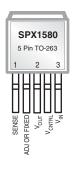


7A Ultra Dropout Voltage Regulator Fast Response, Adjustable & Fixed

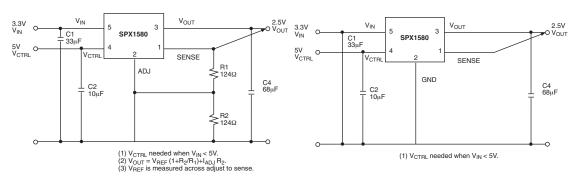

FEATURES

- Low Dropout Voltage 540mV at 7A Full Load Current
- Adjustable Ouput Down to 1.25V from ATX Power Supply
- Fixed Output Voltages of 3.3V and 2.5V
- Extremely Tight Load and Line Regulation
- Standard 5-Terminal Low Cost TO-220 and TO-263
- Replacement to Industry Standard LT1580

APPLICATIONS

- 3.3V ATX Power Supplies
- 3.3V to 2.9V for Portable PENTIUM[™] Processor
- 5V to 3.5V VRE Supply
- High efficiency "Green" Computer Systems

Now Available in Lead Free Packaging


DESCRIPTION

The SPX1580 is a 7A Low Dropout Regulator with extremely low dropout voltage. The adjustable version requires only two external resistors to set the output voltage. The fixed version has a preset output of 3.3V or 2.5V and does not require any external resistors. The SPX1580 features a low dropout of 540mV(Typ.) and offers fast transient response. This device is suitable for Pentium applications requiring 2.5V from 3.3V ATX power supplies, where a low current input voltage 1V greater than the output voltage is available. With an external sense pin the load regulation is less than 1mV. This device is an excellent choice for the use of powering low voltage microprocessors that require a lower dropout, fast transient response to regulate from 3.3V and 5V supplies. The SPX1580 is also an excellent choice as a post regulator for switching supplies applications.

The SPX1580 offers protection against over-current faults, reversed input polarity, over temperature operation and positive and negative transient voltage.

The SPX1580 is offered in a 5 pin TO-220 and TO-263 compatible with industry standard 5-terminal regualtors. For 5A, 3A and 1.5A ultra low dropout versions refer to SPX1581, SPX1582 and SPX1583 data sheets respectively.

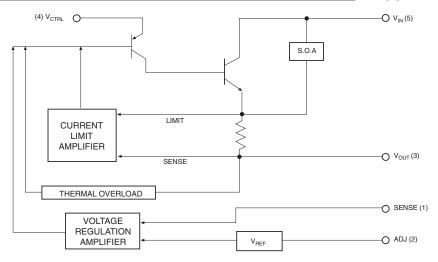
TYPICAL APPLICATIONS CIRCUITS

ABSOLUTE MAXIMUM RATINGS

Power Dissipation	Internally Limited
Lead Temp. (Soldering, 10 Seconds)	300°C
Storage Temperature Range	65°C to +150°C
Operating Junction Temperature Range	
SPX1580 Control Section	0°C to +125°C
SPX1580 Power Transistor	0°C to +150°C

Input	Supply Voltage	7V
V _{OTD}	Input Voltage	3.2V

ELECTRICAL CHARACTERISTICS


Electrical characteristics at $V_{OUT} = V_{SENSE}$, $V_{ADJ} = 0V$, $T_A = 25^{\circ}C$, $C_{CTL} = C_{PWR} = C_{OUT} = 33 \mu F$ tantalum cap unless otherwise specified. The \blacklozenge denotes the specifications which apply over the -40°C to 85°C temperature range, unless otherwise specified.

PARAMETER	MIN.	TYP.	MAX.	UNITS		CONDITIONS	
2.5V Version							
Output Voltage	2.45	2.5	2.55	V		$V_{CTRL} = 4.5V \text{ to } 12V, V_{IN} = V_{OUT} + 0.8V, I_{O} = 10\text{mA to } 7\text{A}$	
	2.40	2.5	2.60	ľ	•	$+0.8V$, $I_0 = 10mA$ to $7A$	
3.3V Version							
Output Voltage	3.234	3.3	3.366	V	*	$V_{CTRL} = 4.5V \text{ to } 12V, V_{IN} = V_{OUT} + 0.8V, I_{O} = 10\text{mA to } 7\text{A}$	
	3.168	3.3	3.432	ľ	*	1+0.6V, I ₀ = 10111A to 7A	
All Voltage Options							
Reference Voltage (Note 3)	1.237	1.25	1.263			$V_{CTRL} = 4.5V, V_{IN} = 2.05V, I_{O} = 10mA$	
	1.231	-	1.269	ľ	*	$V_{CTRL} = 4.5V$, $V_{IN} = 2.05V$, $I_{O} = 10$ mA to 7A	
Line Regulation	-	1.0	-	mV		$V_{CTRL} = 4.5V \text{ to } 12V, V_{IN} = V_{OUT} + 0.8V \text{ to } 5.5V, I_{O} = 10\text{mA}$	
	-	-	3.0	1111	•	0.8V to 5.5V, I _O = TOTIA	
Load Regulation (Note 1)	-	1.1	-	mV		$V_{CTRL} = 4.5V \text{ to } 12V, V_{IN} = V_{OUT} + 0.8V, I_{O} = 10\text{mA}$	
	-	-	5.0	1111	*		
Dropout Voltage Minimum VIN (Note 2) (VIN - VOUT)		0.54	0.80	V		$V_{CTRL} = 4.75V, I_O = 7A$	
Current Limit	7.1	-	-	А		$V_{CTRL} = 4.5V, V_{IN} = 2.05V, V_{OUT} = 100 \text{mV}$	
Minimum Load Current	i	5	-	mA		$V_{CTRL} = 5V, V_{IN} = V_{OUT} + 0.8V$	
	-	-	10	IIIA	•		
Thermal Regulation	-	0.002	0.02	%/W		30mS Pulse	
Ripple Rejection	60	80	-	dB		$V_{CTRL} = 5V, V_{IN} = 5V, I_{O} = 7A$	
Control Pin Current	i	60	-	mA		$V_{\text{CTRL}} = 4.5 \text{V}, V_{\text{IN}} = V_{\text{OUT}} + 0.8 \text{V}, I_{\text{O}}$	
	i	-	130	IIIA ◆] = 7A	
Adjustable Pin Current	-	50	-	μA		V _{CTRL} = 4.5V, V _{IN} = 2.05V, I _O = 10mA	
			120	μΑ	*	TOTIA	
Thermal Resistance	-	2	-	°C/W		Junction to Case (\emptyset_{JC})	
TO-220 & TO-263	-	60	-	J/VV		Junction to Ambient ($\mathcal{O}_{_{\! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! $	

Pin Number	Pin Name	DESCRIPTION
1	SENSE	Allows Kelvin sense of V_{OUT} at load. (Positive side of the reference voltage of the device)
2	ADJ	Negative side of the reference voltage for the device. Adding a small bypass capacitor from ADJ pin to ground will improve the transient response.
3	V _{OUT}	Power output of the device.
4	V _{CTRL}	Supply pin for the control circuitry of the device. The current flow into this pin will be about 1% of the output current. V_{CTRL} must be between 0.1V and 1.3V greater than the ouput voltage for the device to regulate.
5	V _{IN}	Output load current is supplied through this pin. $V_{\rm IN}$ must be between 0.1V and 0.8V greater than the output voltage for this device to regulate.

Note that TAB is internally connected to Pin 3.

BLOCK DIAGRAM

APPLICATION INFORMATION

The SPX1580 is designed as a high performance and low cost solution for application requiring a lower dropout than traditional NPN regulators.

The SPX1580 uses a separate input voltage V_{CTRL} ($V_{CTRL} \ge V_{OUT} + 1.3V$) to minimize the dropout voltage. This allows the 2.5V power for the load to come from a 3.3V system supply.

As added benefit this will reduce the heat dissipation*, and lower heatsink and cooling fan cost. A typical application would use 3.3V for V_{IN} and 5.0V for V_{CTRL} from a motherboard power supply to provide a nominal 2.5V output. Using the sense pin allows Kelvin measure the output, reducing resistance-associated errors.

The SPX1580 can power the 2.5V core voltage for microprocessors such as a PentiumPCTM, P55CTM, AMD5k86TM and K6TM and the IBM PowerPCTM 603EV and 604EV processors.

Output Capacitor

An output capacitor for SPX1580 is for circuit compensation for the device to prevent oscilliation. The minimum size of the output capacitor is either a 330 μ F aluminum electrolytic capacitor or 33 ν F tantalum. Larger capacitor values improve the regulator transient response performance and increase surge load capability. The output capacitor should have an ESR not more than 0.3 Ω .

Adjustable Regulator Design

1.25V reference voltage is being developed between the SENSE pin and the ADJ pin of the SPX1580. Adding two external resistors (see fig 1.) will allow setting the output voltage from 1.25V to 6V. $R_{\rm 1}$ is chosen so that this current is specified minimum load current of 10mA. $R_{\rm 2}$ is given by the formula: $V_{\rm OUT} = V_{\rm REF} \, (1 + R_2/R_1) + I_{\rm ADJ} \, (R_2)$. The current flowing from the ADJ pin is typicaly 50uA. This ADJ pin contributes to the final $V_{\rm OUT}$ but is usually neglected. Connecting the sense pin to the top of the resistor divider will improve load regualtion.

Lowering Noise

Using the SENSE pin to Kelvin the load will increase accuracy of the output voltage during load regulation. For the fixed voltage device, adding a bypass capacitor from ADJ pin to ground improves transient response. A 330pF ceramic capacitor is recommended.

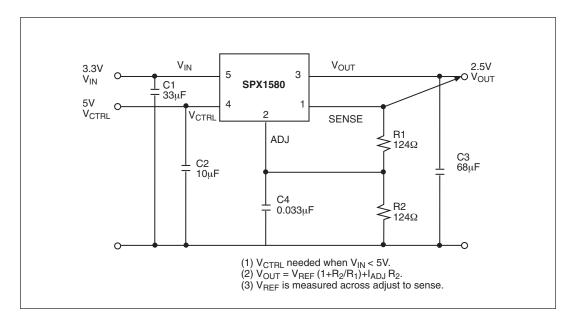
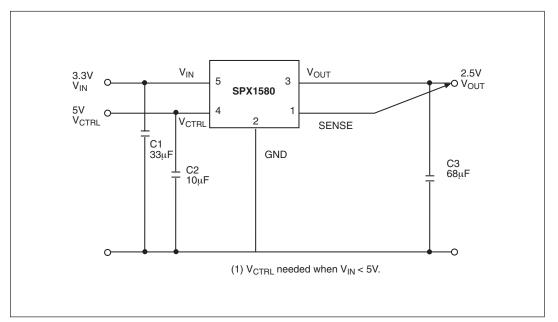
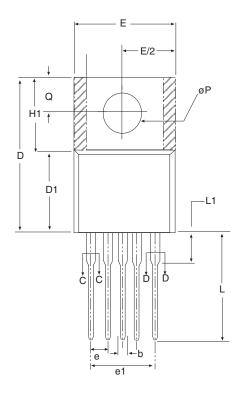
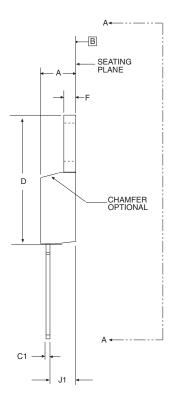
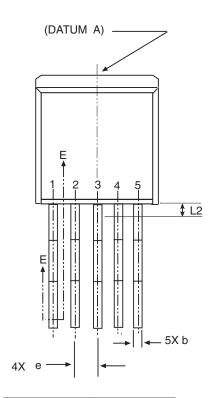
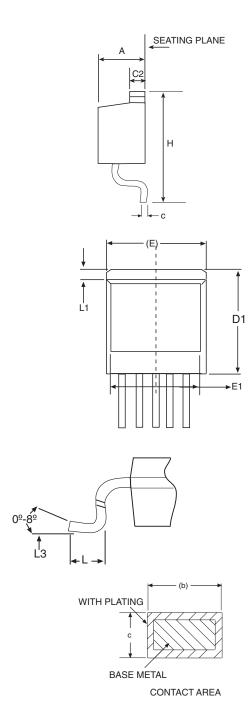


Figure 1. Adjustable Regulator.


Figure 2. Typical Fixed Regulator.



5 PIN TO-220	Dimensions in (inches)		
	MIN	NOM	MAX
Α	.160	-	.190
b	.015	-	.040
C1	.014	-	.022
D	.560	-	.590
E	.385	-	.415
е	.385	-	.415
e1	.062	-	.072
F	.045	-	.055
H1	.234	-	.258
J1	.090	-	.115
L	.540	-	.560
L1		-	.250
ΔΡ	.146	-	.156
Q	.103	-	.113
U	-	.30	-
V	-	.24	-

5 PIN TO-220

5 PIN TO-263 JEDEC TO-263 (BB) Variation	Dimensions in (mm)		
(BB) Variation	MIN	NOM	MAX
Α	.160	-	.190
A1	0	-	.010
b	.020	-	.039
С	.015	-	.029
c2	.045	-	.023
D1	.270	-	-
E	.380	-	.420
E1	.245	-	-
е	.067 BSC		
Н	.575	-	.625
L	.070	-	.110
L1	-	-	.066
L2	-	-	.070
L3	.010 BSC		

5 PIN TO-263

ORDERING INFORMATION

Part Number	Operating Temperature Range	Package Type
SPX1580U5	40°C to +85°C	5 Pin TO-220
SPX1580U5-2.5	40°C to +85°C	5 Pin TO-220
SPX1580U5-3.3	40°C to +85°C	5 Pin TO-220
SPX1580T5	40°C to +85°C	5 Pin TO-263
SPX1580T5/TR	40°C to +85°C	5 Pin TO-263
SPX1580T5-2.5	40°C to +85°C	5 Pin TO-263
SPX1580T5-2.5/TR	40°C to +85°C	5 Pin TO-263
SPX1580T5-3.3	40°C to +85°C	5 Pin TO-263
SPX1580T5-3.3/TR	40°C to +85°C	5 Pin TO-263

Available in lead free packaging. To order add "-L" suffix to part number. Example: SPX1580T5-3.3/TR = standard; SPX1580T5-L-3.3/TR = lead free

/TR = Tape and Reel

Pack quantity is 500 for TO-263.

Sipex Corporation

Headquarters and Sales Office 233 South Hillview Drive Milpitas, CA 95035 TEL: (408) 934-7500 FAX: (408) 935-7600

Sipex Corporation reserves the right to make changes to any products described herein. Sipex does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others.