
The RF Line NPN Silicon RF Power Transistor

... designed for 12.5 Volt UHF large–signal amplifier applications in industrial and commercial FM equipment operating to 512 MHz.

- Specified 12.5 Volt, 470 MHz Characteristics —
 Output Power = 15 Watts
 Minimum Gain = 7.8 dB
 Efficiency = 55%
- Characterized with Series Equivalent Large-Signal Impedance Parameters
- Built-In Matching Network for Broadband Operation
- Tested for Load Mismatch Stress at all Phase Angles with 20:1 VSWR @ 16–Volt High Line and Overdrive

MRF641

15 W, 470 MHz CONTROLLED Q RF POWER TRANSISTOR NPN SILICON

MAXIMUM RATINGS

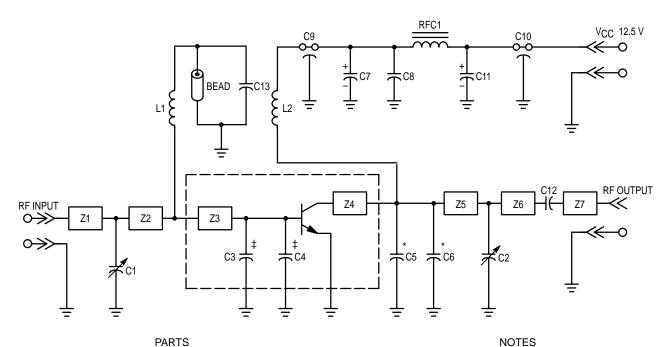
Rating	Symbol	Value	Unit
Collector–Emitter Voltage	VCEO	16	Vdc
Collector–Base Voltage	VCBO	36	Vdc
Emitter–Base Voltage	V _{EBO}	4.0	Vdc
Collector Current — Continuous	IC	3.0	Adc
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	43.7 0.25	Watts W/°C
Storage Temperature Range	T _{stg}	-65 to +150	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	4.0	°C/W

ELECTRICAL CHARACTERISTICS ($T_C = 25^{\circ}C$ unless otherwise noted.)

, ,	,				
Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					
Collector–Emitter Breakdown Voltage (I _C = 20 mAdc, I _B = 0)	V(BR)CEO	16	_	_	Vdc
Collector–Emitter Breakdown Voltage (I _C = 20 mAdc, V _{BE} = 0)	V(BR)CES	36	_	_	Vdc
Emitter–Base Breakdown Voltage (I _E = 5.0 mAdc, I _C = 0)	V(BR)EBO	4.0	_	_	Vdc
Collector Cutoff Current (V _{CE} = 15 Vdc, V _{BE} = 0, T _C = 25°C)	ICES	_	_	5.0	mAdc


(continued)

REV 6

ELECTRICAL CHARACTERISTICS — **continued** (T_C = 25°C unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
ON CHARACTERISTICS	•	•	•	•	
DC Current Gain (IC = 1.0 Adc, VCE = 5.0 Vdc)	hFE	30	70	150	_
DYNAMIC CHARACTERISTICS	•	•	•		
Output Capacitance (V _{CB} = 12.5 Vdc, I _E = 0, f = 1.0 MHz)	C _{ob}	_	40	60	pF
FUNCTIONAL TESTS		•		•	
Common–Emitter Amplifier Power Gain (V _{CC} = 12.5 Vdc, P _{Out} = 15 W, f = 470 MHz)	G _{pe}	7.8	8.5	_	dB
Collector Efficiency (V _{CC} = 12.5 Vdc, P _{out} = 15 W, f = 470 MHz)	η	55	60	_	%
Output Mismatch Stress (V _{CC} = 16 Vdc, P _{in} = 3.0 W, f = 470 MHz, VSWR = 20:1, All Phase Angles)	Ψ	No Degradation in Output Power			

Z1 — 1.225" x 0.187" Microstrip

Z2 - 0.884" x 0.187" Microstrip

Z3 — Capacitor Block (Base)

Z4 — Collector Block

Z5 — 1.1" x 0.187" Microstrip

Z6 — 0.433" x 0.187" Microstrip

Z7 — 0.4" x 0.187" Microstrip

Dotted Area — Capacitor Assembly

C1, C2 — 0.8-10 pF Johanson

C3, C4 — 24 pF Chip Caps 100 mils ATC

C5, C6 — 22 pF Chip Caps 100 mils ATC

C12 — 220 pF Chip Cap 100 mils ATC

C7, C11 — 1.0 μF Tantalum 35 Vdc

C9, C10 — 680 pF Feedthrough Allen-Bradley

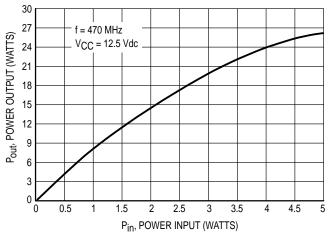
C13 — 200 pF UNELCO

 $C8 - 0.1 \mu F$, 50 V Erie Red Cap

RFC1 — VK 200 — 104B Ferrite Choke

L1 — 4 Turns 0.2" Dia. #16 AWG

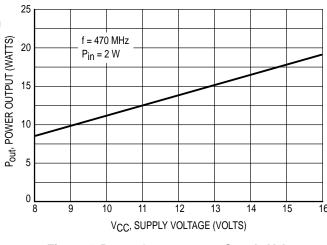
L2 - 9 Turns 0.15" Dia. #16 AWG


Bead — Ferroxcube 56-590-65-35EB

NOTE

*C5, C6, are mounted as close to the capacitor assembly as possible.

‡‡C3, C4 are mounted in the capacitor assembly. Board — 62.5 mil Glass Teflon, ϵ_{Γ} = 2.55.


Figure 1. Test Circuit Schematic

 $V_{CC} = 12.5 \text{ V}$ P_{out}, POWER OUTPUT (WATTS) $P_{in} = 3 W$ 20 2 W 15 10 1 W 380 400 420 440 460 480 500 520 f, FREQUENCY (MHz)

Figure 2. Power Output versus Power Input

Figure 3. Power Output versus Frequency

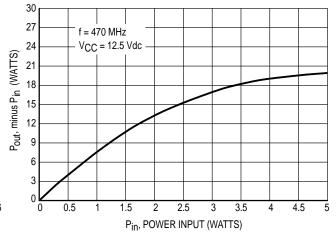
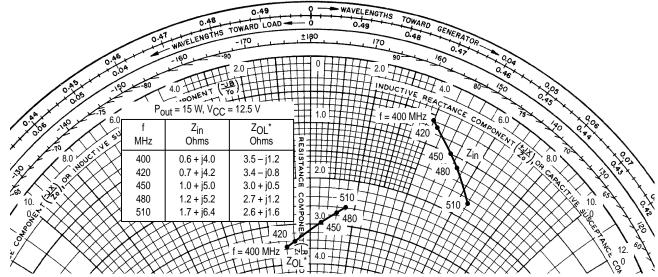
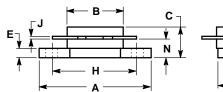



Figure 4. Power Output versus Supply Voltage

Figure 5. Power Saturation Profile



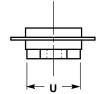

 Z_{OL}^* = Conjugate of the load impedance into which the device output operates at a given power, η , and frequency.

Figure 6. Series Equivalent Input-Output Impedance

MOTOROLA RF DEVICE DATA MRF641

Κ

NOTES: 1. FLANGE IS ISOLATED IN ALL STYLES.

	INC	HES	METERS		
DIM	MIN	MAX	MIN	MAX	
Α	24.38	25.14	0.960	0.990	
В	12.45	12.95	0.490	0.510	
С	5.97	7.62	0.235	0.300	
D	5.33	5.58	0.210	0.220	
E	2.16	3.04	0.085	0.120	
F	5.08	5.33	0.200	0.210	
Н	18.29	18.54	0.720	0.730	
J	0.10	0.15	0.004	0.006	
K	10.29	11.17	0.405	0.440	
L	3.81	4.06	0.150	0.160	
N	3.81	4.31	0.150	0.170	
Q	2.92	3.30	0.115	0.130	
R	3.05	3.30	0.120	0.130	
U	11.94	12.57	0.470	0.495	

STYLE 1: PIN 1. EMITTER

2. COLLECTOR 3. EMITTER

4. BASE

CASE 316-01 ISSUE D

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typical parameters, including or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and (M) are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

Mfax is a trademark of Motorola. Inc.

How to reach us:

USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 5405, Denver, Colorado 80217. 303-675-2140 or 1-800-441-2447 JAPAN: Nippon Motorola Ltd.: SPD, Strategic Planning Office, 4-32-1, Nishi-Gotanda, Shinagawa-ku, Tokyo 141, Japan. 81-3-5487-8488

Mfax™: RMFAX0@email.sps.mot.com - TOUCHTONE 602-244-6609

 \Diamond

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, US & Canada ONLY 1-800-774-1848 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852-26629298

INTERNET: http://motorola.com/sps

MRF641/D