SCBS099I - JANUARY 1991 - REVISED JANUARY 1997 - State-of-the-Art *EPIC-IIB™* BiCMOS Design **Significantly Reduces Power Dissipation** - Latch-Up Performance Exceeds 500 mA Per **JEDEC Standard JESD-17** - ESD Protection Exceeds 2000 V Per MIL-STD-883, Method 3015; Exceeds 200 V Using Machine Model (C = 200 pF, R = 0) - Typical V_{OLP} (Output Ground Bounce) < 1 V at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$ - High-Drive Outputs (-32-mA I_{OH}, 64-mA I_{OL}) - **Package Options Include Plastic** Small-Outline (DW), Shrink Small-Outline (DB), and Thin Shrink Small-Outline (PW) Packages, Ceramic Chip Carriers (FK), Plastic (N) and Ceramic (J) DIPs, and Ceramic Flat (W) Package #### description These octal buffers and line drivers are designed specifically to improve both the performance and density of 3-state memory address drivers, clock bus-oriented receivers drivers. and transmitters. Together with the SN54ABT240. SN74ABT240A, SN54ABT241, SN74ABT241A, these devices provide the choice of selected combinations of inverting and noninverting outputs, symmetrical active-low output-enable (OE) inputs, and complementary OE and \overline{OE} inputs. SN54ABT244 . . . J OR W PACKAGE SN74ABT244A . . . DB. DW. N. OR PW PACKAGE (TOP VIEW) SN54ABT244 . . . FK PACKAGE (TOP VIEW) The SN54ABT244 and SN74ABT244A are organized as two 4-bit buffers/line drivers with separate \overline{OE} inputs. When \overline{OE} is low, the devices pass noninverted data from the A inputs to the Y outputs. When \overline{OE} is high, the outputs are in the high-impedance state. To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver. The SN54ABT244 is characterized for operation over the full military temperature range of -55°C to 125°C. The SN74ABT244A is characterized for operation from -40°C to 85°C. Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. EPIC-IIB is a trademark of Texas Instruments Incorporated ## FUNCTION TABLE (each buffer) | INPL | JTS | OUTPUT | |------|-----|--------| | ŌĒ | Α | Υ | | L | I | Н | | L | L | L | | Н | Χ | Z | ### logic symbol† 9 2Y1 7 2Y2 5 2Y3 #### logic diagram (positive logic) [†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12. SCBS099I - JANUARY 1991 - REVISED JANUARY 1997 #### absolute maximum ratings over operating free-air temperature range (unless otherwise noted)† | Supply voltage range, V _{CC} | | |--|---------| | Input voltage range, V _I (see Note 1) | | | Voltage range applied to any output in the high or power-off state, V _O | | | Current into any output in the low state, IO: SN54ABT244 | | | SN74ABT244A | | | Input clamp current, I _{IK} (V _I < 0) | –18 mA | | Output clamp current, I _{OK} (V _O < 0) | | | Package thermal impedance, θ _{JA} (see Note 2): DB package | 115°C/W | | DW package | 97°C/W | | N package | 67°C/W | | PW package | | | Storage temperature range, T _{stq} | | [†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed. 2. The package thermal impedance is calculated in accordance with EIA/JEDEC Std JESD51, except for through-hole packages, which use a trace length of zero. #### recommended operating conditions (see Note 3) | | | | SN54ABT244 | | SN74ABT244A | | UNIT | |--|---|---|-------------|-----|-----------------|-----|------| | | | | MIN | MAX | MIN | MAX | UNII | | V _{CC} Supply voltage | | 4.5 | 5.5 | 4.5 | 5.5 | V | | | V _{IH} High-level input voltage | | 2 | | 2 | | ٧ | | | V _{IL} Low-level input voltage | | | 0.8 | | 8.0 | ٧ | | | V _I Input voltage | | 0 | Vcc | 0 | Vcc | V | | | IOH High-level output current | | | -24 | | -32 | mA | | | IOL Low-level output current | | | 48 | | 64 | mA | | | Δt/Δν | Input transition rise or fall rate | ut transition rise or fall rate Outputs enabled | | 5 | | 5 | ns/V | | TA | T _A Operating free-air temperature | | - 55 | 125 | -4 0 | 85 | °C | NOTE 3: Unused inputs must be held high or low to prevent them from floating. #### SN54ABT244, SN74ABT244A OCTAL BUFFERS/DRIVERS WITH 3-STATE OUTPUTS SCBS099I - JANUARY 1991 - REVISED JANUARY 1997 # electrical characteristics over recommended operating free-air temperature range (unless otherwise noted) | DADA | METER | TEST COM | DITIONS | Т | A = 25°C | ; | SN54ABT244 | | SN74ABT244A | | UNIT | | |---|----------------|---|----------------------------------|-----|----------|-------|------------|------|-------------|------|------|--| | PARAI | METER | TEST CONDITIONS | | MIN | TYP | MAX | MIN | MAX | MIN | MAX | UNIT | | | V _{IK} | | V _{CC} = 4.5 V, | I _I = −18 mA | | | -1.2 | | -1.2 | | -1.2 | ٧ | | | $V_{CC} = 4.5 \text{ V},$ $V_{CC} = 5 \text{ V},$ | | $V_{CC} = 4.5 \text{ V},$ | $I_{OH} = -3 \text{ mA}$ | 2.5 | | | 2.5 | | 2.5 | | | | | | | V _{CC} = 5 V, | $I_{OH} = -3 \text{ mA}$ | 3 | | | 3 | | 3 | | v | | | VOH | | V _{CC} = 4.5 V | $I_{OH} = -24 \text{ mA}$ | 2 | | | 2 | | | | ' | | | | | VCC = 4.5 V | $I_{OH} = -32 \text{ mA}$ | 2* | | | | | 2 | | | | | VOL | | V _{CC} = 4.5 V | I _{OL} = 48 mA | | | 0.55 | | 0.55 | | | ٧ | | | VOL. | | VCC = 4:5 V | I _{OL} = 64 mA | | | 0.55* | | | | 0.55 | • | | | V_{hys} | | | | | 100 | | | | | | mV | | | Ц | | $V_{CC} = 5.5 V$, | $V_I = V_{CC}$ or GND | | | ±1 | | ±1 | | ±1 | μΑ | | | lozh | | $V_{CC} = 5.5 V$, | $V_0 = 2.7 \text{ V}$ | | | 10 | | 10 | | 10 | μΑ | | | lozl | | $V_{CC} = 5.5 V$, | $V_{O} = 0.5 \text{ V}$ | | | -10 | | -10 | | -10 | μΑ | | | l _{off} | | $V_{CC} = 0$, | V_I or $V_O \le 4.5 \text{ V}$ | | | ±100 | | | | ±100 | μΑ | | | ICEX | | V _{CC} = 5.5 V | Outputs high | | | 50 | | 50 | | 50 | μΑ | | | [‡] | | $V_{CC} = 5.5 \text{ V},$ | $V_{O} = 2.5 \text{ V}$ | -50 | -100 | -180 | -50 | -180 | -50 | -180 | mA | | | | | | Outputs high | | 1 | 250 | | 250 | | 250 | μΑ | | | Icc | | V _{CC} = 5.5 V, I _O = 0,
V _I = V _{CC} or GND | Outputs low | | 24 | 30 | | 30 | | 30 | mA | | | | | 11-100 01 0113 | Outputs disabled | | 0.5 | 250 | | 250 | | 250 | μΑ | | | | Data | V _{CC} = 5.5 V,
One input at 3.4 V, | Outputs enabled | | | 1.5 | | 1.5 | | 1.5 | | | | ΔI _{CC} § | inputs | Other inputs at V _{CC} or GND | Outputs disabled | | | 0.05 | | 0.05 | | 0.05 | mA | | | | Control inputs | V _{CC} = 5.5 V, One input at 3.4 V,
Other inputs at V _{CC} or GND | | | | 1.5 | | 1.5 | | 1.5 | | | | Ci | | V _I = 2.5 V or 0.5 V | | | 3.5 | | | | | | pF | | | Со | | V _O = 2.5 V or 0.5 V | | | 7.5 | | | | | | pF | | ^{*} On products compliant to MIL-PRF-38535, this parameter does not apply. [†] All typical values are at $V_{CC} = 5 \text{ V}$. [‡] Not more than one output should be tested at a time, and the duration of the test should not exceed one second. [§] This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND. SCBS099I - JANUARY 1991 - REVISED JANUARY 1997 switching characteristics over recommended ranges of supply voltage and operating free-air temperature, C_L = 50 pF (unless otherwise noted) (see Figure 1) | | FROM
(INPUT) | то
(оитрит) | | | | | | | |------------------|-----------------|----------------|---|-----|-----|---------|-----|------| | PARAMETER | | | V _{CC} = 5 V,
T _A = 25°C | | | MIN MAX | MAX | UNIT | | | | | MIN | TYP | MAX | | | | | t _{PLH} | А | V | 1 | 2.6 | 4.1 | 1 | 5.3 | ns | | [†] PHL | | 1 | 1 | 2.9 | 4.2 | 1 | 5 | 110 | | ^t PZH | ŌĒ | V | 1.1 | 3.1 | 4.6 | 0.8 | 5.7 | ns | | [†] PZL | | 1 | 2.1 | 4.1 | 5.6 | 1.2 | 7.9 | 10 | | [†] PHZ | ŌĒ | ~ | 2.1 | 4.1 | 5.6 | 1.2 | 7.6 | ns | | t _{PLZ} | | 1 | 1.5 | 3.7 | 5.6 | 1 | 7.9 | 115 | switching characteristics over recommended ranges of supply voltage and operating free-air temperature, C_L = 50 pF (unless otherwise noted) (see Figure 1) | | | то
(оитрит) | | | | | | | |------------------|-----------------|----------------|----------------|----------------------|---------|-----|-----|------| | PARAMETER | FROM
(INPUT) | | V ₀ | CC = 5 V
4 = 25°C | /,
; | MIN | MAX | UNIT | | | | | MIN | TYP | MAX | | | | | tpLH | А | A V | 1 | 2.6 | 4.1 | 1 | 4.6 | no | | t _{PHL} | | Ţ | 1 | 2.9 | 4.3 | 1 | 4.6 | ns | | ^t PZH | ŌĒ | V | 1.1 | 3.1 | 4.6 | 1.1 | 5.1 | 20 | | tPZL | OE | ī | 2.1 | 4.1 | 5.6 | 2.1 | 6.1 | ns | | ^t PHZ | ŌĒ | V | 1.8 | 4.1 | 5.6 | 1.8 | 6.6 | ns | | t _{PLZ} | | ſ | 1.4 | 3.7 | 5.2 | 1.4 | 5.7 | 115 | #### PARAMETER MEASUREMENT INFORMATION NOTES: A. C_L includes probe and jig capacitance. - B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control. - C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50~\Omega,~t_f \leq$ 2.5 ns. $t_f \leq$ 2.5 ns. - D. The outputs are measured one at a time with one transition per measurement. Figure 1. Load Circuit and Voltage Waveforms