

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All recreations are done with the approval of the OCM.

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceed the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-35835
 - Class Q Military
 - Class V Space Level
- Qualified Suppliers List of Distributors (QSLD)

• Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

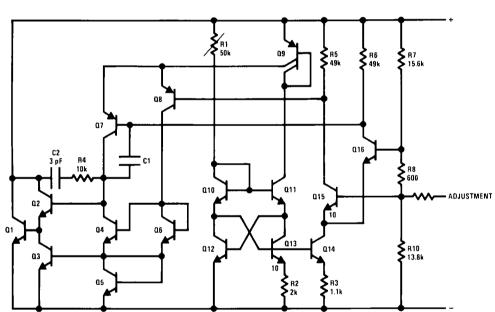
The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OEM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

LM135/LM235/LM335, LM135A/LM235A/LM335A Precision Temperature Sensors

General Description

The LM135 series are precision, easily-calibrated, integrated circuit temperature sensors. Operating as a 2-terminal zener, the LM135 has a breakdown voltage directly proportional to absolute temperature at +10 mV/°K. With less than 1 Ω dynamic impedance the device operates over a current range of 400 μ A to 5 mA with virtually no change in performance. When calibrated at 25°C the LM135 has typically less than 1° C error over a 100°C temperature range. Unlike other sensors the LM135 has a linear output.

Applications for the LM135 include almost any type of temperature sensing over a -55° C to 150° C temperature range. The low impedance and linear output make interfacing to readout or control circuitry especially easy.


The LM135 operates over a -55° C to 150° C temperature range while the LM235 operates over a -40° C to 125° C tem-

perature range. The LM335 operates from -40°C to 100°C. The LM135/LM235/LM335 are available packaged in hermetic TO-46 transistor packages while the LM335 is also available in plastic TO-92 packages.

Features

- Directly calibrated in °Kelvin
- 1°C initial accuracy available
- Operates from 400 µA to 5 mA
- Less than 1Ω dynamic impedance
- Easily calibrated
- Wide operating temperature range
- 200°C overrange
- Low cost

Schematic Diagram

569801

Absolute Maximum Ratings (Note 4)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

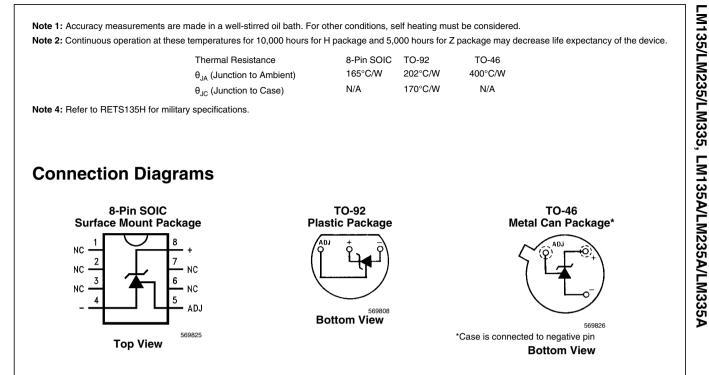
Reverse Current	15 mA
Forward Current	10 mA
Storage Temperature	
8-Pin SOIC Package	–65°C to 150°C
TO-92 Package	–60°C to 150°C
TO-46 Package	-60°C to 180°C

Specified Operating Temp. Range Continuous

	Continuous	Intermittent (Note 2)
LM135, LM135A	–55°C to 150°C	150°C to 200°C
LM235, LM235A	–40°C to 125°C	125°C to 150°C
LM335, LM335A	–40°C to 100°C	100°C to 125°C
Lead Temp. (Solde	ering, 10 seconds)	
8-Pin SOIC Pac	kage:	300°C
Vapor Phase	(60 seconds):	215°C
Infrared (15 se	econds):	220°C
TO-92 Package	:	260°C
TO-46 Package	:	300°C

Temperature Accuracy (Note 1) LM135/LM235, LM135A/LM235A

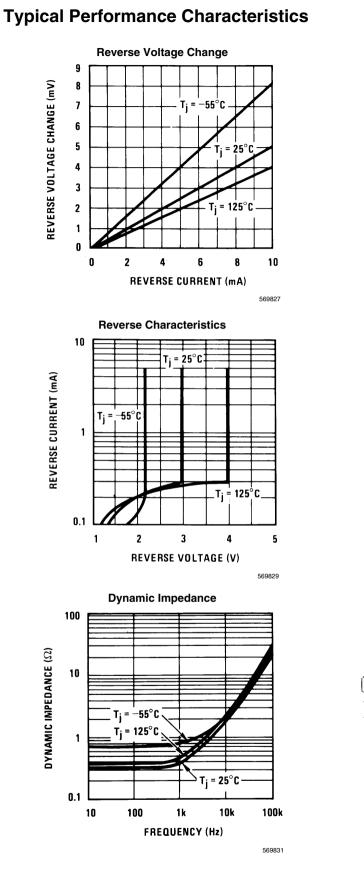
Parameter	Conditions	LM135A/LM235A		LM135/LM235			Units	
		Min	Тур	Max	Min	Тур	Max	
Operating Output Voltage	$T_{c} = 25^{\circ}C, I_{R} = 1 \text{ mA}$	2.97	2.98	2.99	2.95	2.98	3.01	V
Uncalibrated Temperature Error	$T_{\rm C} = 25^{\circ}{\rm C}, \ I_{\rm R} = 1 \ {\rm mA}$		0.5	1		1	3	°C
Uncalibrated Temperature Error	$T_{MIN} \le T_C \le T_{MAX}, I_R = 1 \text{ mA}$		1.3	2.7		2	5	°C
Temperature Error with 25°C	$T_{MIN} \le T_C \le T_{MAX}, I_R = 1 \text{ mA}$		0.3	1		0.5	1.5	°C
Calibration								
Calibrated Error at Extended	$T_{C} = T_{MAX}$ (Intermittent)		2			2		°C
Temperatures								
Non-Linearity	I _B = 1 mA		0.3	0.5		0.3	1	°C

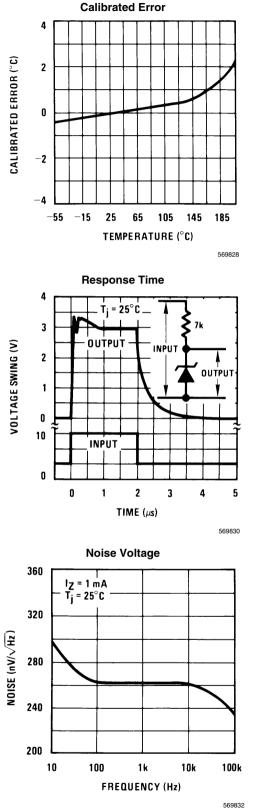

Temperature Accuracy (Note 1)

LM335, LM335A

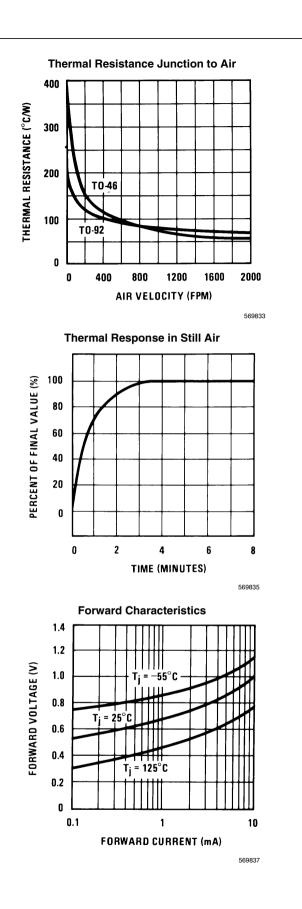
Parameter	Conditions	LM335A		LM335		Units		
		Min	Тур	Max	Min	Тур	Max	
Operating Output Voltage	$T_{\rm C} = 25^{\circ}{\rm C}, I_{\rm R} = 1 {\rm mA}$	2.95	2.98	3.01	2.92	2.98	3.04	V
Uncalibrated Temperature Error	$T_{c} = 25^{\circ}C, I_{R} = 1 \text{ mA}$		1	3		2	6	°C
Uncalibrated Temperature Error	$T_{MIN} \le T_C \le T_{MAX}, I_R = 1 \text{ mA}$		2	5		4	9	°C
Temperature Error with 25°C	$T_{MIN} \le T_C \le T_{MAX}, I_R = 1 \text{ mA}$		0.5	1		1	2	°C
Calibration								
Calibrated Error at Extended	$T_{C} = T_{MAX}$ (Intermittent)		2			2		°C
Temperatures								
Non-Linearity	I _R = 1 mA		0.3	1.5		0.3	1.5	°C

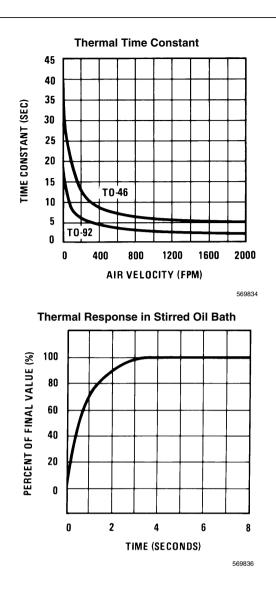
Electrical Characteristics (Note 1)


Parameter	Conditions		LM135/LM235 LM135A/LM235A		LM335 LM335A			Units
		Min	Тур	Max	Min	Тур	Max	
Operating Output Voltage	400 µA ≤ I _R ≤ 5 mA		2.5	10		3	14	mV
Change with Current	At Constant Temperature							
Dynamic Impedance	I _R = 1 mA		0.5			0.6		Ω
Output Voltage Temperature Coefficient			+10			+10		mV/°C
Time Constant	Still Air		80			80		sec
	100 ft/Min Air		10			10		sec
	Stirred Oil		1			1		sec
Time Stability	T _C = 125°C		0.2			0.2		°C/khr



Ordering Information


Package	Part Number	Package Marking	Transport Media	NSC Drawing	
	LM335AM	LM335AM	95 Units/Rail		
8-Pin SOIC	LM335AMX	LIVISSSAIVI	2.5k Units Tape and Reel		
0-PIN 5010	LM335M		95 Units/Rail	IVIUOA	
	LM335MX LM335M		2.5k Units Tape and Reel		
TO-92	LM335AZ LM335AZ 1800 Bag		1800 Bag	Z03Z	
10-92	LM335Z LM335Z		1800 Bag	2032	
	LM135AH	LM135AH	1000 Bag		
	LM135H	LM135H	1000 Bag		
TO-46	LM235AH LM235AH		1000 Bag	Нозн	
LM235H LM335AH		LM235H	1000 Bag		
		LM335AH	1000 Bag		
	LM335H	LM335H	1000 Bag		



Application Information

CALIBRATING THE LM135

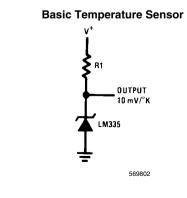
Included on the LM135 chip is an easy method of calibrating the device for higher accuracies. A pot connected across the LM135 with the arm tied to the adjustment terminal allows a 1-point calibration of the sensor that corrects for inaccuracy over the full temperature range.

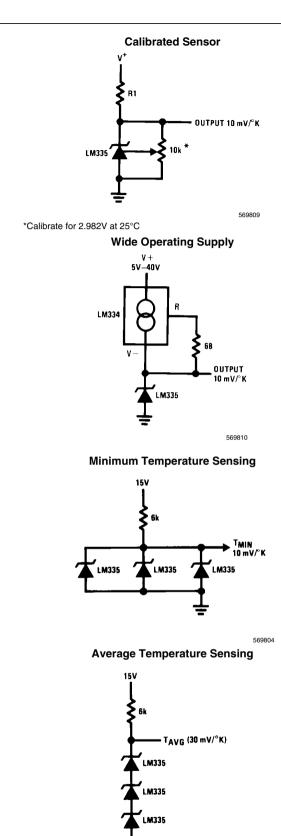
This single point calibration works because the output of the LM135 is proportional to absolute temperature with the extrapolated output of sensor going to 0V output at 0° K (-273.15°C). Errors in output voltage versus temperature are only slope (or scale factor) errors so a slope calibration at one temperature corrects at all temperatures.

The output of the device (calibrated or uncalibrated) can be expressed as:

$$V_{OUT_T} = V_{OUT_T_0} \times \frac{T}{T_0}$$

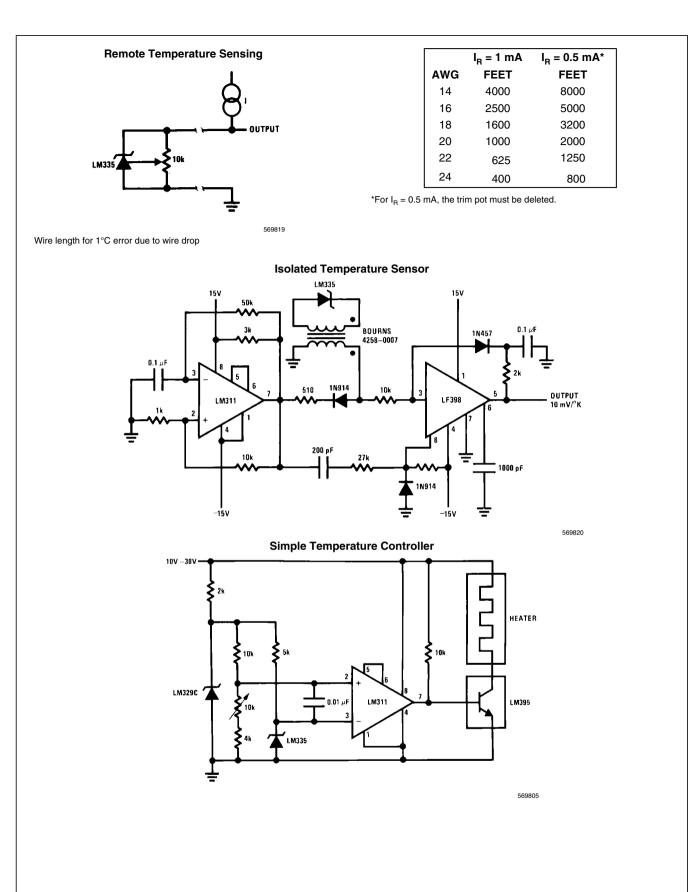
where T is the unknown temperature and T_o is a reference temperature, both expressed in degrees Kelvin. By calibrating the output to read correctly at one temperature the output at all temperatures is correct. Nominally the output is calibrated at 10 mV/°K.

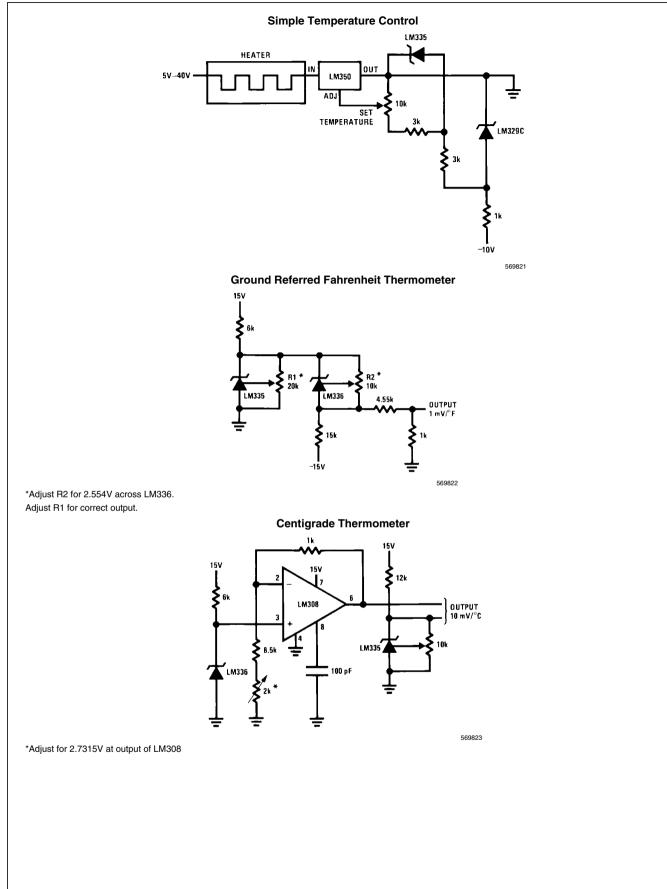

To insure good sensing accuracy several precautions must be taken. Like any temperature sensing device, self heating can reduce accuracy. The LM135 should be operated at the lowest current suitable for the application. Sufficient current, of course, must be available to drive both the sensor and the calibration pot at the maximum operating temperature as well as any external loads.

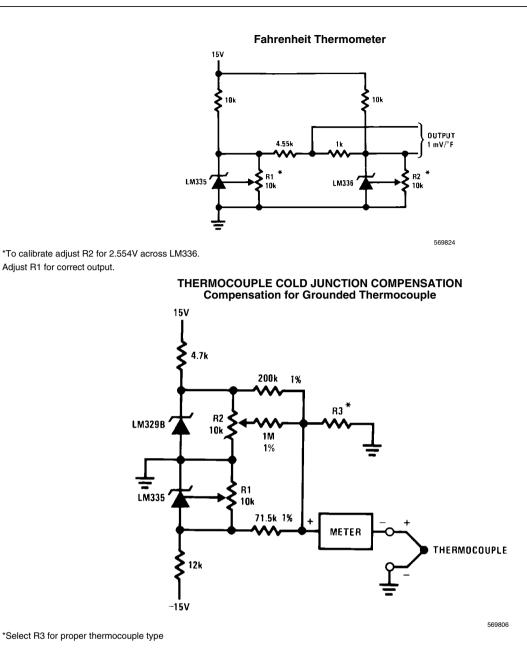

If the sensor is used in an ambient where the thermal resistance is constant, self heating errors can be calibrated out. This is possible if the device is run with a temperature stable current. Heating will then be proportional to zener voltage and therefore temperature. This makes the self heating error proportional to absolute temperature the same as scale factor errors.

WATERPROOFING SENSORS

Meltable inner core heat shrinkable tubing such as manufactured by Raychem can be used to make low-cost waterproof sensors. The LM335 is inserted into the tubing about $\frac{1}{2}$ from the end and the tubing heated above the melting point of the core. The unfilled $\frac{1}{2}$ end melts and provides a seal over the device.

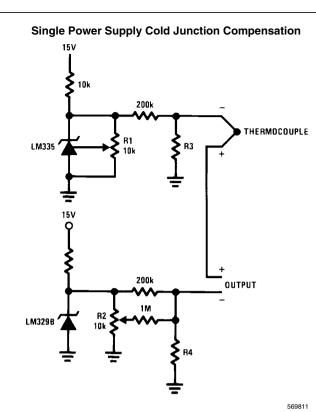

Typical Applications





www.national.com

THERMO-	R3	SEEBECK
COUPLE	(±1%)	COEFFICIENT
J	377Ω	52.3 μV/°C
Т	308Ω	42.8 µV/°C
к	293Ω	40.8 µV/°C
S	45.8Ω	6.4 μV/°C


Adjustments: Compensates for both sensor and resistor tolerances

1. Short LM329B

2. Adjust R1 for Seebeck Coefficient times ambient temperature (in degrees K) across R3.

3. Short LM335 and adjust R2 for voltage across R3 corresponding to thermocouple type.

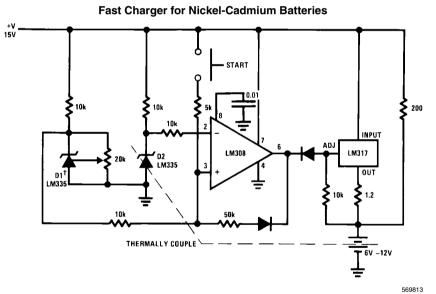
J	14.32 mV	K	11.17 mV
Т	11.79 mV	S	1.768 mV

*Select R3 and R4 for thermocouple type

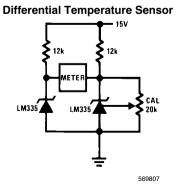
THERMO-	R3	R4	SEEBECK
COUPLE			COEFFICIENT
J	1.05K	385Ω	52.3 µV/°C
Т	856Ω	315Ω	42.8 µV/°C
К	816Ω	300Ω	40.8 µV/°C
S	128Ω	46.3Ω	6.4 μV/°C

Adjustments:

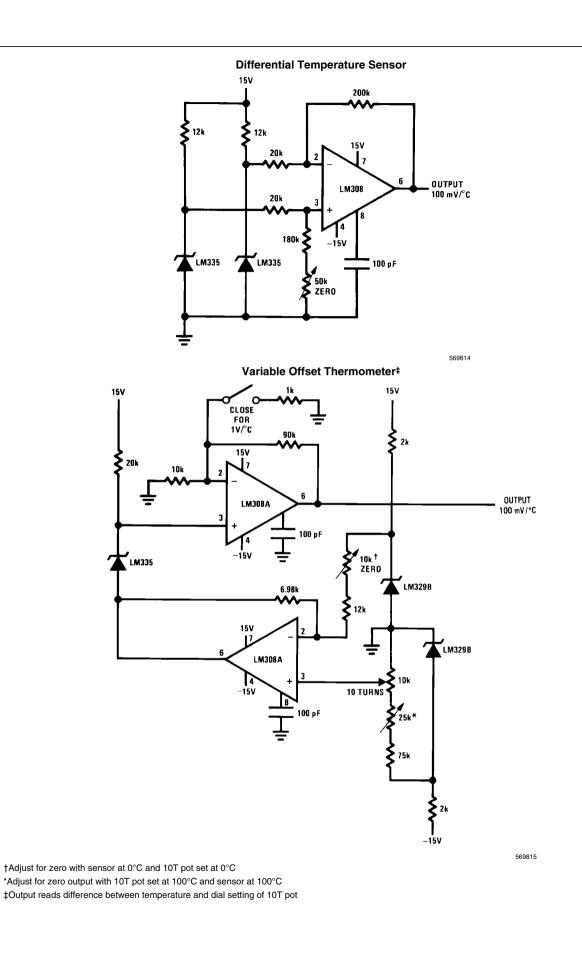
Adjust R1 for the voltage across R3 equal to the Seebeck Coefficient times ambient temperature in degrees Kelvin.
Adjust R2 for voltage across R4 corresponding to thermocouple.

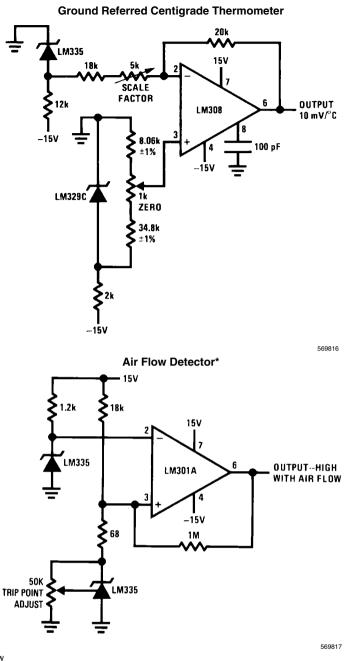

,	0
J	14.32 mV
Т	11.79 mV
К	11.17 mV
S	1.768 mV

Terminate thermocouple reference junction in close proximity to LM335. Adjustments:

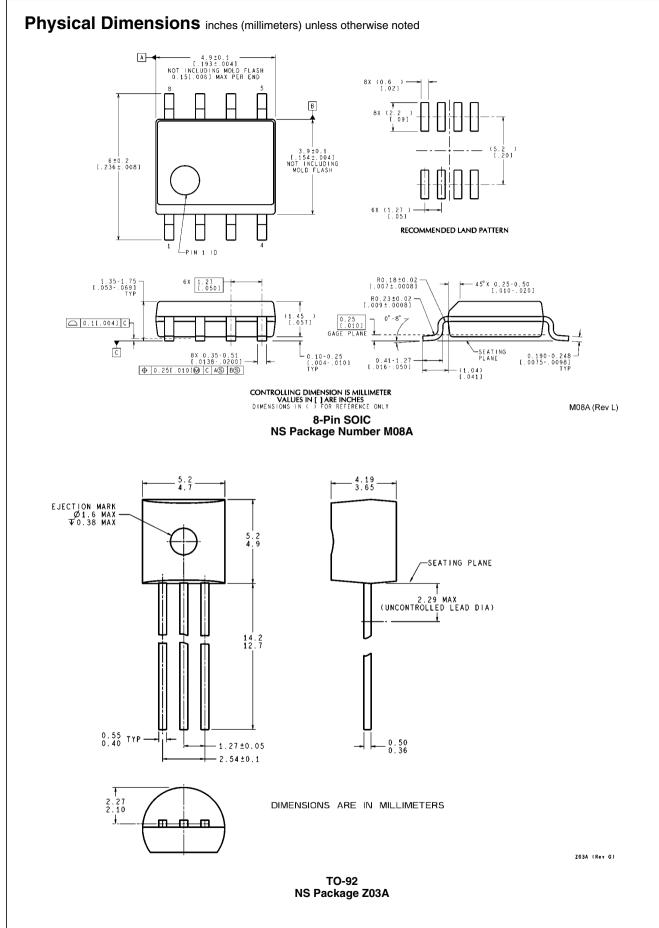

1. Apply signal in place of thermocouple and adjust R3 for a gain of 245.7.

- 2. Short non-inverting input of LM308A and output of LM329B to ground.
- 3. Adjust R1 so that $V_{OUT} = 2.982V @ 25^{\circ}C$.
- 4. Remove short across LM329B and adjust R2 so that $V_{OUT} = 246 \text{ mV} @ 25^{\circ}\text{C}$.
- 5. Remove short across thermocouple.



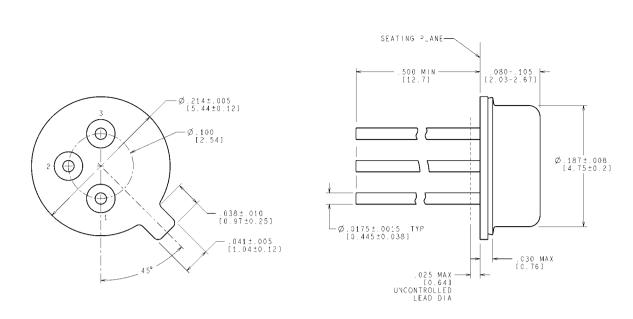

 \uparrow Adjust D1 to 50 mV greater V₇ than D2.

Charge terminates on 5°C temperature rise. Couple D2 to battery.


*Self heating is used to detect air flow

DEFINITION OF TERMS

Operating Output Voltage: The voltage appearing across the positive and negative terminals of the device at specified conditions of operating temperature and current.


Uncalibrated Temperature Error: The error between the operating output voltage at 10 mV/ $^{\circ}$ K and case temperature at specified conditions of current and case temperature.

Calibrated Temperature Error: The error between operating output voltage and case temperature at 10 mV/°K over a temperature range at a specified operating current with the 25°C error adjusted to zero.

LM135/LM235/LM335, LM135A/LM235A/LM335A

CONTROLLING DIMENSION IS INCH VALUES IN [] ARE IN MILLIMETERS

H03H (Rev F)

TO-46 NS Package Number H03H

Notes

For more National Semiconductor product information and proven design tools, visit the following Web sites at:

Pr	oducts	De	sign Support
Amplifiers	www.national.com/amplifiers	WEBENCH® Tools	www.national.com/webench
Audio	www.national.com/audio	App Notes	www.national.com/appnotes
Clock and Timing	www.national.com/timing	Reference Designs	www.national.com/refdesigns
Data Converters	www.national.com/adc	Samples	www.national.com/samples
Interface	www.national.com/interface	Eval Boards	www.national.com/evalboards
LVDS	www.national.com/lvds	Packaging	www.national.com/packaging
Power Management	www.national.com/power	Green Compliance	www.national.com/quality/green
Switching Regulators	www.national.com/switchers	Distributors	www.national.com/contacts
LDOs	www.national.com/ldo	Quality and Reliability	www.national.com/quality
LED Lighting	www.national.com/led	Feedback/Support	www.national.com/feedback
Voltage Reference	www.national.com/vref	Design Made Easy	www.national.com/easy
PowerWise® Solutions	www.national.com/powerwise	Solutions	www.national.com/solutions
Serial Digital Interface (SDI)	www.national.com/sdi	Mil/Aero	www.national.com/milaero
Temperature Sensors	www.national.com/tempsensors	Solar Magic®	www.national.com/solarmagic
Wireless (PLL/VCO)	www.national.com/wireless	Analog University®	www.national.com/AU

THE CONTENTS OF THIS DOCUMENT ARE PROVIDED IN CONNECTION WITH NATIONAL SEMICONDUCTOR CORPORATION ("NATIONAL") PRODUCTS. NATIONAL MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS PUBLICATION AND RESERVES THE RIGHT TO MAKE CHANGES TO SPECIFICATIONS AND PRODUCT DESCRIPTIONS AT ANY TIME WITHOUT NOTICE. NO LICENSE, WHETHER EXPRESS, IMPLIED, ARISING BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT.

TESTING AND OTHER QUALITY CONTROLS ARE USED TO THE EXTENT NATIONAL DEEMS NECESSARY TO SUPPORT NATIONAL'S PRODUCT WARRANTY. EXCEPT WHERE MANDATED BY GOVERNMENT REQUIREMENTS, TESTING OF ALL PARAMETERS OF EACH PRODUCT IS NOT NECESSARILY PERFORMED. NATIONAL ASSUMES NO LIABILITY FOR APPLICATIONS ASSISTANCE OR BUYER PRODUCT DESIGN. BUYERS ARE RESPONSIBLE FOR THEIR PRODUCTS AND APPLICATIONS USING NATIONAL COMPONENTS. PRIOR TO USING OR DISTRIBUTING ANY PRODUCTS THAT INCLUDE NATIONAL COMPONENTS, BUYERS SHOULD PROVIDE ADEQUATE DESIGN, TESTING AND OPERATING SAFEGUARDS.

EXCEPT AS PROVIDED IN NATIONAL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, NATIONAL ASSUMES NO LIABILITY WHATSOEVER, AND NATIONAL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY RELATING TO THE SALE AND/OR USE OF NATIONAL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF THE CHIEF EXECUTIVE OFFICER AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b) support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in a significant injury to the user. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness.

National Semiconductor and the National Semiconductor logo are registered trademarks of National Semiconductor Corporation. All other brand or product names may be trademarks or registered trademarks of their respective holders.

Copyright© 2008 National Semiconductor Corporation

For the most current product information visit us at www.national.com

National Semiconductor Americas Technical Support Center Email: support@nsc.com Tel: 1-800-272-9959 National Semiconductor Europe Technical Support Center Email: europe.support@nsc.com German Tel: +49 (0) 180 5010 771 English Tel: +44 (0) 870 850 4288 National Semiconductor Asia Pacific Technical Support Center Email: ap.support@nsc.com National Semiconductor Japan Technical Support Center Email: jpn.feedback@nsc.com