

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All recreations are done with the approval of the OCM.

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceed the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-35835
 - Class Q Military
 - Class V Space Level
- Qualified Suppliers List of Distributors (QSLD)

• Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OEM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

MIC4426/4427/4428

Dual 1.5A-Peak Low-Side MOSFET Driver

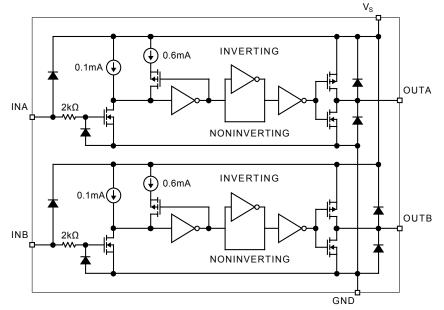
General Description

The MIC4426/4427/4428 family are highly-reliable dual lowside MOSFET drivers fabricated on a BiCMOS/DMOS process for low power consumption and high efficiency. These drivers translate TTL or CMOS input logic levels to output voltage levels that swing within 25mV of the positive supply or ground. Comparable bipolar devices are capable of swinging only to within 1V of the supply. The MIC4426/7/8 is available in three configurations: dual inverting, dual noninverting, and one inverting plus one noninverting output.

The MIC4426/4427/4428 are pin-compatible replacements for the MIC426/427/428 and MIC1426/1427/1428 with improved electrical performance and rugged design (Refer to the Device Replacement lists on the following page). They can withstand up to 500mA of reverse current (either polarity) without latching and up to 5V noise spikes (either polarity) on ground pins.

Primarily intended for driving power MOSFETs, MIC4426/7/8 drivers are suitable for driving other loads (capacitive, resistive, or inductive) which require low-impedance, high peak current, and fast switching time. Other applications include driving heavily loaded clock lines, coaxial cables, or piezoelectric transducers. The only load limitation is that total driver power dissipation must not exceed the limits of the package.

Note See MIC4126/4127/4128 for high power and narrow pulse applications.


Features

- Bipolar/CMOS/DMOS construction
- Latch-up protection to >500mA reverse current
- 1.5A-peak output current
- 4.5V to 18V operating range
- Low quiescent supply current 4mA at logic 1 input 400µA at logic 0 input
- Switches 1000pF in 25ns
- Matched rise and rall times
- 7Ω output impedance
- <40ns typical delay
- · Logic-input threshold independent of supply voltage
- Logic-input protection to –5V
- · 6pF typical equivalent input capacitance
- 25mV max. output offset from supply or ground
- Replaces MIC426/427/428 and MIC1426/1427/1428
- Dual inverting, dual noninverting, and inverting/ noninverting configurations
- ESD protection

Applications

- MOSFET driver
- Clock line driver
- Coax cable driver
- · Piezoelectic transducer driver

Functional Diagram

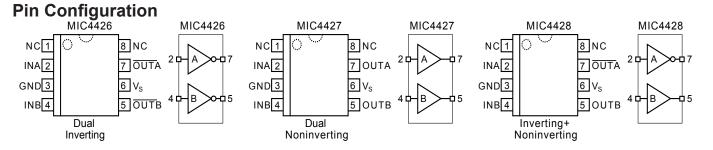
Ordering Information

Part Number		Temperature		
Standard	Pb-Free	Range	Range Package	
MIC4426BM	MIC4426YM	-40°C to +85°C	8-Pin SOIC	Dual Inverting
MIC4426CM	MIC4426ZM	-0°C to +70°C	8-Pin SOIC	Dual Inverting
MIC4426BMM	MIC4426YMM	-40°C to +85°C	8-Pin MSOP	Dual Inverting
MIC4426BN	MIC4426YN	-40°C to +85°C	8-Pin PDIP	Dual Inverting
MIC4426CN	MIC4426ZN	-0°C to +70°C	8-Pin PDIP	Dual Inverting
MIC4427BM	MIC4427YM	-40°C to +85°C	8-Pin SOIC	Dual Non-Inverting
MIC4427CM	MIC4427ZM	-0°C to +70°C	8-Pin SOIC	Dual Non-Inverting
MIC4427BMM	MIC4427YMM	-40°C to +85°C	8-Pin MSOP	Dual Non-Inverting
MIC4427BN	MIC4427YN	-40°C to +85°C	8-Pin PDIP	Dual Non-Inverting
MIC4427CN	MIC4427ZN	-0°C to +70°C	8-Pin PDIP	Dual Non-Inverting
MIC4428BM	MIC4428YM	-40°C TO +85°C	8-Pin SOIC	Inverting + Non-Inverting
MIC4428CM	MIC4428ZM	-0°C to +70°C	8-Pin SOIC	Inverting + Non-Inverting
MIC4428BMM	MIC4428YMM	-40°C to +85°C	8-Pin MSOP	Inverting + Non-Inverting
MIC4428BN	MIC4428YN	-40°C to +85°C	8-Pin PDIP	Inverting + Non-Inverting
MIC4428CN	MIC4428ZN	-0°C to +70°C	8-Pin PDIP	Inverting + Non-Inverting
Note			-	

Note

DESC standard military drawing 5962-88503 available;
 MIC4426, CERDIP 8-Pin
 SMD#: 5962-8850307PA

 MIC4427, CERDIP 8-Pin
 SMD#: 5962-8850308PA


 MIC4428, CERDIP 8-Pin
 SMD#: 5962-8850309PA

Micrel Part Number: 5952-8850307PA Micrel Part Number: 5952-8850308PA Micrel Part Number: 5952-8850309PA

MIC426/427/428 Device Replacement

MIC1426/1427/1428 Device Replacement Discontinued Number Peopla

V421/428 Device Replacement		MIC1420/1421/1428 Device Replacement			
Discontinued Number	Replacement	Discontinued Number	Replacement		
MIC426CM	MIC4426BM	MIC1426CM	MIC4426BM		
MIC426BM	MIC4426BM	MIC1426BM	MIC4426BM		
MIC426CN	MIC4426BN	MIC1426CN	MIC4426BN		
MIC426BN	MIC4426BN	MIC1426BN	MIC4426BN		
MIC427CM	MIC4427BM	MIC1427CM	MIC4427BM		
MIC427BM	MIC4427BM	MIC1427BM	MIC4427BM		
MIC427CN	MIC4427BN	MIC1427CN	MIC4427BN		
MIC427BN	MIC4427BN	MIC1427BN	MIC4427BN		
MIC428CM	MIC4428BM	MIC1428CM	MIC4428BM		
MIC428BM	MIC4428BM	MIC1428BM	MIC4428BM		
MIC428CN	MIC4428BN	MIC1428CN	MIC4428BN		
MIC428BN	MIC4428BN	MIC1428BN	MIC4428BN		

Pin Description

Pin Number	Pin Name	Pin Function
1, 8	NC	not internally connected
2	INA	Control Input A: TTL/CMOS compatible logic input.
3	GND	Ground
4	INB	Control Input B: TTL/CMOS compatible logic input.
5	OUTB	Output B: CMOS totem-pole output.
6	V _S	Supply Input: +4.5V to +18V
7	OUTA	Output A: CMOS totem-pole output.

Absolute Maximum Ratings⁽¹⁾

Supply Voltage (V _S)	+22V
Input Voltage (V _{IN})	V _S + 0.3V to GND – 5V
Junction Temperature (T _J)	150°C
Storage Temperature	–65°C to +150°C
Lead Temperature (10 sec.)	300°C
ESD Rating ⁽³⁾	

Operating Ratings⁽²⁾

Supply Voltage (V _S)	+4.5V to +18V
Temperature Range (T _A)	
(A)	–55°C to +125°C
(B)	–40°C to +85°C
Package Thermal Resistance	
PDIP θ _{JA} ······	130°C/W
PDIP θ_{JC}	42°C/W
SOIC θ_{JA}	120°C/W
SOIC θ_{JC}	75°C/W
MSOP $\check{\theta}_{JA}$	250°C/W

Electrical Characteristics⁽⁴⁾

 $4.5V \le V_s \le 18V$; $T_A = 25^{\circ}C$, **bold** values indicate full specified temperature range; unless noted.

Symbol	Parameter	Condition	Min	Тур	Max	Units
Input	·	÷	· · ·			
$\overline{V_{H}}$	Logic 1 Input Voltage		2.4	1.4		V
			2.4	1.5		V
V _{IL}	Logic 0 Input Voltage			1.1	0.8	V
				1.0	0.8	V
I _{IN}	Input Current	$0 \le V_{IN} \le V_{S}$	_1		1	μA
Output						
V _{OH}	High Output Voltage		V _S -0.025			V
V _{OL}	Low Output Voltage				0.025	V
R _O	Output Resistance	I _{OUT} = 10mA, V _S = 18V		6	10	Ω
U U				8	12	Ω
I _{PK}	Peak Output Current			1.5		A
	Latch-Up Protection	withstand reverse current	>500			mA
Switching	Time					<u> </u>
t _R	Rise Time	test Figure 1		18	30	ns
				20	40	ns
t _F Fall Time	Fall Time	test Figure 1		15	20	ns
				29	40	ns
t _{D1}	Delay Time	test Flgure 1		17	30	ns
				19	40	ns
t _{D2}	Delay Time	test Figure 1		23	50	ns
				27	60	ns
t _{PW}	Pulse Width	test Figure 1	400			ns
Power Sup						
I _S	Power Supply Current	$V_{INA} = V_{INB} = 3.0V$	0.6	1.4	4.5	mA
				1.5	8	mA
I _S	Power Supply Current	$V_{INA} = V_{INB} = 0.0V$		0.18	0.4	mA
				0.19	0.6	mA

Notes:

1. Exceeding the absolute maximum rating may damage the device.

2. The device is not guaranteed to function outside its operating rating.

3. Devices are ESD sensitive. Handling precautions recommended.

4. Specification for packaged product only.

Test Circuits

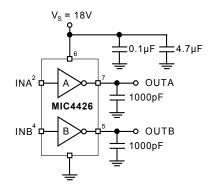
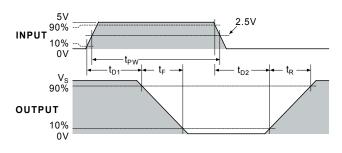
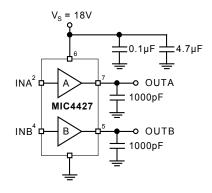




Figure 1a. Inverting Configuration

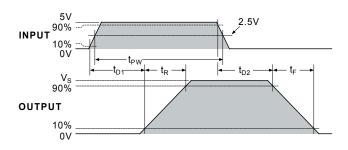
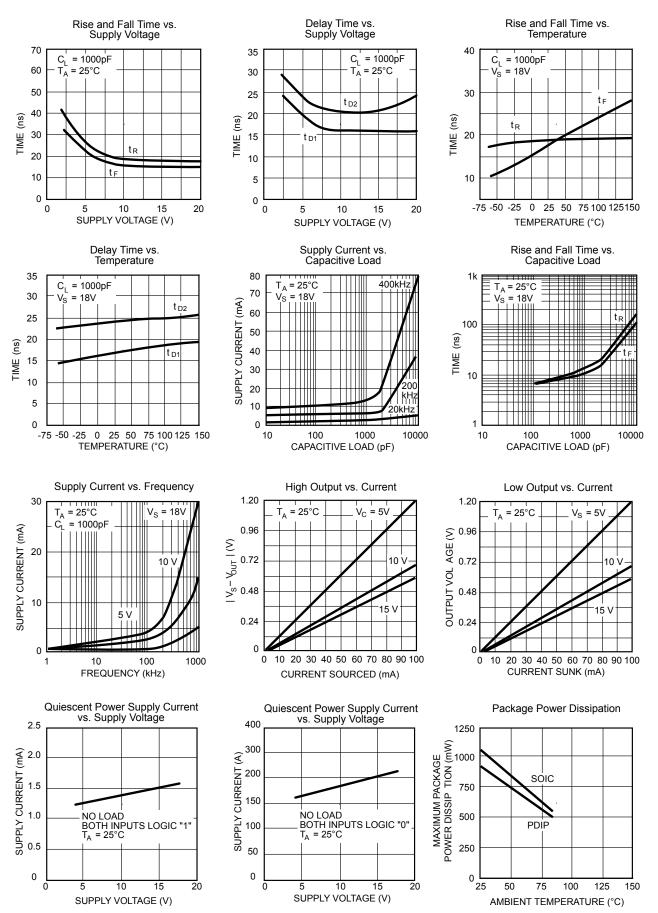



Figure 2b. Noninverting Timing

Electrical Characteristics

Applications Information

Supply Bypassing

Large currents are required to charge and discharge large capacitive loads quickly. For example, changing a 1000pF load by 16V in 25ns requires 0.8A from the supply input.

To guarantee low supply impedance over a wide frequency range, parallel capacitors are recommended for power supply bypassing. Low-inductance ceramic MLC capacitors with short lead lengths (< 0.5") should be used. A 1.0 μ F film capacitor in parallel with one or two 0.1 μ F ceramic MLC capacitors normally provides adequate bypassing.

Grounding

When using the inverting drivers in the MIC4426 or MIC4428, individual ground returns for the input and output circuits or a ground plane are recommended for optimum switching speed. The voltage drop that occurs between the driver's ground and the input signal ground, during normal high-current switching, will behave as negative feedback and degrade switching speed.

Control Input

Unused driver inputs must be connected to logic high (which can be $V_S)$ or ground. For the lowest quiescent current (< $500\mu A)$, connect unused inputs to ground. A logic-high signal will cause the driver to draw up to 9mA.

The drivers are designed with 100mV of control input hysteresis. This provides clean transitions and minimizes output stage current spikes when changing states. The control input voltage threshold is approximately 1.5V. The control input recognizes 1.5V up to V_S as a logic high and draws less than 1µA within this range.

The MIC4426/7/8 drives the TL494, SG1526/7, MIC38C42, TSC170 and similar switch-mode power supply integrated circuits.

Power Dissipation

Micrel, Inc.

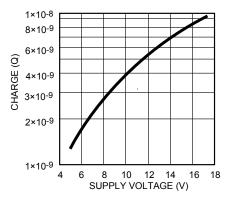
Power dissipation should be calculated to make sure that the driver is not operated beyond its thermal ratings. Quiescent power dissipation is negligible. A practical value for total power dissipation is the sum of the dissipation caused by the load and the transition power dissipation ($P_L + P_T$).

Load Dissipation

Power dissipation caused by continuous load current (when driving a resistive load) through the driver's output resistance is:

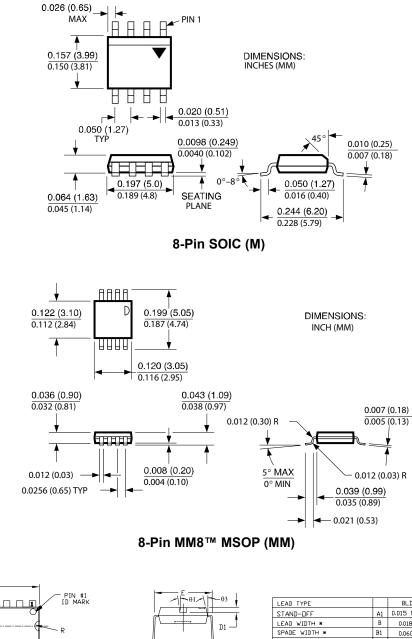
$$P_{L} = I_{L}^{2} R_{O}$$

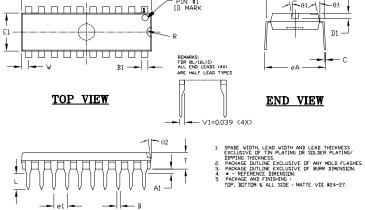
For capacitive loads, the dissipation in the driver is:


$$P_L = f C_L V_S^2$$

Transition Dissipation

In applications switching at a high frequency, transition power dissipation can be significant. This occurs during switching transitions when the P-channel and N-channel output FETs are both conducting for the brief moment when one is turning on and the other is turning off.


$$P_T = 2 f V_S G$$


Charge (Q) is read from the following graph:

Crossover Energy Loss per Transition

Package Information

LEAD TYPE		8LD	14/16LD	18LD	20LD
STAND-DFF	A1	0.015 MIN	0.015 MIN	0.015 MIN	0.015 MIN
LEAD WIDTH *	В	0.018	0.018	0.018	0.018
SPADE WIDTH *	B1	0.060	0.060	0.060	0.060
LEAD THICKNESS *	С	0.010	0.010	0.010	0.010
LENGTH TOL ±0.004	D	0.375	0.750	0.890	1.020
IDENT DEPTH	D1	0.030 ~ 0.060	0.030 ~ 0.060	0.030 ~ 0.060	0.030 ~ 0.060
SHOULDER WIDTH OUTER TO OUTER	E	0.300 ~ 0.325	0.300 ~ 0.325	0.300 ~ 0.325	0.300 ~ 0.325
WIDTH TOL ±0.004	E1	0.250	0.250	0.250	0.250
LEAD SPREAD DUTER TO DUTER	eA	0.320 ~ 0.370	0.320 ~ 0.370	0.320 ~ 0.370	0.320 ~ 0.370
LEAD PITCH *	e1	0.100	0.100	0.100	0.100
LEAD LENGTH TOL ±0.004	L	0.125	0.125	0.125	0.125
IDENT RADIUS	R	0.030	0.030	0.030	0.030
TOTAL THICKNESS TOL ±0.004		0.130	0.130	0.130	0.130
LEAD TO END PACKAGE	W	0.025 RBF	0.075REF14LD 0.025REF16LD	0.045REF	0.060REF
IDENT DRAFT TOL ±3"		7 *	7*	7°	7*
END ANGLE (4x) TOL ±3*		7"	7*	7 •	7*
SIDE ANGLE (4x) TOL ±3*	03	7"	7*	7*	7*

SIDE VIEW

8-Pin Plastic DIP (N)

MICREL INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA TEL + 1 (408) 944-0800 FAX + 1 (408) 474-1000 WEB http://www.micrel.com

This information furnished by Micrel in this data sheet is believed to be accurate and reliable. However no responsibility is assumed by Micrel for its use. Micrel reserves the right to change circuitry and specifications at any time without notification to the customer.

Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser's use or sale of Micrel Products for use in life support appliances, devices or systems is a Purchaser's own risk and Purchaser agrees to fully indemnify Micrel for any damages resulting from such use or sale.

© 2003 Micrel, Incorporated.