$ Don't Care; $Z=$ High Impedance.

Read Operation ${ }^{(1)}$

Cycle	Address	$\mathrm{R} / \overline{\mathrm{W}}$	$\mathrm{ADV} / \overline{\mathrm{LD}}$	$\overline{\mathrm{CE}}^{(2)}$	$\overline{\mathrm{CEN}}$	$\overline{\mathrm{BW}} \mathbf{x}$	$\overline{\mathrm{OE}}$	$\mathrm{I} / 0$	Comments
n	A_{0}	H	L	L	L	X	X	X	Address and Control meet setup
$\mathrm{n}+1$	X	X	X	X	L	X	X	X	Clock Setup Valid
$\mathrm{n}+2$	X	X	X	X	X	X	L	Q_{0}	Contents of Address A0 Read Out

NOTES:

5002 tbl 13

1. $\mathrm{H}=$ High; $\mathrm{L}=$ Low; $\mathrm{X}=$ Don't Care; $\mathrm{Z}=$ High Impedance.
2. $\overline{\mathrm{CE}}=L$ is defined as $\overline{\mathrm{CE}}_{1}=L, \overline{\mathrm{CE}}_{2}=L$ and $C E 2=H . \overline{\mathrm{CE}}=H$ is defined as $\overline{\mathrm{CE}}_{1}=H, \overline{\mathrm{CE}}_{2}=H$ or $C E 2=L$

Burst Read Operation ${ }^{(1)}$

Cycle	Address	R/W	ADV/LD	$\overline{\mathrm{CE}}{ }^{(2)}$	$\overline{\mathrm{CEN}}$	$\overline{\mathrm{BW}} \mathrm{X}$	$\overline{O E}$	1/0	Comments
n	A0	H	L	L	L	X	X	X	Address and Control meet setup
n+1	X	X	H	X	L	X	X	X	Clock Setup Valid, Advance Counter
n+2	X	X	H	X	L	X	L	Q0	Address Ao Read Out, Inc. Count
n+3	X	X	H	X	L	X	L	Q0+1	Address A0+1 Read Out, Inc. Count
n+4	X	X	H	X	L	X	L	Q0+2	Address A0+2 Read Out, Inc. Count
n+5	A1	H	L	L	L	X	L	Q0+3	Address A0+3 Read Out, Load A1
n+6	X	X	H	X	L	X	L	Qo	Address Ao Read Out, Inc. Count
n+7	X	X	H	X	L	X	L	Q1	Address A1 Read Out, Inc. Count
n+8	A2	H	L	L	L	X	L	Q1+1	Address A1+1 Read Out, Load A2

NOTES:

1. $\mathrm{H}=$ High; $\mathrm{L}=$ Low; $\mathrm{X}=$ Don't Care; $\mathrm{Z}=$ High Impedance..
2. $\overline{\mathrm{CE}}=\mathrm{L}$ is defined as $\overline{\mathrm{CE}}_{1}=\mathrm{L}, \overline{\mathrm{CE}}_{2}=\mathrm{L}$ and $\mathrm{CE} 2=\mathrm{H} . \overline{\mathrm{CE}}=\mathrm{H}$ is defined as $\overline{\mathrm{CE}}_{1}=\mathrm{H}, \overline{C E}_{2}=\mathrm{H}$ or $\mathrm{CE}_{2}=\mathrm{L}$.

Write Operation ${ }^{(1)}$

Cycle	Address	$\mathrm{R} / \overline{\mathrm{W}}$	ADV/ $\overline{\mathrm{LD}}$	$\overline{\mathrm{CE}}^{(2)}$	$\overline{\mathrm{CEN}}$	$\overline{\mathrm{BW}} \mathbf{x}$	$\overline{\mathrm{OE}}$	$\mathrm{I} / 0$	Comments
n	A 0	L	L	L	L	L	X	X	Address and Control meet setup
$\mathrm{n}+1$	X	X	X	X	L	X	X	X	Clock Setup Valid
$\mathrm{n}+2$	X	X	X	X	L	X	X	D 0	Write to Address A0

NOTES:

1. $\mathrm{H}=$ High; $\mathrm{L}=$ Low; $\mathrm{X}=$ Don't Care; $\mathrm{Z}=$ High Impedance.
2. $\overline{\mathrm{CE}}=\mathrm{L}$ is defined as $\overline{C E}_{1}=\mathrm{L}, \overline{C E}_{2}=\mathrm{L}$ and $\mathrm{CE}_{2}=\mathrm{H} . \overline{\mathrm{CE}}=\mathrm{H}$ is defined as $\overline{\mathrm{CE}}_{1}=\mathrm{H}, \overline{C E}_{2}=\mathrm{H}$ or $\mathrm{CE} 2=\mathrm{L}$

Burst Write Operation ${ }^{(1)}$

Cycle	Address	$\mathrm{R} / \overline{\mathrm{W}}$	ADV/ $\overline{\mathrm{LD}}$	$\overline{\mathrm{CE}}^{(2)}$	$\overline{\mathrm{CEN}}$	$\overline{\mathrm{BW}} \mathbf{x}$	$\overline{\mathrm{OE}}$	I/0	Comments
n	A_{0}	L	L	L	L	L	X	X	Address and Control meet setup
$\mathrm{n}+1$	X	X	H	X	L	L	X	X	Clock Setup Valid, Inc. Count
$\mathrm{n}+2$	X	X	H	X	L	L	X	D_{0}	Address Ao Write, Inc. Count
$\mathrm{n}+3$	X	X	H	X	L	L	X	$\mathrm{D}_{0}+1$	Address A0+1 Write, Inc. Count
$\mathrm{n}+4$	X	X	H	X	L	L	X	$\mathrm{D}_{0}+2$	Address Ao+2 Write, Inc. Count
$\mathrm{n}+5$	$\mathrm{~A}_{1}$	L	L	L	L	L	X	$\mathrm{D}_{0}+3$	Address A0+3 Write, Load A1
$\mathrm{n}+6$	X	X	H	X	L	L	X	D_{0}	Address A0 Write, Inc. Count
$\mathrm{n}+7$	X	X	H	X	L	L	X	D_{1}	Address A1 Write, Inc. Count
$\mathrm{n}+8$	$\mathrm{~A}_{2}$	L	L	L	L	L	X	D_{1+1}	Address A1+1 Write, Load A2

NOTES:

1. $\mathrm{H}=$ High; $\mathrm{L}=$ Low; $\mathrm{X}=$ Don't Care; ? $=$ Don't Know; $\mathrm{Z}=$ High Impedance.
2. $\overline{\mathrm{CE}}=\mathrm{L}$ is defined as $\overline{\mathrm{CE}} 1=\mathrm{L}, \overline{\mathrm{CE}} 2=\mathrm{L}$ and $\mathrm{CE} 2=\mathrm{H}$. $\overline{\mathrm{CE}}=\mathrm{H}$ is defined as $\overline{\mathrm{CE}} 1=\mathrm{H}, \overline{\mathrm{CE}} 2=\mathrm{H}$ or $\mathrm{CE} 2=\mathrm{L}$.

Read Operation with Clock Enable Used ${ }^{(1)}$

Cycle	Address	R/ \bar{W}	ADV/ $\overline{\mathrm{LD}}$	$\overline{\mathrm{CE}}^{(2)}$	$\overline{\mathrm{CEN}}$	$\overline{\mathrm{BW}} \mathbf{x}$	$\overline{\mathrm{OE}}$	$\mathrm{I} / \mathbf{0}$	Comments
n	A_{0}	H	L	L	L	X	X	X	Address and Control meet setup
$\mathrm{n}+1$	X	X	X	X	H	X	X	X	Clock n+1 Ignored
$\mathrm{n}+2$	$\mathrm{~A}_{1}$	H	L	L	L	X	X	X	Clock Valid
$\mathrm{n}+3$	X	X	X	X	H	X	L	Q_{0}	Clock Ignored. Data Q0 is on the bus.
$\mathrm{n}+4$	X	X	X	X	H	X	L	Q_{0}	Clock Ignored. Data Qo is on the bus.
$\mathrm{n}+5$	$\mathrm{~A}_{2}$	H	L	L	L	X	L	Q_{0}	Address Ao Read out (bus trans.)
$\mathrm{n}+6$	$\mathrm{~A}_{3}$	H	L	L	L	X	L	Q_{1}	Address A1 Read out (bus trans.)
$\mathrm{n}+7$	$\mathrm{~A}_{4}$	H	L	L	L	X	L	Q_{2}	Address A2 Read out (bus trans.)

NOTES:

1. $H=$ High; $L=$ Low; $X=$ Don't Care; $Z=$ High Impedance.
2. $\overline{\mathrm{CE}}=\mathrm{L}$ is defined as $\overline{\mathrm{CE}}_{1}=\mathrm{L}, \overline{\mathrm{CE}}_{2}=\mathrm{L}$ and $\mathrm{CE} 2=\mathrm{H} . \overline{\mathrm{CE}}=\mathrm{H}$ is defined as $\overline{\mathrm{CE}}_{1}=\mathrm{H}, \overline{\mathrm{CE}}_{2}=\mathrm{H}$ or $\mathrm{CE} 2=\mathrm{L}$.

Write Operation with Clock Enable Used ${ }^{(1)}$

Cycle	Address	R/W	ADV/ $\overline{\mathrm{D}}$	$\overline{\mathrm{CE}}{ }^{(2)}$	$\overline{\mathrm{CEN}}$	$\overline{\mathrm{B}} \mathrm{W} x$	$\overline{\mathrm{OE}}$	I/O	Comments
n	A0	L	L	L	L	L	X	X	Address and Control meet setup.
n+1	X	X	X	X	H	X	X	X	Clock n+1 Ignored.
n+2	A_{1}	L	L	L	L	L	X	X	Clock Valid.
n+3	X	X	X	X	H	X	X	X	Clock Ignored.
n+4	X	X	X	X	H	X	X	X	Clock Ignored.
n+5	A2	L	L	L	L	L	X	Do	Write Data Do
n+6	А3	L	L	L	L	L	X	D1	Write Data D1
n+7	A4	L	L	L	L	L	X	D2	Write Data D2

NOTES:

1. $\mathrm{H}=$ High; $\mathrm{L}=$ Low; $\mathrm{X}=$ Don't Care; $\mathrm{Z}=$ High Impedance.
2. $\overline{\mathrm{CE}}=\mathrm{L}$ is defined as $\overline{\mathrm{CE}}_{1}=\mathrm{L}, \mathrm{CE}_{2}=\mathrm{L}$ and $\mathrm{CE} 2=\mathrm{H}$. $\overline{\mathrm{CE}}=\mathrm{H}$ is defined as $\overline{\mathrm{CE}} 1_{1}=\mathrm{H}, \overline{\mathrm{CE}}_{2}=\mathrm{H}$ or $\mathrm{CE} 2=\mathrm{L}$.

Read Operation with Chip Enable Used ${ }^{(1)}$

Cycle	Address	R/W	ADV/LD	$\overline{\mathrm{CE}}{ }^{(2)}$	$\overline{\text { CEN }}$	$\overline{\mathrm{B}} \mathrm{T} \times$	$\overline{\mathrm{OE}}$	$1 / 0^{(3)}$	Comments
n	X	X	L	H	L	X	X	?	Deselected.
n+1	X	X	L	H	L	X	X	?	Deselected.
n+2	A0	H	L	L	L	X	X	Z	Address and Control meet setup
n+3	X	X	L	H	L	X	X	Z	Deselected or STOP.
n+4	A1	H	L	L	L	X	L	Qo	Address A0 Read out. Load A1.
n+5	X	X	L	H	L	X	X	Z	Deselected or STOP.
n+6	X	X	L	H	L	X	L	Q1	Address A1 Read out. Deselected.
n+7	A2	H	L	L	L	X	X	Z	Address and control meet setup.
n+8	X	X	L	H	L	X	X	Z	Deselected or STOP.
n+9	X	X	L	H	L	X	L	Q2	Address A2 Read out. Deselected.

NOTES:

1. $\mathrm{H}=$ High; $\mathrm{L}=$ Low; $\mathrm{X}=$ Don't Care; ? = Don't Know; $\mathrm{Z}=$ High Impedance.
2. $\overline{\mathrm{CE}}=\mathrm{L}$ is defined as $\overline{\mathrm{CE}}_{1}=\mathrm{L}, \overline{\mathrm{CE}}_{2}=\mathrm{L}$ and $\mathrm{CE} 2=\mathrm{H} . \overline{\mathrm{CE}}=\mathrm{H}$ is defined as $\overline{\mathrm{CE}}_{1}=\mathrm{H}, \overline{\mathrm{CE}}_{2}=\mathrm{H}$ or $\mathrm{CE} 2=\mathrm{L}$.
3. Device Outputs are ensured to be in High-Z after the first rising edge of clock upon power-up.

Write Operation with Chip Enable Used(1)

Cycle	Address	R/W	ADV/̄]D	$\overline{\mathrm{CE}}{ }^{(2)}$	$\overline{C E N}$	$\overline{\mathrm{BW}} \mathrm{X}$	$\overline{\mathrm{OE}}$	$1 / 0^{(3)}$	Comments
n	X	X	L	H	L	X	X	?	Deselected.
$\mathrm{n}+1$	X	X	L	H	L	X	X	?	Deselected.
n+2	A0	L	L	L	L	L	X	Z	Address and Control meet setup
n+3	X	X	L	H	L	X	X	Z	Deselected or STOP.
n+4	A_{1}	L	L	L	L	L	X	Do	Address Do Write in. Load A1.
n+5	X	X	L	H	L	X	X	Z	Deselected or STOP.
n+6	X	X	L	H	L	X	X	D1	Address D1 Write in. Deselected.
n+7	A2	L	L	L	L	L	X	Z	Address and control meet setup.
n+8	X	X	L	H	L	X	X	Z	Deselected or STOP.
n+9	X	X	L	H	L	X	X	D2	Address D2 Write in. Deselected.

NOTES:

1. $\mathrm{H}=$ High; $\mathrm{L}=$ Low; $\mathrm{X}=$ Don't Care; ? = Don't Know; $\mathrm{Z}=$ High Impedance.
2. $\overline{\mathrm{CE}}=\mathrm{L}$ is defined as $\overline{\mathrm{CE}}_{1}=\mathrm{L}, \overline{\mathrm{CE}}_{2}=\mathrm{L}$ and $\mathrm{CE} 2=\mathrm{H} . \overline{\mathrm{CE}}=\mathrm{H}$ is defined as $\overline{\mathrm{CE}}_{1}=\mathrm{H}, \overline{\mathrm{CE}}_{2}=\mathrm{H}$ or $\mathrm{CE} 2=\mathrm{L}$.

DC Electrical Characteristics Over the Operating
Temperature and Supply Voltage Range (Vdd = $\mathbf{2 . 5 V}+/-5 \%$)

Symbol	Parameter	Test Conditions	Min.	Max.	Unit		
\|	Lı		Input Leakage Current	Vdd = Max., VIn = OV to Vdd	--	5	$\mu \mathrm{A}$
\|	Lı		$\overline{\mathrm{LBO}}$ Input Leakage Current ${ }^{(1)}$	Vdd = Max., VIN = OV to Vdd	--	30	$\mu \mathrm{A}$
IILOI	Output Leakage Current	Vout $=0 \mathrm{~V}$ to VDDQ, Device Deselected	--	5	$\mu \mathrm{A}$		
Vol	Output Low Voltage	$\mathrm{lOL}=+6 \mathrm{~mA}, \mathrm{VDD}=\mathrm{Min}$.	--	0.4	V		
VOH	Output High Voltage	$\mathrm{IOH}=-6 \mathrm{~mA}, \mathrm{VDD}=\mathrm{Min}$.	2.0	--	V		

NOTE:
5002 tbl 21

1. The $\overline{\mathrm{LBO}}$ pin will be internally pulled to VDD if it is not actively driven in the application and the $Z Z$ pin will be internally pulled to Vss if not actively driven.

DC Electrical Characteristics Over the Operating

Temperature and Supply Voltage Range ${ }^{(1)}(\mathrm{VDD}=2.5 \mathrm{~V}+/-5 \%)$

Symbol	Parameter	Test Conditions	200MHz	166MHz	Unit
IDD	Operating Power Supply Current	Device Selected, Outputs Open, $\mathrm{ADV} / \overline{\mathrm{LD}}=\mathrm{X}, \mathrm{V} D \mathrm{D}=\mathrm{Max}$., $V_{I N} \geq V_{H}$ or $\leq V I L, f=f m a x{ }^{(2)}$	400	350	mA
ISB1	CMOS Standby Power Supply Current	Device Deselected, Outputs Open, VDD $=$ Max., $\operatorname{VIN} \geq$ VHD or $\leq V L D$, $f=0^{(2,3)}$	40	40	mA
ISB2	Clock Running Power Supply Current	Device Deselected, Outputs Open, Vdd = Max., VIN \geq Vhd or $<V_{l d, ~}^{\text {, }}$ $f=$ flax $^{(2.3)}$	130	120	mA
ISB3	Idle Power Supply Current	Device Selected, Outputs Open, $\overline{\mathrm{CEN}} \geq \mathrm{V}_{\mathrm{H}}, \mathrm{V}_{\mathrm{DD}}=\mathrm{Max}$., VIN \geq VHD or \leq VLD, $f=$ fmax $^{(2,3)}$	40	40	mA
lzz	Full Sleep Mode Supply Current	Device Selected, Outputs Open, $\overline{\mathrm{CEN}} \leq$ VIL, VDD $=$ Max., $\mathbb{Z} \geq$ VHD $\mathrm{VIN} \geq \mathrm{VHD}$ or $\leq \mathrm{VLD}, \mathrm{f}=\mathrm{fmax}^{2,3,3}$	40	40	mA

NOTES:

5002 tbl 22

1. All values are maximum guaranteed values.
2. At $f=$ fmax, inputs are cycling at the maximum frequency of read cycles of $1 /$ tcyc; $f=0$ means no input lines are changing.

AC Test Load

AC Test Conditions

Input Pulse Levels	0 to 2.5 V
Input Rise/Fall Times	2ns
Input Timing Reference Levels	(VDDQ/2)
Output Timing Reference Levels	(VDDQ/2)
AC Test Load	See Figure 1

Figure 2. Lumped Capacitive Load, Typical Derating

AC Electrical Characteristics
(VDd = 2.5V +/-5\%, TA = 0 to $70^{\circ} \mathrm{C}$)

Symbol	Parameter	200MHz		166MHz		Unit
		Min.	Max.	Min.	Max.	
tcyc	Clock Cycle Time	5	-	6	-	ns
$t r^{(1)}$	Clock Frequence	-	200	-	166	MHz
tch ${ }^{(2)}$	Clock High Pulse Width	1.8	-	1.8	-	ns
tcL ${ }^{(2)}$	Clock Low Pulse Width	1.8	-	1.8	-	ns

Output Parameters

tcD	Clock High to Valid Data	-	3.2	-	3.5	ns
tcDC	Clock High to Data Change	1	-	1	-	ns
taz $z^{(3,4,5)}$	Clock High to Output Active	1	-	1	-	ns
tch2 ${ }^{(3,4,5)}$	Clock High to Data High-Z	1	3	1	3	ns
toe	Output Enable Access Time	-	3.2	-	3.5	ns
to $\chi^{(3,4)}$	Outp ut Enable Low to Data Active	0	-	0	-	ns
tohz ${ }^{(3,4)}$	Output Enable High to Data High-Z	-	3.5	-	3.5	ns
Set Up Times						
tse	Clock Enable Setup Time	1.5	-	1.5	-	ns
tSA	Address Setup Time	1.5	-	1.5	-	ns
tSD	Data In Setup Time	1.5	-	1.5	-	ns
tsw	Read/Write ($\mathrm{R} / \overline{\mathrm{W}}$) Setup Time	1.5	-	1.5	-	ns
tsadv	Advance/Load (ADV/LD) Setup Time	1.5	-	1.5	-	ns
tsc	Chip Enable/Select Setup Time	1.5	-	1.5	-	ns
tSB	Byte Write Enable ($\overline{\mathrm{BW}} \mathrm{X}$) Setup Time	1.5	-	1.5	-	ns
Hold Times						
the	Clock Enable Hold Time	0.5	-	0.5	-	ns
tha	Address Hold Time	0.5	-	0.5	-	ns
tHD	Data In Hold Time	0.5	-	0.5	-	ns
thw	Read/Write (R/W) Hold Time	0.5	-	0.5	-	ns
thadv	Advance/Load (ADV/(̄D) Hold Time	0.5	-	0.5	-	ns
the	Chip Enable/Select Hold Time	0.5	-	0.5	-	ns
tнв	Byte Write Enable ($\overline{\mathrm{BW}} \mathrm{X}$) Hold Time	0.5	-	0.5	-	ns

NOTES:

1. $\mathrm{tF}=1 / \mathrm{tcyc}$.
2. Measured as HIGH above 0.6 VDDQ and LOW below 0.4 V DDQ .
3. Transition is measured $\pm 200 \mathrm{mV}$ from steady-state.
4. These parameters are guaranteed with the AC load (Figure 1) by device characterization. They are not production tested.
5. To avoid bus contention, the output buffers are designed such that tchz (device turn-off) is about 1 ns faster than tcLZ (device turn-on) at a given temperature and voltage. The specs as shown do not imply bus contention because tclz is a Min. parameter that is worse case at totally different test conditions (0 deg. $\mathrm{C}, 2.625 \mathrm{~V}$) than tchz, which is a Max. parameter (worse case at 70 deg. C, 2.375 V).

Timing Waveform of Read Cycle ${ }^{(1,2,3,4)}$

[^0]Timing Waveform of Write Cycles ${ }^{(1,2,3,4,5)}$

Timing Waveform of Combined Read and Write Cycles ${ }^{\left({ }^{(}\right)}$

Timing Waveform of CEN Operation ${ }^{(1,2,3,4)}$

[^1]Timing Waveform of $\overline{\mathbf{C S}}$ Operation ${ }^{(1,2,3,4)}$

NOTES:
Q(A1) represents the firstoutputfrom the external address A_{1}. $D\left(A_{3}\right)$ represents the input data to the SRAM corresponding to address A_{3}.
 occur. All internal registers in the SRAM will retain their previous state. cycles before the actual data is presented to the SRAM.

100 Pin Thin Quad Plastic Flatpack (TQFP) Package Diagram Outline

119 Ball Grid Array (BGA) Package Diagram Outline

165 Fine Pitch Ball Grid Array (fBGA) Package Diagram Outline

Timing Waveform of $\overline{\mathrm{OE}}$ Operation ${ }^{(1)}$

NOTE:

1. A read operation is assumed to be in progress.

Ordering Information

Datasheet Document History

7/26/99
8/23/99
Pg. 4, 5
Pg. 6
Pg. 15

Pg. 24
10/4/99 Pg. 14
Pg. 15
12/31/99
Pg. 1, 2
Pg. 4, 5, 6, 13
06/08/00
Pg. 5,6

Pg. 7
Pg. 21
Pg. 23
07/28/00 Pg. 5-8
Pg. 7,8
Pg. 23
11/04/00 Pg. 8
Pg. 15

Updated to new format; posted on website
Added SmartZBTTM functionality
Added Note 4 and changed pins 38,42 , and 43 to DNU
Changed B2 to CE2 and U6 to DNU
Improved tco and toE(Max) at 166 MHz
Revised tchz(Min) forf $\leq 133 \mathrm{MHz}$
Revised toHz (Max) for $f \leq 133 \mathrm{MHz}$
Improved tch, tcl forf $\leq 166 \mathrm{MHz}$ Improved setup times for $100-200 \mathrm{MHz}$ Added DatasheetDocumentHistory Revised ACElectrical Characteristics table Revised tCHz to match tCLZ and tCDC at 133 MHz and 100 MHz Removed Smartfunctionality and 100-133MHzspeed grades Added ZZ, TMS, TCK, TDI, and TDO pin descriptions and definitions Added ZZ input
Add new package offering, $13 \times 15 \mathrm{~mm} 165 \mathrm{fBGA}$
Add JTAG testpins to TQFP pin configuration; removed footnote Add clarification note to Recommended Operating Temperature and Absolute Max Ratings tables
Add note to BGA Pin configuration; corrected typo in pinout
Insert TQFP Package Diagram Outline
Correcterror in the 119 BGA Package Diagram Outline
Remove JTAG pins from TQFP, BG119 and BQ165 pinouts
Correct error in pinout, B 2 on BG 119 and B 1 on BQ 165 pinout Update BG119 Package Diagram Dimensions
Add reference note to pin $N 5, \mathrm{BQ} 165$ pinout, reserved for JTAG TRST
Add Izz to DC Electrical Characteristics
for SALES:
800-345-7015 or 408-727-6116
fax: 408-492-8674
www.idt.com
for Tech Support:
sramhelp@idt.com
800-544-7726, x4033

The IDT logo is a registered trademark of Integrated Device Technology, Inc.

[^0]: 1. $Q\left(A_{1}\right)$ represents the first output from the external address A_{1}. $Q\left(A_{2}\right)$ represents the first output from the external address A_{2}; $Q\left(A_{2}+1\right)$ represents the next output data in the burst sequence of the base address $A 2$, etc. where address bits $A 0$ and $A 1$ are advancing for the four word burst in the sequence defined by the state of the $\overline{\mathrm{LB}} \overline{\mathrm{B}}$ input. 2. CE2 timing transitions are identical but inverted to the CE1 and CE2 signals. For example, wen 3. Burst ends when new address and control are loaded into the SRAM by sampling ADV/LD LOW. loadedinto the SRAM.
[^1]: NOTES:

 1. $Q\left(A_{1}\right)$ represents the first output from the external address $A_{1} . D\left(A_{2}\right)$ represents the input data to the $S R A M$ corresponding to address A_{2}. 2. CE_{2} timing transitions are identical but inverted to the $\overline{\mathrm{CE}}_{1}$ and $\overline{\mathrm{CE}}_{2}$ signals. For example, when $\overline{\mathrm{CE}}_{1}$ and $\overline{\mathrm{C}}_{2}$ are LOW on this waveform, CE_{2} is HIGH . 3. $\overline{C E N}$ when sampled high on the rising edge of clock will block that L-H transition of the clock from propogating into the SRAM. The part will behave as if the L-H clock transition did not occur. All internal registers in the SRAM will retain their previous state. 4. cycles before the actual data is presented to the SRAM.
