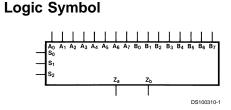
August 1998

National Semiconductor

100363 Low Power Dual 8-Input Multiplexer

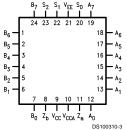
General Description


The 100363 is a dual 8-input multiplexer. The Data Select (S_n) inputs determine which bit (A_n and B_n) will be presented at the outputs (Z_a and Z_b respectively). The same bit (0–7) will be selected for both the Z_a and Z_b output. All inputs have 50 kΩ pulldown resistors.

- 2000V ESD protection
- Pin/function compatible with 100163
- Voltage compensated operating range = -4.2V to -5.7V
- Standard Microcircuit Drawing (SMD) 5962-9165501

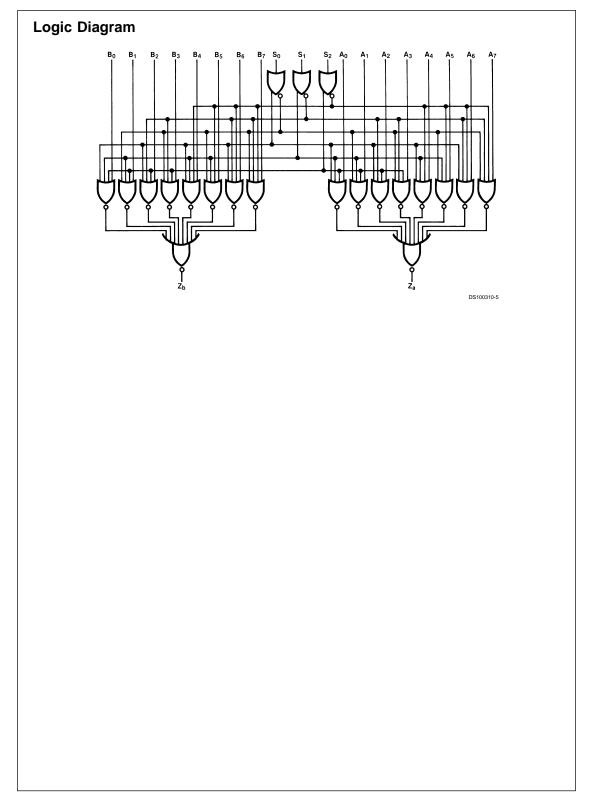
100363 Low Power Dual 8-Input Multiplexer

Features


■ 50% power reduction of the 100163

Pin Names	Description	
$S_0 - S_2$	Data Select Inputs	
$S_0 - S_2$ $A_0 - A_7$ $B_0 - B_7$	A Data Inputs	
B ₀ -B ₇	B Data Inputs	
Z _a , Z _b	Data Outputs	

Connection Diagrams



DS100310

© 1998 National Semiconductor Corporation

Truth Table

	Inputs										Outputs		
	Select	1		Data									
S ₂	S ₁	So	A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	Ao	Za		
			B ₇	B ₆	B ₅	B ₄	B ₃	B ₂	B ₁	Bo	Z _a Z _b		
L	L	L								L	L		
L	L	L								н	н		
L	L	н							L		L		
L	L	н							н		н		
L	н	L						L			L		
L	н	L						н			н		
L	н	Н					L				L		
L	н	н					н				н		
н	L	L				L					L		
н	L	L				н					н		
н	L	Н			L						L		
н	L	н			н						н		
н	н	L		L							L		
н	н	L		н							н		
н	н	н	L								L		
н	н	н	н								н		

H = HIGH Voltage Level L = LOW Voltage Level Blank = X = Don't Care

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Above which the useful life may be impared

65°C to +150°C
+175°C
-7.0V to +0.5V
V_{EE} to + 0.5V
–50 mA

Military Version

•

DC Electrical Characteristics $V_{EE} = -4.2V$ to -5.7V. $V_{CC} = V_{CCA} = GND$. $T_{CC} = -55^{\circ}C$ to $+125^{\circ}C$

ESD (Note 2)

Recommended Operating Conditions

Symbol	Parameter	Min	Max	Units	Tc	Conc	litions	Note
V _{он}	Output HIGH Voltage	-1025	-870	mV	0°C to			
					+125°C			
		-1085	-870	mV	–55°C	V _{IN} = V _{IH} (Max)	Loading with	(Notes 3, 4, 5)
V _{OL}	Output LOW Voltage	-1830	-1620	mV	0°C to	or V _{IL} (Min)	50Ω to -2.0V	
					+125°C			
		-1830	-1555	mV	–55°C]		
V _{онс}	Output HIGH Voltage	-1035		mV	0°C to			
					+125°C			
		-1085		mV	–55°C	V _{IN} = V _{IH} (Min)	Loading with	(Notes 3, 4, 5)
V _{OLC}	Output LOW Voltage		-1610	mV	0°C to	or V _{IL} (Max)	50Ω to -2.0V	
					+125°C			
			-1555	mV	–55°C]		
V _{IH}	Input HIGH Voltage	-1165	-870	mV	–55°C to	Guaranteed HIGH Inputs	(Notes 3, 4, 5, 6	
					+125°C			
VIL	Input LOW Voltage	-1830	-1475	mV	–55°C to	Guaranteed LOW	(Notes 3, 4, 5, 6	
					+125°C			
I _{IL}	Input LOW Current	0.50		μA	–55°C to	$V_{EE} = -4.2V$		(Notes 3, 4, 5)
					+125°C	$V_{IN} = V_{IL}$ (Min)		
I _{IH}	Input HIGH Current							
	S _n		265	μA	0°C to			
	A _n , B _n		340		+125°C	$V_{EE} = -5.7V$		(Notes 3, 4, 5)
	S _n		385	μA	–55°C	V _{IN} = V _{IH} (Max)		
	A _n , B _n		490					
I _{EE}	Power Supply Current	-87	-30	mA	–55°C to	Inputs Open		(Notes 3, 4, 5)
					+125°C			

Note 3: F100K 300 Series cold temperature testing is performed by temperature soaking (to guarantee junction temperature equals -55°C), then testing immediately without allowing for the junction temperature to stabilize due to heat dissipation after power-up. This provides "cold start" specs which can be considered a worst case condition at cold temperatures.

Note 4: Screen tested 100% on each device at -55°C, +25°C, and +125°C, Subgroups 1, 2, 3, 7, and 8.

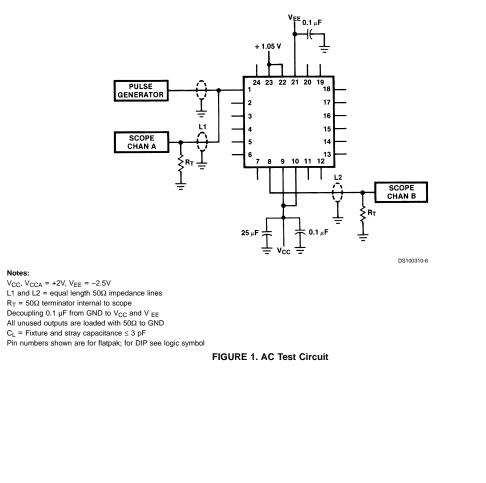
Note 5: Sample tested (Method 5005, Table I) on each manufactured lot at -55°C, +25°C, and +125°C, Subgroups A1, 2, 3, 7, and 8.

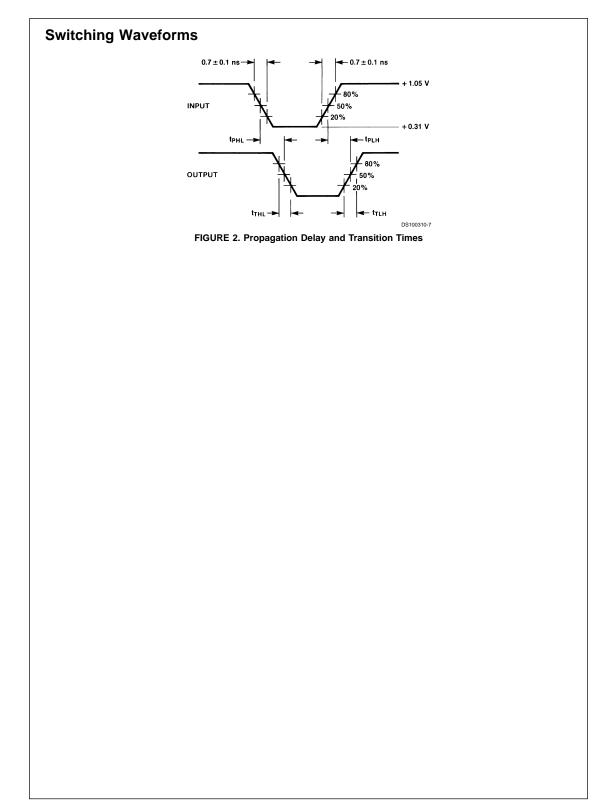
Note 6: Guaranteed by applying specified input condition and testing $V_{OH}\!/\!V_{OL}.$

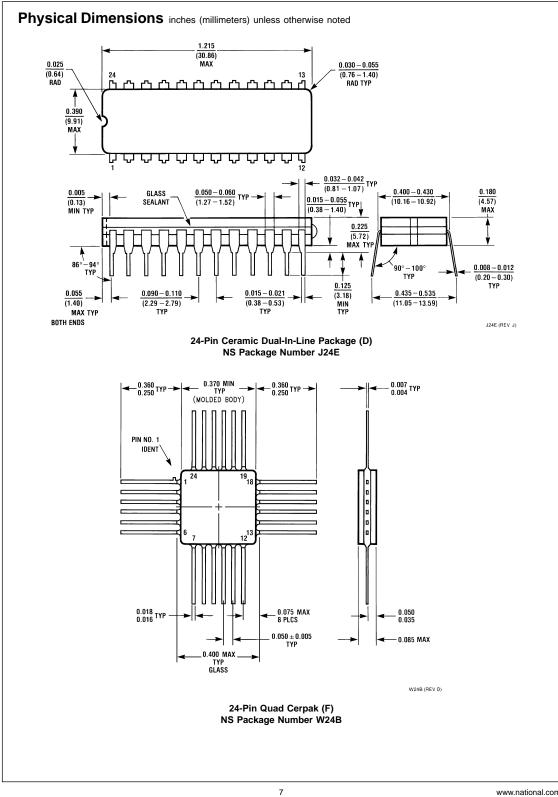
www.national.com

≥2000V

AC Electrical Characteristics

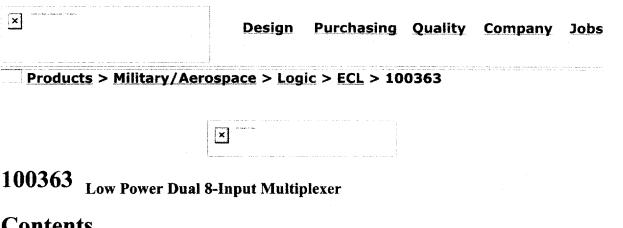

V _{EE} = ·	$V_{EE} = -4.2V$ to $-5.7V$, $V_{CC} = V_{CCA} = GND$											
Symbol	Parameter	T _c = -55°C		T _c = +25°C		T _C = +125°C		Units	Conditions	Notes		
		Min	Max	lax Min Max		Min	Max					
t _{PLH}	Propagation Delay	0.50	2.40	0.60	2.30	0.70	3.00	ns				
t _{PHL}	$A_0 - A_7$, $B_0 - B_7$ to Output									(Notes 7, 8, 9)		
t _{PLH}	Propagation Delay	0.80	3.00	0.90	2.80	0.80	3.40	ns	Figure 1 and			
t _{PHL}	S ₀ -S ₂ to Output								Figure 2			
t _{TLH}	Transition Time	0.30	1.90	0.30	1.80	0.30	2.10	ns		(Note 10)		
t _{THL}	20% to 80%, 80% to 20%											


Note 7: F100K 300 Series cold temperature testing is performed by temperature soaking (to guarantee junction temperature equals -55°C), then testing immediately after power-up. This provides "cold start" specs which can be considered a worst case condition at cold temperatures.


Note 8: Screen tested 100% on each device at +25°C temperature only, Subgroup A9.

Note 9: Sample tested (Method 5005, Table I) on each manufactured lot at +25°C, Subgroup A9, and at +125°C and -55°C, temperatures, Subgroups A10 and A11. Note 10: Not tested at +25°C, +125°C, and -55°C temperature (design characterization data).

Test Circuitry


LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DE-VICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMI-CONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

	National Semiconductor	National Semiconductor	National Semiconductor	National Semiconducto
	Corporation	Europe	Asia Pacific Customer	Japan Ltd.
	Americas	Fax: +49 (0) 1 80-530 85 86	Response Group	Tel: 81-3-5620-6175
	Tel: 1-800-272-9959	Email: europe.support@nsc.com	Tel: 65-2544466	Fax: 81-3-5620-6179
	Fax: 1-800-737-7018	Deutsch Tel: +49 (0) 1 80-530 85 85	Fax: 65-2504466	
	Email: support@nsc.com	English Tel: +49 (0) 1 80-532 78 32	Email: sea.support@nsc.com	
		Français Tel: +49 (0) 1 80-532 93 58		
ww.na	ational.com	Italiano Tel: +49 (0) 1 80-534 16 80		

National does not assume any responsibility for use of any circuity described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

Contents

- General Description
- Features
- Datasheet
- Package Availability, Models, Samples & Pricing

General Description

The 100363 is a dual 8-input multiplexer. The Data Select (S_n) inputs determine which bit $(A_n \text{ and } B_n)$ will be presented at the outputs $(Z_a \text{ and } Z_b \text{ respectively})$. The same bit (0-7) will be selected for both the Z_a and Z_b output. All inputs have 50 k Ohm pulldown resistors.

Features

- 50% power reduction of the 100163
- 2000V ESD protection
- Pin/function compatible with 100163
- Voltage compensated operating range = -4.2V to -5.7V
- Standard Microcircuit Drawing (SMD) 5962-9165501

Datasheet

Title	Size (in Kbytes)	Date	∑ View Online	× Download	Receive via Email
100363 Low Power Dual 8-Input Multiplexer	1.	4-Sep- 98	View Online	Download	Receive via Email

Please use Adobe Acrobat to view PDF file(s).

If you have trouble printing, see Printing Problems.

Package Availability, Models, Samples & Pricing

Part Number	Packa	ge		Models		Samples	Budgeta	Std		
	Туре	# pins	Status	SPICE	IBIS	& Electronic Orders	Quantity	\$US each	Pack Size	
5962- 9165501MXA	Cerdip	24	Full production	N/A	N/A		50+	\$34.0000	tube of 15	[1 [,] 10(9
5962- 9165501MYA	Cerquad	24	Full production	N/A	N/A		50+	\$37.0000	tube of 14	[lo (]
100363DM- MLS	Cerdip	24	Full production	N/A	N/A		50+	\$260.0000	tube of 15	[], 10

[Information as of 4-May-2000]

Quick Search

Parametric Search System Diagrams

Home

About Languages . About the Site . About "Cookies" National is QS 9000 Certified . Privacy/Security Copyright © National Semiconductor Corporation Account . Feedback

Product

Tree