

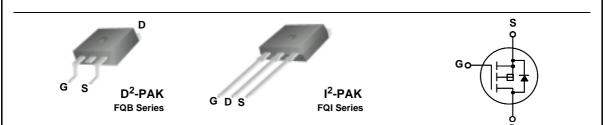
FQB6P25 / FQI6P25

250V P-Channel MOSFET

General Description

These P-Channel enhancement mode power field effect transistors are produced using Fairchild's proprietary, planar stripe, DMOS technology.

This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and withstand high energy pulse in the avalanche and commutation mode. These devices are well suited for high efficiency switching DC/DC converters.


Features

• -6.0A, -250V, $R_{DS(on)}$ = 1.1 Ω @V_{GS} = -10 V • Low gate charge (typical 21 nC)

April 2000

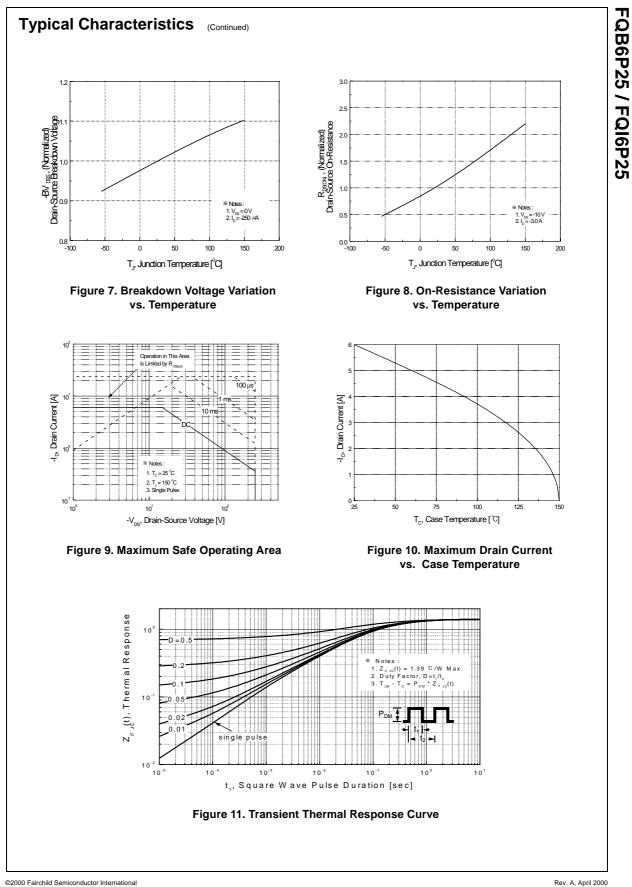
ТМ

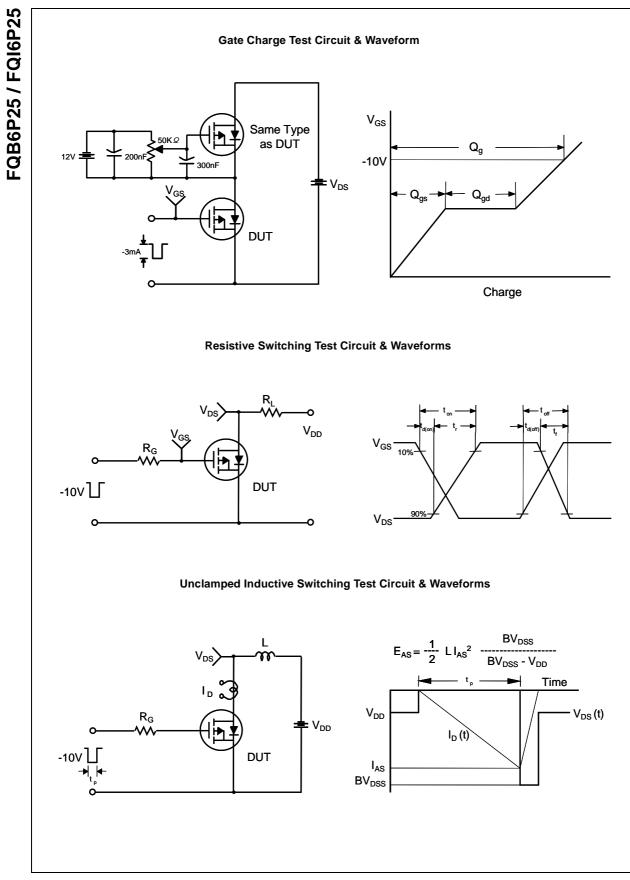
- Low Crss (typical 20 pF)
- · Fast switching
- 100% avalanche tested
- · Improved dv/dt capability

Absolute Maximum Ratings T_c = 25°C unless otherwise noted

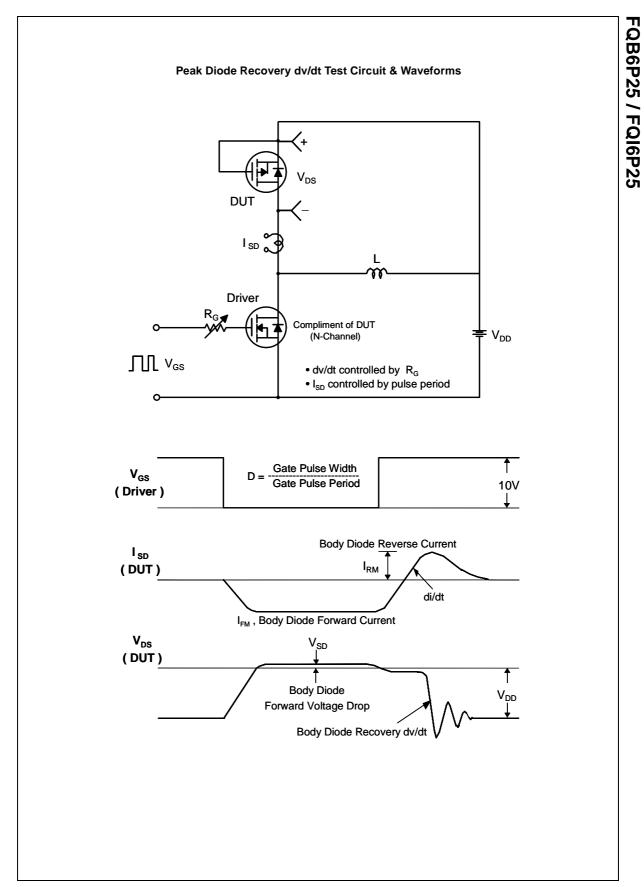

Symbol	Parameter		FQB6P25 / FQI6P25	Units	
V _{DSS}	Drain-Source Voltage		-250	V	
I _D	Drain Current - Continuous (T _C = 25°	°C)	-6.0	А	
	- Continuous (T _C = 100	D°C)	-3.8	А	
I _{DM}	Drain Current - Pulsed	(Note 1)	-24	А	
V _{GSS}	Gate-Source Voltage		± 30	V	
E _{AS}	Single Pulsed Avalanche Energy	(Note 2)	540	mJ	
I _{AR}	Avalanche Current	(Note 1)	-6.0	А	
E _{AR}	Repetitive Avalanche Energy	(Note 1)	9.0	mJ	
dv/dt	Peak Diode Recovery dv/dt	(Note 3)	-5.5	V/ns	
P _D	Power Dissipation $(T_A = 25^{\circ}C)^{*}$		3.13	W	
	Power Dissipation $(T_C = 25^{\circ}C)$		90	W	
	- Derate above 25°C		0.72	W/°C	
T _J , T _{STG}	Operating and Storage Temperature Range		-55 to +150	°C	
TL	Maximum lead temperature for soldering purposes, 1/8" from case for 5 seconds		300	°C	

Thermal Characteristics

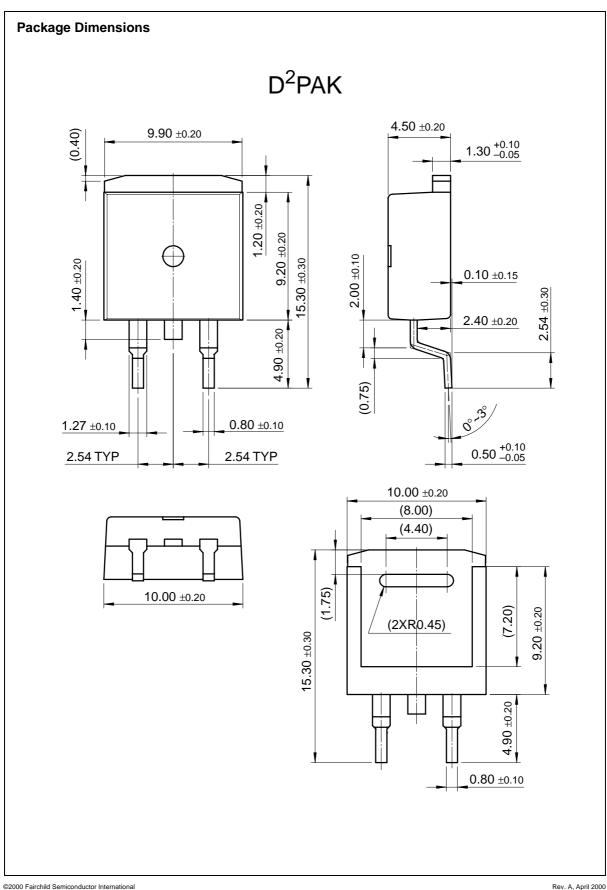

Symbol	Parameter	Тур	Max	Units	
$R_{ extsf{ heta}JC}$	Thermal Resistance, Junction-to-Case		1.39	°C/W	
R_{\thetaJA}	Thermal Resistance, Junction-to-Ambient *		40	°C/W	
$R_{\theta,JA}$	Thermal Resistance, Junction-to-Ambient		62.5	°C/W	

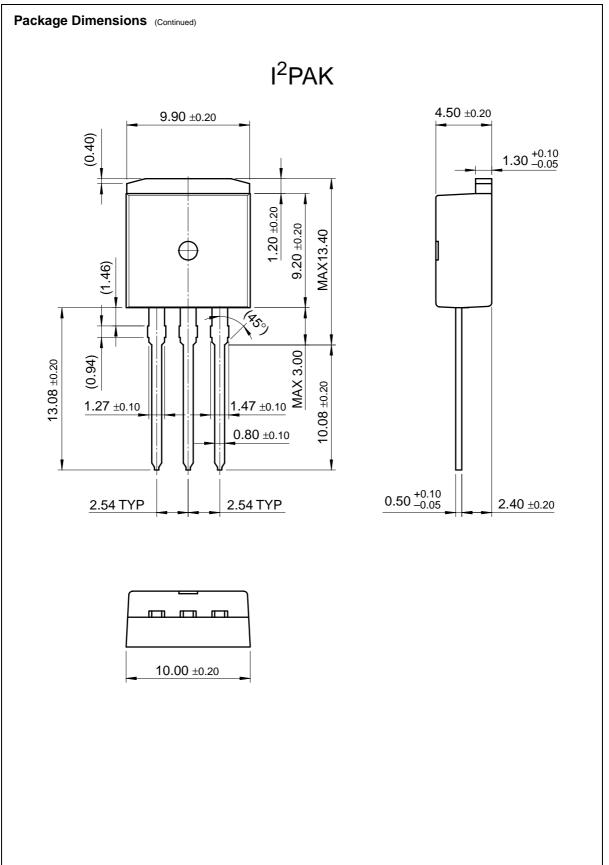

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
	aracteristics					
BV _{DSS}		V _{GS} = 0 V, I _D = -250 μA	250			V
	Drain-Source Breakdown Voltage	$v_{GS} = 0 v, i_D = -250 \mu A$	-250			V
ΔΒV _{DSS} / ΔT _J	Breakdown Voltage Temperature Coefficient	$I_D = -250 \ \mu\text{A}$, Referenced to 25°C		-0.1		V/°C
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = -250 \text{ V}, V_{GS} = 0 \text{ V}$			-1	μΑ
	Zero Gale Voltage Drain Current	$V_{DS} = -200 \text{ V}, \text{ T}_{C} = 125^{\circ}\text{C}$			-10	μΑ
I _{GSSF}	Gate-Body Leakage Current, Forward	$V_{GS} = -30 \text{ V}, V_{DS} = 0 \text{ V}$			-100	nA
I _{GSSR}	Gate-Body Leakage Current, Reverse	$V_{GS} = 30 \text{ V}, V_{DS} = 0 \text{ V}$			100	nA
On Cha	aracteristics					
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = -250 \ \mu A$	-3.0		-5.0	V
R _{DS(on)}	Static Drain-Source On-Resistance	V _{GS} = -10 V, I _D = -3.0 A		0.82	1.1	Ω
9 _{FS}	Forward Transconductance	$V_{DS} = -40 \text{ V}, I_{D} = -3.0 \text{ A}$ (Note 4)		3.3		S
C _{iss} C _{oss} C _{rss}	Input Capacitance Output Capacitance Reverse Transfer Capacitance	V _{DS} = -25 V, V _{GS} = 0 V, f = 1.0 MHz		600 115 20	780 150 25	pF pF pF
	ing Characteristics			20	20	р
	Turn-On Delay Time			13	35	ns
t _{d(on)} t _r	Turn-On Rise Time	$V_{DD} = -125 \text{ V}, \text{ I}_{D} = -6.0 \text{ A},$		75	160	ns
	Turn-Off Delay Time	$R_{G} = 25 \Omega$		40	90	ns
t _{d(off)} t _f	Turn-Off Fall Time	(Note 4, 5)		50	110	ns
պ Q _g	Total Gate Charge	<u> </u>		21	27	nC
Q _{gs}	Gate-Source Charge	$V_{DS} = -200 \text{ V}, \text{ I}_{D} = -6.0 \text{ A},$		4.7		nC
Q _{ad}	Gate-Drain Charge	V _{GS} = -10 V (Note 4, 5)		10.7		nC
∽ga				10.7		110
Drain-S	ource Diode Characteristics a				-6.0	Α
Drain-S	Source Diode Characteristics an Maximum Continuous Drain-Source Dic	ode Forward Current				
		orward Current			-24	А
ls	Maximum Continuous Drain-Source Dic				-24 -5.0	A V
I _S I _{SM}	Maximum Continuous Drain-Source Dic Maximum Pulsed Drain-Source Diode F	orward Current		 170		

1. Repetitive Rating : Pulse width limited by maximum junction temperature 2. L = 24mH, I_{AS} = -6.0A, V_{DD} = -50V, R_G = 25 Ω , Starting T_J = 25°C 3. I_{SD} \leq -6.0A, di/dt \leq 300A/ μ s, V_{DD} \leq BV_{DSS}, Starting T_J = 25°C 4. Pulse Test : Pulse width \leq 300 μ s, Duty cycle \leq 2% 5. Essentially independent of operating temperature


Typical Characteristics V. -15V -80V -7.0V -6.5V -6.0V -5.5V 10¹ 10 -I_D, Drain Ourrent [A] -I_b , Drain Qurrent [A] Bottom 150°C 10 25 -55°C 1. V_{DS} = 2.250/ 10 10⁻¹ 2 6 -V_{GS}, Gate-Source Voltage [V] 10 10[°] 4 8 10 10¹ -V_{DS}, Drain-Source Voltage [V] Figure 1. On-Region Characteristics Figure 2. Transfer Characteristics 3.0 -I_{nst} , Reverse Drain Ourrent [A] 1 2.5 = - 10V V_c * Notes : 1. V_{GS} = 0V 2. 250 µs Pulse ❀ Note : T₁ = 25[°]C 0.0 L 10⁻¹ 12 16 20 8 0.5 2.0 2.5 3.0 1.0 1.5 -I_D, Drain Current [A] -V_{SD}, Source-Drain Voltage [V] Figure 3. On-Resistance Variation vs. Figure 4. Body Diode Forward Voltage Drain Current and Gate Voltage Variation vs. Source Current and Temperature 1400 12 + C_{gd} (C_g + C_{gd} V_{DS} = -50V 120 10 V_{DS} = -125V V_{DS} = -200V 1000 Gate-Source Voltage [V] Capacitance [pF] 400 1. V_{GS}=0 V 2. f=1 MHz Ś. 200 ₩ Note : L = -6.0 A 0 L 0 12 20 10 10 0 4 8 16 24 Q_G, Total Gate Charge [nC] -V_{DS'} Drain-Source Voltage [V] Figure 6. Gate Charge Characteristics Figure 5. Capacitance Characteristics

©2000 Fairchild Semiconductor International


Rev. A, April 2000


©2000 Fairchild Semiconductor International

Rev. A, April 2000

Rev. A, April 2000

Rev. A, April 2000

©2000 Fairchild Semiconductor International

FQB6P25 / FQI6P25

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACExTM BottomlessTM CoolFETTM CROSSVOLTTM E^2 CMOSTM FACTTM FACT Quiet SeriesTM FAST[®] FASTrTM GTOTM HiSeC[™] ISOPLANAR[™] MICROWIRE[™] POP[™] PowerTrench[®] QFET[™] QS[™] Quiet Series[™] SuperSOT[™]-3 SuperSOT[™]-6 SuperSOT[™]-8 SyncFET[™] TinyLogic[™] UHC[™] VCX[™]

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR INTERNATIONAL.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to

result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

Fairchild Semiconductor	sSEARCH Parametric Cross Reference				
find products	Home >> Find products >> FQI6P25 250V P-Channel QFET Contents General description Features Product status/pricing/packaging General description These P-Channel enhancement mode power field effect transistors are produced using Fairchild's proprietary, planar stripe, DMOS technology. This advanced technology has	Image Datasheet Download this datasheet PDF e-mail this datasheet [E-] This page Print version	Interference Interference Related Links Request samples Dotted line Product Change Notices Interference Product Change Notices (PCNs) Dotted line Dotted line Dotted line Support Dotted line Dotted line Dotted line Support Dotted line Distributor and field sales representatives Dotted line Quality and reliability Dotted line Dotted line		
parametric search Cross-reference search technical information buy products technical support my Fairchild company	 been especially tailored to minimize on-state resistance, provide superior switching performance, and withstand high energy pulse in the avalanche and commutation mode. These devices are well suited for high efficiency switching DC/DC converters. back to top Features 	_	<u>Design tools</u>		

- -6.0A, -250V, $R_{DS(on)} = 1.1\Omega @V_{GS} = -10 V$
- Low gate charge (typical 21 nC)
- Low Crss (typical 20 pF)
- Fast switching
- 100% avalanche tested
- Improved dv/dt capability

back to top

Product status/pricing/packaging

Product	Product status	Pricing*	Package type	Leads	Packing method
FQI6P25TU	Full Production	\$0.75	TO-262(I2PAK)	3	RAIL

* 1,000 piece Budgetary Pricing

back to top

<u>Home</u> | <u>Find products</u> | <u>Technical information</u> | <u>Buy products</u> | <u>Support</u> | <u>Company</u> | <u>Contact us</u> | <u>Site index</u> | <u>Privacy policy</u>

© Copyright 2002 Fairchild Semiconductor