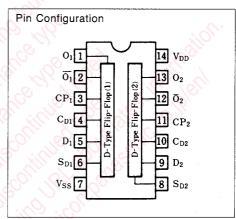
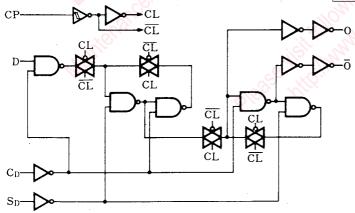
MN40013B/MN4013BS

Dual D-Type Flip-Flop

Outline


The MN4013B/S has 2 built-in circuits of D-type flip-flops in one chip. The respective flip-flop has independent data, set, clear, and clock inputs and complementary outputs (O, \overline{O}) . The input applied to the data input is transmitted to the O output and \overline{O} output at the rise of the clock pulse. The logic state is held to "H" or "L" by the clock level. This MN4013B/S is equivalent to Motorola's MC14013B and RCA's CD4013B.

■ Trush Table


Input S D C D C P D				Output			
Sp	Съ	CP	D	O_{n+1}	\overline{O}_{n+1}		
Н	L	×	×	Н	L		
L	Н	×	×	L	Н		
Н	Н	×	×	Н	Н		
L	L	7	×	On	Ōn		
L	L		L	L	Н		
L	L		Н	Н	L		

Note) × : don't care

P-1 14-pin plastic DIL package P-2 14-pin PANAFLAT package (SO-14D)

■ Logic Diagram

Pin description

 $\begin{array}{lll} S_D & : \ Data \ set \ input \\ C_D & : \ Data \ clear \ input \\ D & : \ Data \ input \end{array}$

CP : Clock input

 O, \overline{O} : Output (complementary)

■ Absolute Maximum Ratings (Ta=25°C)

Item		Symbol	Rating	Unit
Supply voltage		V_{DD}	-0.5~+18	V
Input voltage		VI	$-0.5 \sim V_{DD} + 0.5 *$	V
Output pin voltage		Vo	$-0.5 \sim V_{DD} + 0.5 *$	V
Peak input · output ;	eak input · output pin current		max. 10	mA
Power dissipation	Ta=-40~+60°C	D	max. 400	
(per package)	Ta=+60~+80°C	P_D	Decrease to 200mW at the rate of 8mW/°C	mW
Power dissipation (per output pin)		P_D	max. 100	mW
Operating ambient temperature		T_{opr}	-40~+85	°C
Storage temperature		$T_{\rm stg}$	-65~+150	°C

^{*} V_{DD}+0.5V should be lower than 18V.

■ DC Characteristics (V_{SS}=0V)

(VSS	$=$ \cup \vee $)$									
V_{DD}	Symbol	Condition		$Ta = -40^{\circ}C$		Ta=25°C		Ta=85°C		Unit
(V)	Symbol			min.	max.	min.	max.	min.	max.	Oint
5					4	.50	4	_	30	
10	I_{DD}	$V_I = V_{SS}$ or	\cdot Λ^{DD}	_	8	1/7	8	—	60	μ A
15					16		16		120	
5		Vi=Voc or	Vm	-	0.05	—	0.05		0.05	
10	Vol	$ I_{\rm O} < 1\mu{\rm A}$		9	0.05	_	0.05	-	0.05	V
15					0.05	_	0.05		0.05	
5		V-V- or V		4.95	_	4.95		4.95	_	
10	V _{OH}				_	9.95		9.95		V
15		$ 10 < 1\mu$ A		14.95	_	14.95	_	14.95	ALC)	
5			$V_0 = 0.5V$ or 4.5V	_0	1.5	90	1.5	-30	1.5	
10	V_{IL}	$ I_0 < 1\mu A$	$V_0=1V$ or $9V$	A)	3	-	3	7 0),	3	V
15			$V_0 = 1.5 \text{V or } 13.5 \text{V}$	<u> </u>	4	_	4		4	
5			$V_0 = 0.5V$ or 4.5V	3.5)—,	3.5	3	3.5	<i>)</i> '—	
10	V_{lH}	$ I_0 < 1\mu A$	V _o =1V or 9V	7	H-1	7	<u> </u>	7	_	V
15			$V_0 = 1.5 \text{V}$ or 13.5V	11	<i>O</i>	11	 -C	11		
5		$V_0 = 0.4V$,	$V_i=0 \text{ or } 5V$	0.52		0.44	9.	0.36		
10	IOL	V_0 =0.5V, V_1 =0 or 10V V_0 =1.5V, V_1 =0 or 15V		1.3	2	1.1	2_	0.9	_	mA
15	-0)			3.6	\ <u>_</u>	3	_	2.4	_	
5		V_0 =4.6V, V_I =0 or 5V V_0 =9.5V, V_I =0 or 10V V_0 =13.5V, V_I =0 or 15V		0.52	4	0.44	_	0.36	_	
10	$-I_{OH}$			1.3	$^{C}\mathcal{D}_{\mathcal{F}}$	1.1	_	0.9	_	mA
15	. 1			3.6	\ <u></u>	3	_	2.4	_	
5	-I _{OH}	$V_0=2.5V, V_1=0 \text{ or } 5V$		1.7		1.4	_	1.1	_	mA
15	$\pm I_I$	V _i =0 or 15V		-	.0.3	_	0.3		1	μΑ
	V _{DD} (V) 5 10 15 5 10 15 5 10 15 5 10 15 5 10 15 5 10 15 5 10 15 5 10 15 5 10 15 5 10 15 5 10 15 10 15 10 15 10 15 10 15 10 10 10 10 10 10 10 10 10 10 10 10 10	V _{DD} (V) Symbol (V) S	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					

Switching	Characteristics	$(Ta=25^{\circ}C.$	$V_{ss}=0V$	$C_1 = 50 pF$
Switching	Unaracteristics	(1a=25 C,	$\mathbf{v}_{SS} = \mathbf{v}_{V}$	$C_1 = 50$

Item	V _{DD} (V)	Symbol	min.	typ.	max.	Unit
	5		_	60	180	
Output rise time (Fig. 1)	10	t _{TLH}	_	30	90	ns
	15		_	20	60	
	5		_	60	180	
Output fall time (Fig. 1)	10	t _{THL}	_	30	90	ns
	15		_	20	60	
	5			30	90	
Minimum data set-up time	10	t _{su}	_	10	30	ns
	. 15		_	10	30	
Maximum clock rise time	5		* 20			Ø.
	10	$tr\phi$, $tf\phi$	2.5		- x0	μs
Maximum clock fall time	15		1	_	_5	
	5		6	12	<u>, 22</u> ,	
Maximum clock frequency	10	\mathbf{f}_{\max}	12	25	~C/}—	MHz
	15		18	36	_	
D	5			100	300	
Propagation time (Fig. 1) (CP-O, \overline{O})	10	t _{PLH}	_	40	120	ns
(CP=0, 0)	15			30	90	
Propagation time (Fig. 1)	5		<	110	330	
	10	t _{PHL}	-kO	45	135	ns
(CP-O, \overline{O})	15			30	90	-0.
December 1 (Rig 2)	5		'Illi	135	405	110.
Propagation time (Fig. 2)	10	t _{PLH}	0, -0	50	150	ns
$(C_D, S_D-O, \overline{O})$	15	60		35	105	1. 1
Propagation time (Fig. 2)	5	765	x0/- c/	100	300	10/1
	10	tPHL	1, 400	40	120	· ns
$(C_D, S_D-O, \overline{O})$	15	10,2 40	12 il	30	90	.),
M:	5	, 00	16, -10,	45	135	
Minimum clear pulse width (Fig. 2)	10	twcb	ار جي آرا	20	60	ns
Minimum pre-set pulse width	15	twsp	18 26	20	60	
Input capacitance		C ₁	O = O	04 0	7.5	рF

Switching waveforms

Fig. 1 t_{TLH} , t_{PLH} (CO-O, \overline{O})

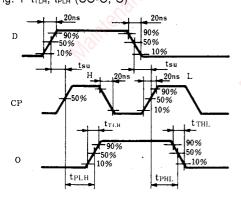
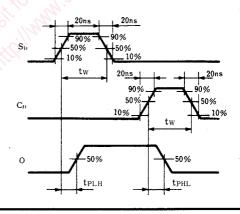



Fig. 2 t_{TLH}, (S_D-O, C_D-O), t_{PLH} S_D-O, C_D-O), t_{WCD}, t_{WSD}

Request for your special attention and precautions in using the technical information and semiconductors described in this book

- (1) If any of the products or technical information described in this book is to be exported or provided to non-residents, the laws and regulations of the exporting country, especially, those with regard to security export control, must be observed.
- (2) The technical information described in this book is intended only to show the main characteristics and application circuit examples of the products. No license is granted in and to any intellectual property right or other right owned by Panasonic Corporation or any other company. Therefore, no responsibility is assumed by our company as to the infringement upon any such right owned by any other company which may arise as a result of the use of technical information described in this book.
- (3) The products described in this book are intended to be used for standard applications or general electronic equipment (such as office equipment, communications equipment, measuring instruments and household appliances).
 - Consult our sales staff in advance for information on the following applications:
 - Special applications (such as for airplanes, aerospace, automobiles, traffic control equipment, combustion equipment, life support systems and safety devices) in which exceptional quality and reliability are required, or if the failure or malfunction of the products may directly jeopardize life or harm the human body.
 - · Any applications other than the standard applications intended.
- (4) The products and product specifications described in this book are subject to change without notice for modification and/or improvement. At the final stage of your design, purchasing, or use of the products, therefore, ask for the most up-to-date Product Standards in advance to make sure that the latest specifications satisfy your requirements.
- (5) When designing your equipment, comply with the range of absolute maximum rating and the guaranteed operating conditions (operating power supply voltage and operating environment etc.). Especially, please be careful not to exceed the range of absolute maximum rating on the transient state, such as power-on, power-off and mode-switching. Otherwise, we will not be liable for any defect which may arise later in your equipment.
- Even when the products are used within the guaranteed values, take into the consideration of incidence of break down and failure mode, possible to occur to semiconductor products. Measures on the systems such as redundant design, arresting the spread of fire or preventing glitch are recommended in order to prevent physical injury, fire, social damages, for example, by using the products.
- (6) Comply with the instructions for use in order to prevent breakdown and characteristics change due to external factors (ESD, EOS, thermal stress and mechanical stress) at the time of handling, mounting or at customer's process. When using products for which damp-proof packing is required, satisfy the conditions, such as shelf life and the elapsed time since first opening the packages.
- (7) This book may be not reprinted or reproduced whether wholly or partially, without the prior written permission of our company.

20080805