

CMOS Static RAM 64K (16K x 4-Bit)

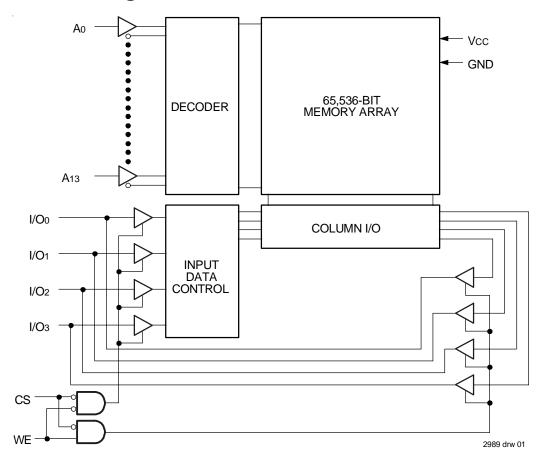
IDT7188S IDT7188L

Features

- High-speed (equal access and cycle times)Military: 25/35/45/55/70/85ns (max.)
- Low power consumption
- Battery backup operation 2V data retention (L version only)
- Available in high-density industry standard 22-pin, 300 mil ceramic DIP
- Produced with advanced CMOS technology
- Inputs/outputs TTL-compatible
- Military product compliant to MIL-STD-883, Class B

Description

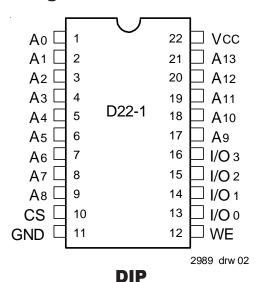
The IDT7188 is a 65,536-bit high-speed static RAM organized as 16K x 4. It is fabricated using IDT's high-performance, high-reliability technology — CMOS. This state-of-the-art technology, combined with


innovative circuit design techniques, provides a cost effective approach for memory intensive applications.

Access times as fast as 25ns are available. The IDT7188 offers a reduced power standby mode, IsB1, which is activated when $\overline{\text{CS}}$ goes HIGH. This capability significantly decreases power while enhancing system reliability. The low-power version (L) version also offers a battery backup data retention capability where the circuit typically consumes only $30\mu\text{W}$ operating from a 2V battery.

All inputs and outputs are TTL-compatible and operate from a single 5V supply. The IDT7188 is packaged in a 22-pin, 300 mil ceramic DIP providing excellent board-level packing densities.

Military grade product is manufactured in compliance with the latest revision of MIL-STD-883, Class B, making it ideally suited to military temperature applications demanding the highest level of performance and reliability.


Functional Block Diagram

FEBRUARY 2001

©2000 Integrated Device Technology, Inc. DSC-2989/09

Pin Configuration

Top View

Pin Descriptions

Name	Description
A0 - A13	Address Inputs
C S	Chip Select
WE	Write Enable
I/Oo - I/O3	Data Input/Output
Vcc	Power
GND	Ground

2989 tbl 01

2989 tbl 02

Truth Table⁽¹⁾

Mode	<u>cs</u>	WE	I/O	Power
Standby	Н	Χ	Standby	
Read	L	Н	Douт	Active
Write	L	L	Din	Active

NOTE:

1. $H = V_{IH}$, $L = V_{IL}$, X = don't care.

Absolute Maximum Ratings⁽¹⁾

Symbol	Rating	Value	Unit
VTERM	Terminal Voltage with Respect to GND	-0.5 to +7.0	V
TA	Operating Temperature	-55 to +125	۰C
TBIAS	Temperature Under Bias	-65 to +135	۰C
Tstg	Storage Temperature	-65 to +150	۰C
Рт	Power Dissipation	1.0	W
Іоит	DC Output Current	50	mA

2989 tbl 03

NOTE:

Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS
may cause permanent damage to the device. This is a stress rating only and
functional operation of the device at these or any other conditions above those
indicated in the operational sections of this specification is not implied. Exposure
to absolute maximum rating conditions for extended periods may affect
reliability.

Capacitance

 $(T_A = +25^{\circ}C, f = 1.0MHz, Vcc = 0V)$

Symbol	Parameter ⁽¹⁾	Conditions	Max.	Unit
CIN	Input Capacitance	VIN = 0V	6	pF
Cvo	I/O Capacitance	Vout = 0V	6	pF

OTE:

2989 tbl 04

 This parameter is determined by device characterization, but is not production tested.

Recommended DC Operating Conditions

Symbol	Parameter	Min.	Тур.	Max.	Unit								
Vcc	Supply Voltage	4.5	5.0	5.5	٧								
GND	Ground	0	0	0	٧								
Vн	Input High Voltage	2.2	_	6.0	٧								
VIL	Input Low Voltage	-0.5 ⁽¹⁾	_	0.8	٧								

NOTE:

2989 tbl 05

1. VIL (min.) = -3.0V for pulse width less than 20ns, once per cycle.

Recommended Operating Temperature and Supply Voltage

Grade	Temperature	GND	Vcc
Military	-55°C to +125°C	0V	5V ± 10%

2989 tbl 06

DC Electrical Characteristics

 $(Vcc = 5.0V \pm 10\%)$

			IDT7188S		IDT7		
Symbol	Parameter	Test Conditions	Min.	Мах.	Min.	Max.	Unit
lu	Input Leakage Current	Vcc = Max., V _{IN} = GND to Vcc		10	_	5	μΑ
ILO	Output Leakage Current	$Vcc = Max., \overline{CS} = ViH, Vout = GND to Vcc$		10	_	5	μΑ
Vol	Output Low Voltage	IOL = 10mA, Vcc = Min.		0.5		0.5	V
		IOL = 8mA, Vcc = Min.	_	0.4	_	0.4	
Vон	Output High Voltage	IOH = -4mA, Vcc = Min.	2.4		2.4	_	V

2989 tbl 07

DC Electrical Characteristics(1)

 $(Vcc = 5V \pm 10\%, VLc = 0.2V, VHc = Vcc - 0.2V)$

Symbol	Parameter	Power	7188S25 7188L25	7188S35 7188L35	7188S45 7188L45	7188S55 7188L55	7188S70 7188L70	7188S85 7188L85	Unit
ICC1	Operating Power Supply Current		105	105	105	105	105	105	mA
	$\overline{CS} = VIL$, Outputs Open $VCC = Max.$, $f = 0^{(2)}$	L	80	80	80	80	80	80	
ICC2	Dynamic Operating Current	S	155	140	140	140	140	140	mA
	\overline{CS} = V _I L, Outputs Open V _{CC} = Max., f = f _M Ax ⁽²⁾	L	120	115	110	110	110	105	
ISB	Standby Power Supply Current (TTL Level)	S	60	50	50	50	50	50	mA
	$\overline{CS} \ge VH$, Outputs Open $Vcc = Max$., $f = fmax^{(2)}$		40	40	35	35	35	35	
ISB1	Full Standby Power Supply Current (CMOS Level)	S	20	20	20	20	20	20	mA
	$\overline{CS} \ge V_{HC}$, $V_{CC} = Max.$, $V_{IN} \ge V_{HC}$ or $V_{IN} \le V_{LC}$, $f = 0^{(2)}$	L	1.5	1.5	1.5	1.5	1.5	1.5	

NOTES:

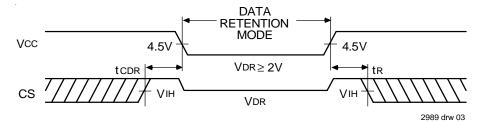
1. All values are maximum guaranteed values.

2. At f = fmax address and data inputs are cycling at the maximum frequency of read cycles of 1/trc. f = 0 means no input lines change.

2989 tbl 08

Data Retention Characteristics

(L Version Only) (VHC = VCC - 0.2V)


				Тур. ^(†) Vcc @		Ma Vcc		
Symbol	Parameter	Test Condition	Min.	2.0V	3.0V	2.0V	3.0V	Unit
VDR	Vcc for Data Retention	_	2.0		_	_	_	V
ICCDR	Data Retention Current			10	15	600	900	μΑ
tcdr ⁽³⁾	Chip Deselect to Data Retention Time	CS ≥ VHC	0	_	_	_	_	ns
tR ⁽³⁾	Operation Recovery Time	VIN <u>></u> VHC or <u><</u> VLC	trc(2)	_	_	_	_	ns
L ⁽³⁾	Input Leakage Current		_			2	2	μА

NOTES:

2989 tbl 09

- 1. $TA = +25^{\circ}C$.
- 2. trc = Read Cycle Time.
- 3. This parameter is guaranteed by device characterization but is not production tested.

Low Vcc Data Retention Waveform

AC Test Conditions

Input Pulse Levels	GND to 3.0V				
Input Rise/Fall Times	5ns				
Input Timing Reference Levels	1.5V				
Output Reference Levels	1.5V				
AC Test Load	See Figures 1 and 2				

2989 tbl 10

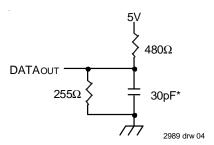


Figure 1. AC Test Load

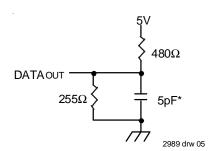
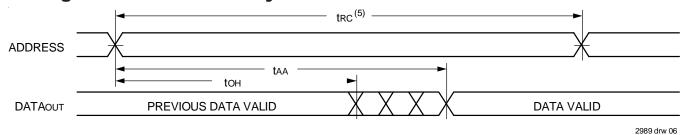
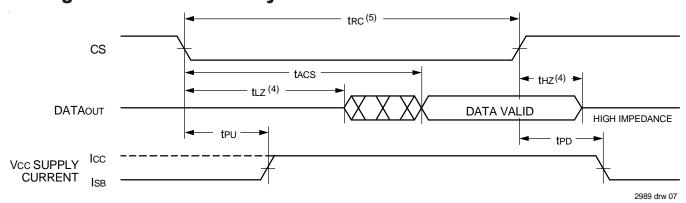


Figure 2. AC Test Load (for thz, tLz, twz, tohz and tow)

*Includes scope and jig capacitances


AC Electrical Characteristics (Vcc = 5.0V ± 10%)

		7188S25 7188L25		7188S35 7188L35		7188S45 7188L45		7188S55 7188L55		7188S70 7188L70		7188S85 7188L85		
Symbol	Parameter	Min.	Max.	Unit										
Read Cycle														
trc	Read Cycle Time	25		35	1	45	1	55	_	70		85	_	ns
taa	Address Access Time		25		35		45		55		70		85	ns
tacs	Chip Select Access Time	_	25		35		45		55		70	_	85	ns
tон	Output Hold from Address Change	5		5		5		5	_	5		5	_	ns
tLz(1)	Output Select to Output in Low-Z	5		5	1	5	1	5	_	5		5		ns
tHZ ⁽¹⁾	Chip Deselect to Output in High-Z	_	10	_	14	_	14	_	20	_	25	_	30	ns
tpu ⁽¹⁾	Chip Select to Power Up Time	0	_	0		0		0	_	0	_	0		ns
tpD ⁽¹⁾	Chip Deselect to Power Down Time	_	25		35	_	45	_	55	_	70	_	85	ns


NOTE:

2989 tbl 11

Timing Waveform of Read Cycle No. 1^(1,2)

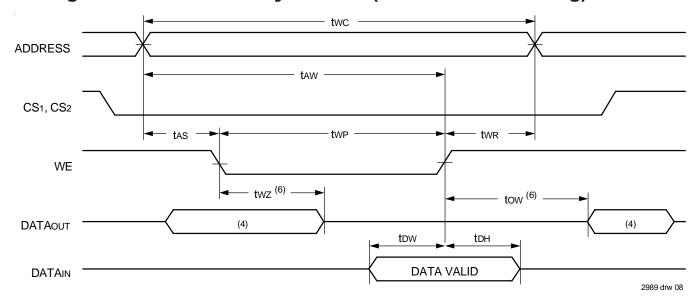
Timing Waveform of Read Cycle No. 2^(1,3)

NOTES:

- 1. WE is HIGH for Read cycle.
- 2. $\overline{\text{CS}}$ is LOW for Read cycle.
- 3. Address valid prior to or coincident with $\overline{\mbox{CS}}$ transition LOW.
- 4. Transition is measured ±200mV from steady state voltage.
- 5. All Read cycle timings are referenced from the last valid address to the first transitioning address.

^{1.} This parameter is guaranteed by device characterization but is not production tested.

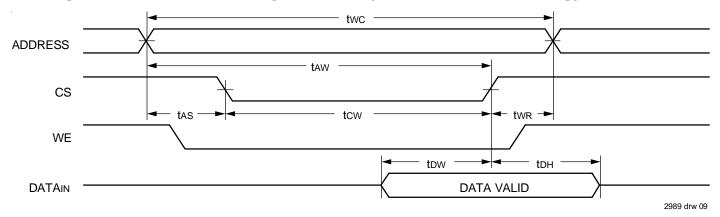
2989 thl 12


AC Electrical Characteristics (Vcc = 5.0V ± 10%)

		7188S25 7188L25		7188S35 7188L35			8S45 8L45		8S55 8L55	7188S70 7188L70		7188S85 7188L85		
Symbol	Parameter	Min.	Max.	Min.	Мах.	Min.	Мах.	Min.	Max.	Min.	Мах.	Min.	Max.	Unit
Write Cycle														
twc	Write Cycle Time	20	_	30		40		50		60	_	75	_	ns
tcw	Chip Select to End-of-Write	20		25		35		50		60		75		ns
taw	Address Valid to End-of-Write	20		25		35		50		60		75		ns
tas	Address Set-up Time	0		0		0		0		0		0		ns
twp	Write Pulse Width	20		25		35		50		60		75		ns
twr	Write Recovery Time	0		0		0		0		0		0		ns
tow	Data Valid to End-of-Write	13		15		20		25		30		35		ns
tон	Data Hold Time	0	_	0		0		0		0		0		ns
twz ⁽¹⁾	Write Enable to Output in High-Z	_	7	1	10	ı	15	1	25		30	_	40	ns
tow ⁽¹⁾	Output Active from End-of-Write	5	_	5	_	5		5		5		5		ns

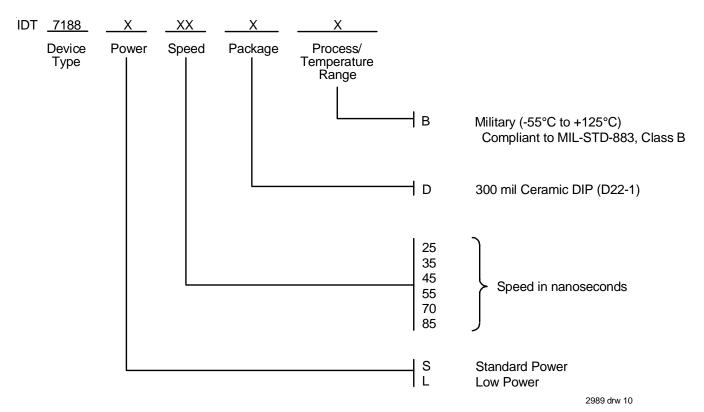
NOTE:

1. This parameter is guaranteed by device characterization.


Timing Waveform of Write Cycle No. 1 (WE Controlled Timing)(1,2,3)

NOTES:

- 1. $\overline{\text{WE}}$ or $\overline{\text{CS}}$ must be HIGH during all address transitions.
- 2. A write occurs during the overlap (twp) of a LOW $\overline{\text{CS}}$ and a LOW $\overline{\text{WE}}$.
- 3. two is measured from the earlier of \overline{CS} or \overline{WE} going HIGH to the end of the write cycle.
- 4. During this period, I/O pins are in the output state so that the input signals should not be applied.
- 5. If the CS LOW transition occurs simultaneously with or after the WE LOW transition, the outputs remain in the high-impedance state.
- 6. Transition is measured ±200mV from steady state.


Timing Waveform of Write Cycle No. 2 (CS Controlled Timing)(1,2,3,5)

NOTES:

- 1. WE or CS must be HIGH during all address transitions.
- 2. A write occurs during the overlap (twp) of a LOW $\overline{\text{CS}}$ and a LOW $\overline{\text{WE}}$.
- 3. two is measured from the earlier of \overline{CS} or \overline{WE} going HIGH to the end of the write cycle.
- 4. During this period, I/O pins are in the output state so that the input signals should not be applied.
- 5. If the CS LOW transition occurs simultaneously with or after the WE LOW transition, the outputs remain in the high-impedance state.
- 6. Transition is measured $\pm 200 mV$ from steady state.

Ordering Information

Datasheet Document History

11/xx/99 Updated to new format

Pg. 2, 3, 4 Removed commercial temperature data
Pg. 8 Added Datasheet Document History
Not recommended for new designs

08/09/00 Not recommended for new designs

02/01/01 Removed "Not recommended for new designs"

CORPORATE HEADQUARTERS

6024 Silver Creek Valley Road San Jose, CA 95138 for SALES: 800-345-7015 or 408-284-8200 fax: 408-284-2775 www.idt.com for Tech Support: ipchelp@idt.com 800-345-7015

The IDT logo is a registered trademark of Integrated Device Technology, Inc.