74VCXH245

Product Preview
 Low-Voltage 1.8/2.5/3.3V 8-Bit Transceiver (3-State, Non-Inverting with Bushold)

The 74 VCXH 245 is an advanced performance, non-inverting 8 -bit transceiver. It is designed for very high-speed, very low-power operation in $1.8 \mathrm{~V}, 2.5 \mathrm{~V}$ or 3.3 V systems.

The VCXH245 is designed as a byte control. The Transmit/Receive ($\mathrm{T} / \overline{\mathrm{R}} \mathrm{n}$) inputs determine the direction of data flow through the bi-directional transceiver. Transmit (active-HIGH) enables data from A ports to B ports; Receive (active-LOW) enables data from B to A ports. The Output Enable input $(\overline{\mathrm{OE}})$, when HIGH, disables both A and B ports by placing them in a HIGH Z condition. The data inputs include active bushold circuitry, eliminating the need for external pull-up resistors to hold unused or floating inputs at a valid logic state.

- Designed for Low Voltage Operation: $\mathrm{V}_{\mathrm{CC}}=1.65-3.6 \mathrm{~V}$
- High Speed Operation: 3.5 ns max for 3.0 to 3.6 V
4.2 ns max for 2.3 to 2.7 V
8.4 ns max for 1.65 to 1.95 V
- Static Drive: $\pm 24 \mathrm{~mA}$ Drive at 3.0 V
$\pm 18 \mathrm{~mA}$ Drive at 2.3 V $\pm 6 \mathrm{~mA}$ Drive at 1.65 V
- Includes Active Bushold to Hold Unused or Floating Data Inputs at a Valid Logic State
- Near Zero Static Supply Current in All Three Logic States (20 $\mu \mathrm{A}$) Substantially Reduces System Power Requirements
- Latchup Performance Exceeds $\pm 250 \mathrm{~mA} @ 85^{\circ} \mathrm{C}$
- ESD Performance: Human Body Model >2000 V; Machine Model >200 V

A	$=$ Assembly Location
L, WL	$=$ Wafer Lot
Y, YY	$=$ Year
W, WW	$=$ Work Week

This document contains information on a product under development. ON Semiconductor reserves the right to change or discontinue this product without notice.

Figure 1. Pinout (Top View)

PIN NAMES

PINS	FUNCTION
$\overline{\text { OE }}$	Output Enable Input
T/R	Transmit/Receive Input
AO-A7	Side A Bushold Inputs or 3-State Outputs
B0-B7	Side B Bushold Inputs or 3-State Outputs

TRUTH TABLE

INPUTS		OPERATING MODE Non-Inverting
$\overline{\mathbf{O E}}$	$\mathbf{T} / \overline{\mathbf{R}}$	
L	L	A Data to B Bus
L	H	Z State
H	X	

[^0]

Figure 2. Logic Diagram

ABSOLUTE MAXIMUM RATINGS*

Symbol	Parameter	Value	Condition	Unit
V_{CC}	DC Supply Voltage	-0.5 to +4.6		V
$\mathrm{~V}_{\mathrm{I}}$	DC Input Voltage	$-0.5 \leq \mathrm{V}_{1} \leq \mathrm{V}_{\mathrm{CC}}+0.5$		V
$\mathrm{~V}_{\mathrm{O}}$	DC Output Voltage	$-0.5 \leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{CC}}+0.5$	Note 1	V
I_{IK}	DC Input Diode Current	-50	$\mathrm{~V}_{\mathrm{I}}<\mathrm{GND}$	mA
I_{OK}	DC Output Diode Current	-50	$\mathrm{~V}_{\mathrm{O}}<\mathrm{GND}$	mA
		+50	$\mathrm{~V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{CC}}$	mA
I_{O}	DC Output Source/Sink Current	± 50		mA
I_{CC}	DC Supply Current Per Supply Pin	± 100	mA	
$\mathrm{I}_{\mathrm{GND}}$	DC Ground Current Per Ground Pin	± 100	mA	
$\mathrm{~T}_{\text {STG }}$	Storage Temperature Range	-65 to +150		${ }^{\circ} \mathrm{C}$

* Absolute maximum continuous ratings are those values beyond which damage to the device may occur. Exposure to these conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation under absolute-maximum-rated conditions is not implied.

1. I_{O} absolute maximum rating must be observed.

RECOMMENDED OPERATING CONDITIONS**

Symbol	Parameter	Min	Typ	Max	Unit
$\mathrm{V}_{\text {CC }}$	Supply Voltage $\begin{array}{r}\text { Operating } \\ \text { Data Retention Only }\end{array}$	$\begin{gathered} 1.65 \\ 1.2 \end{gathered}$	$\begin{aligned} & 3.3 \\ & 3.3 \end{aligned}$	$\begin{aligned} & 3.6 \\ & 3.6 \end{aligned}$	V
V_{1}	Input Voltage	-0.3		V_{CC}	V
V_{O}	Output Voltage	0		V_{CC}	V
I_{OH}	HIGH Level Output Current, $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}-3.6 \mathrm{~V}$			-24	mA
$\mathrm{IOL}^{\text {a }}$	LOW Level Output Current, $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}-3.6 \mathrm{~V}$			24	mA
I_{OH}	HIGH Level Output Current, $\mathrm{V}_{\text {CC }}=2.3 \mathrm{~V}-2.7 \mathrm{~V}$			-18	mA
loL	LOW Level Output Current, $\mathrm{V}_{\text {CC }}=2.3 \mathrm{~V}-2.7 \mathrm{~V}$			18	mA
IOH	HIGH Level Output Current, $\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}-1.95 \mathrm{~V}$			-6	mA
l OL	LOW Level Output Current, $\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}-1.95 \mathrm{~V}$			6	mA
T_{A}	Operating Free-Air Temperature	-40		+85	${ }^{\circ} \mathrm{C}$
$\Delta \mathrm{t} / \Delta \mathrm{V}$	Input Transition Rise or Fall Rate, $\mathrm{V}_{\text {IN }}$ from 0.8 V to $2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=3.0 \mathrm{~V}$	0		10	ns/V

${ }^{* *}$ Floating or unused control inputs must be held HIGH or LOW.

DC ELECTRICAL CHARACTERISTICS

Symbol	Characteristic	Condition	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Unit
			Min	Max	
V_{IH}	HIGH Level Input Voltage (Note 2)	$1.65 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}}<1.95 \mathrm{~V}$	$0.65 \times \mathrm{V}_{\text {CC }}$		V
		$2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 2.7 \mathrm{~V}$	1.6		
		$2.7 \mathrm{~V}<\mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V}$	2.0		
V_{IL}	LOW Level Input Voltage (Note 2)	$1.65 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}}<1.95 \mathrm{~V}$		$0.35 \times \mathrm{V}_{\mathrm{CC}}$	V
		$2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 2.7 \mathrm{~V}$		0.7	
		$2.7 \mathrm{~V}<\mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V}$		0.8	
V_{OH}	HIGH Level Output Voltage	$1.65 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V} ; \mathrm{l}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$	$\mathrm{V}_{\text {CC }}-0.2$		V
		$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V} ; \mathrm{I}_{\mathrm{OH}}=-6 \mathrm{~mA}$	1.25		
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V} ; \mathrm{l}_{\mathrm{OH}}=-6 \mathrm{~mA}$	2.0		
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V} ; \mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA}$	1.8		
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$; $\mathrm{I}_{\mathrm{OH}}=-18 \mathrm{~mA}$	1.7		
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V} ; \mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA}$	2.2		
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$; $\mathrm{IOH}=-18 \mathrm{~mA}$	2.4		
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA}$	2.2		
V OL	LOW Level Output Voltage	$1.65 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V}$; $\mathrm{IOL}=100 \mu \mathrm{~A}$		0.2	V
		$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V} ; \mathrm{l}_{\mathrm{OL}}=6 \mathrm{~mA}$		0.3	
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$; $\mathrm{IOL}=12 \mathrm{~mA}$		0.4	
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$; $\mathrm{IOL}=18 \mathrm{~mA}$		0.6	
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$; $\mathrm{IOL}=12 \mathrm{~mA}$		0.4	
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$; $\mathrm{IOL}=18 \mathrm{~mA}$		0.4	
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$; $\mathrm{IOL}=24 \mathrm{~mA}$		0.55	
1	Input Leakage Current	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$ or GND; $\mathrm{V}_{\text {CC }}=3.6 \mathrm{~V}$		± 5.0	$\mu \mathrm{A}$
$\mathrm{I}_{(\text {(HOLD })}$	Minimum Bushold Input Current	$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0.8 \mathrm{~V}$	75		$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=2.0 \mathrm{~V}$	-75		
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0.7 \mathrm{~V}$	45		
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=1.6 \mathrm{~V}$	-45		
		$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0.57 \mathrm{~V}$	25		
		$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=1.07 \mathrm{~V}$	-25		
$\mathrm{I}_{(\text {(OD) }}$	Minimum Bushold Over-Drive Current Needed to Change State	$\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}$, (Note 3)	450		$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}$, (Note 4)	-450		
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$, (Note 3)	300		
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$, (Note 4)	-300		
		$\mathrm{V}_{\mathrm{CC}}=1.95 \mathrm{~V}$, (Note 3)	200		
		$\mathrm{V}_{\text {CC }}=1.95 \mathrm{~V}$, (Note 4)	-200		
l Oz	3-State Output Current	$\begin{gathered} \mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} ; \mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V} ; \\ \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \end{gathered}$		± 10	$\mu \mathrm{A}$
I_{CC}	Quiescent Supply Current (Note 5)	$1.65 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ or V_{CC}		20	$\mu \mathrm{A}$
$\Delta \mathrm{l}_{\mathrm{CC}}$	Increase in ICC Per Input	$2.7 \mathrm{~V}<\mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V} ; \mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}-0.6 \mathrm{~V}$		750	$\mu \mathrm{A}$

2. These values of V_{1} are used to test DC electrical characteristics only.
3. An external driver must source at least the specified current to switch from LOW-to-HIGH.
4. An external driver must sink at least the specified current to switch from HIGH-to-LOW.
5. Outputs disabled or 3-state only.

AC CHARACTERISTICS (Note 6; $\mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}}=2.0 \mathrm{~ns} ; \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF} ; \mathrm{R}_{\mathrm{L}}=500 \Omega$)

Symbol	Parameter	Waveform	Limits						Unit
			$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$						
			$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V		$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to1.95 V		
			Min	Max	Min	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{t} L \mathrm{H}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay Input to Output	1	$\begin{aligned} & 0.6 \\ & 0.6 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 0.8 \\ & 0.8 \end{aligned}$	$\begin{aligned} & 4.2 \\ & 4.2 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 8.4 \\ & 8.4 \end{aligned}$	ns
$\begin{array}{\|l\|l} \hline \text { tpzH } \\ t_{\text {PZL }} \end{array}$	Output Enable Time to High and Low Level	2	$\begin{aligned} & 0.6 \\ & 0.6 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 0.8 \\ & 0.8 \end{aligned}$	$\begin{aligned} & 5.6 \\ & 5.6 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 9.8 \\ & 9.8 \end{aligned}$	ns
$\begin{array}{\|l\|l} \hline \text { tphz } \\ \text { tpLZ } \end{array}$	Output Disable Time From High and Low Level	2	$\begin{aligned} & 0.6 \\ & 0.6 \end{aligned}$	$\begin{aligned} & 3.6 \\ & 3.6 \end{aligned}$	$\begin{aligned} & 0.8 \\ & 0.8 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 7.2 \\ & 7.2 \end{aligned}$	ns
toshl tosth	Output-to-Output Skew (Note 7)			$\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$		$\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$		$\begin{aligned} & 0.75 \\ & 0.75 \end{aligned}$	ns

6. For $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$, add approximately 300 ps to the AC maximum specification.
7. Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (tosHL) or LOW-to-HIGH (tosLh); parameter guaranteed by design.

DYNAMIC SWITCHING CHARACTERISTICS

Symbol	Characteristic	Condition	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	Unit
			Typ	
$\mathrm{V}_{\text {OLP }}$	Dynamic LOW Peak Voltage (Note 8)	$\mathrm{V}_{\mathrm{CC}}=1.8 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}$	0.3	V
		$\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}$	0.7	
		$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}$	1.0	
$\mathrm{V}_{\text {OLV }}$	Dynamic LOW Valley Voltage (Note 8)	$\mathrm{V}_{\mathrm{CC}}=1.8 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}$	-0.3	V
		$\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\text {IL }}=0 \mathrm{~V}$	-0.7	
		$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}$	-1.0	
$\mathrm{V}_{\text {OHV }}$	Dynamic HIGH Valley Voltage (Note 9)	$\mathrm{V}_{\mathrm{CC}}=1.8 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}$	1.3	V
		$\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}$	1.7	
		$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}$	2.0	

8. Number of outputs defined as " n ". Measured with " $\mathrm{n}-1$ " outputs switching from HIGH-to-LOW or LOW-to-HIGH. The remaining output is measured in the LOW state.
9. Number of outputs defined as " n ". Measured with " n-1" outputs switching from HIGH-to-LOW or LOW-to-HIGH. The remaining output is measured in the HIGH state.

CAPACITIVE CHARACTERISTICS

Symbol	Parameter	Condition	Typical	Unit
$\mathrm{C}_{\text {IN }}$	Input Capacitance	Note 10	6	pF
$\mathrm{C}_{\text {OUT }}$	Output Capacitance	Note 10	7	pF
$\mathrm{C}_{\text {PD }}$	Power Dissipation Capacitance	Note $10,10 \mathrm{MHz}$	20	pF

10. $\mathrm{V}_{\mathrm{CC}}=1.8,2.5$ or $3.3 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=0 \mathrm{~V}$ or V_{CC}.

WAVEFORM 1 - PROPAGATION DELAYS
$t_{R}=t_{F}=2.0 \mathrm{~ns}, 10 \%$ to $90 \% ; f=1 \mathrm{MHz} ; \mathrm{t}_{\mathrm{W}}=500 \mathrm{~ns}$

WAVEFORM 2 - OUTPUT ENABLE AND DISABLE TIMES
$t_{R}=t_{F}=2.0 \mathrm{~ns}, 10 \%$ to $90 \% ; f=1 \mathrm{MHz} ; t_{W}=500 \mathrm{~ns}$
Figure 3. AC Waveforms

Figure 4. Test Circuit

PACKAGE DIMENSIONS

SO-20
DW SUFFIX
CASE 751D-05
ISSUE F

notes:

1. DIMENSIONS ARE IN MILLIMETERS.
2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 1994.
3. DIMENSIONS D AND E DO NOT INCLUDE MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.
5. DIMENSION B DOES NOT INCLUDE DAMBAR DIMENTUSION. ALLOWABLE PROTRUSION SHALL PROTRUSION. ALLOWABLE PROTRUSION SHALL
BE 0.13 TOTALIN EXCESS OF B DIMENSION AT BE 0.13 TOTAL IN EXCESS OF B DII
MAXIMUM MATERIAL CONDITION.

DIM	MILLIMETERS	
	MIN	MAX
A	2.35	2.65
A1	0.10	0.25
B	0.35	0.49
C	0.23	0.32
D	12.65	12.95
E	7.40	7.60
e	1.27	BSC
H	10.05	10.55
\mathbf{h}	0.25	0.75
L	0.50	0.90
$\boldsymbol{\theta}$	0°	7°

> TSSOP-20
> DT SUFFIX
> CASE 948E-02
> ISSUE A

PACKAGE DIMENSIONS

DQFN

 SUFFIX TBDCASE TBD
ISSUE O

NOTES:

CONTROLLING DIMENSION: MILLIMETERS.
2. DIMENSIONS A, D, AND E DO NOT INCLUDE MOLD PROTRUSION.

	MILLIMETERS	
DIM	MIN	
A	1.00 MSC	
A1	0.00	0.05
b	0.18	0.30
C	0.20	
DSC	4.4	4.6
D1	2.85	3.15
E	2.4	2.6
E1	0.85	1.15
e	0.5	
BSC	3.5	BSC
L	0.3	0.5

Abstract

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

Literature Fulfillment:
Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada
Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: ONlit@hibbertco.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada

JAPAN: ON Semiconductor, Japan Customer Focus Center 2-9-1 Kamimeguro, Meguro-ku, Tokyo, Japan 153-0051 Phone: 81-3-5773-3850

ON Semiconductor Website: http://onsemi.com
For additional information, please contact your local Sales Representative.

[^0]: H = High Voltage Level
 L = Low Voltage Level
 Z = High Impedance State
 X = High or Low Voltage Level and Transitions are Acceptable

