International IOR Rectifier

IRK.91 SERIES

STANDARD DIODES

ADD-A-pak[™] GEN V Power Modules

Features

- High Voltage
- Industrial Standard Package
- Thick Al metal die and double stick bonding
- Thick copper baseplate
- UL E78996 approved
- 3500V_{RMS} isolating voltage

Benefits

- Up to 1600V
- Full compatible TO-240AA
- High Surge capability
- Easy Mounting on heatsink
- Al₂0₃ DBC insulator
- Heatsink grounded

100 A

Mechanical Description

The Generation V of Add-A-pak module combine the excellent thermal performance obtained by the usage of Direct Bonded Copper substrate with superior mechanical ruggedness, thanks to the insertion of a solid Copper baseplate at the bottom side of the device. The Cu baseplate allow an easier mounting on the majority of heatsink with increased tolerance of surface roughness and improve thermal spread.

The Generation V of AAP module is manufactured without hard mold, eliminating in this way any possible direct stress on the leads.

The electrical terminals are secured against axial pull-out: they are fixed to the module housing via a click-stop feature already tested and proved as reliable on other IR modules.

Electrical Description

These modules are intended for general purpose high voltage applications such as high voltage regulated power supplies, lighting circuits, temperature and motor speed control circuits, UPS and battery charger.

Major Ratings and Characteristics

Param	neters	IRK.91	Units		
I _{F(AV)}		100	Α		
	@ T _C	100	°C		
I _{F(RMS)}		157	Α		
I _{FSM}	@ 50Hz	2020	Α		
	@ 60Hz	2110	Α		
I ² t	@ 50Hz	@ 50Hz 20.43			
	@ 60Hz	18.65	KA ² s		
I ² √t		204.3	KA ² √s		
V _{RRM} ra	ange	400 to 1600	V		
T _J		- 40 to 150	°C		
T _{STG}		- 40 to 150	°C		

Document Number: 93584 www.vishay.com

ELECTRICAL SPECIFICATIONS

Voltage Ratings

	Voltage	V _{RRM} , maximum repetitive	V _{RSM} , maximum non-	I _{RRM} max.
Type number	Code	peak reverse voltage V	repetitive peak rev. voltage V	@ T _J = 150°C mA
IRK.91	04	400	500	
	06	600	700	
	08	800	900	
	10	1000	1100	10
	12	1200	1300	
	14	1400	1500	
	16	1600	1700	

Forward Conduction

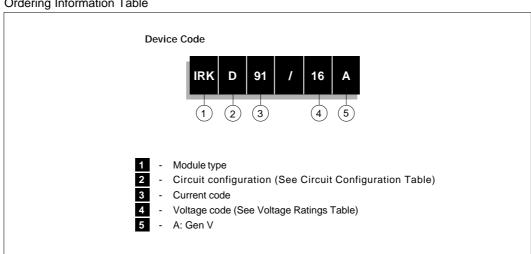
	Parameter	IRK.91	Units	Conditions	Conditions				
I _{F(AV)}	Max. average forward current	100	Α	180° conduction, half sine wave					
. (,	@ Case temperature	100	°C						
I _{F(AV)}	Max. average forward current	90	Α	180° conduction, half sine wave					
. ,	@ Case temperature	107	°C						
I _{F(RMS)}	Max. RMS forward current	157	Α	DC @ 90°0	C case tempera	arure			
I _{FSM}	Max. peak, one-cycle forward,	2020		t = 10ms	No voltage				
	non-repetitive surge current	2110		t = 8.3ms	reapplied				
		1700	Α	t = 10ms	100% V _{RRM}				
		1780		t = 8.3ms	reapplied	Sinusoidal half wave,			
l²t	Maximum I2t for fusing	20.43		t = 10ms	No voltage	Initial T ₁ = T ₁ max.			
		18.65	KA ² s	t = 8.3ms	reapplied				
		14.45		t = 10ms	100% V _{RRM}				
		13.19		t = 8.3ms	reapplied				
I²√t	Maximum I2Öt for fusing	204.3	KA²√s	t = 0.1 to 10ms, no voltage reapplied					
V _{F(TO)1}	Low level value of threshold voltage	0.79	V	$(16.7\% \times \pi \times _{F(AV)}) < 1 < \pi \times _{F(AV)}), T_J = T_J \text{ max.}$					
V _{F(TO)2}	High level value of threshold voltage	0.87	V	$(I > \pi x I_{F(AV)}), T_J = T_J max.$					
r _{f1}	Low level value of forward slope resistance	1.78	0	$(16.7\% \times \pi \times I_{F(AV)} < I < \pi \times I_{F(AV)}), T_J = T_J \text{ max.}$					
r _{f2}	High level value of forward slope resistance	1.57	mΩ	$(I > \pi x I_{F(AV)}), T_J = T_J max.$					
V _{FM}	Max. forward voltage drop	1.45	V	$I_{FM} = p \times I_{F(AV)}, T_J = 25^{\circ}C, t_p = 400 \mu s square wave$					

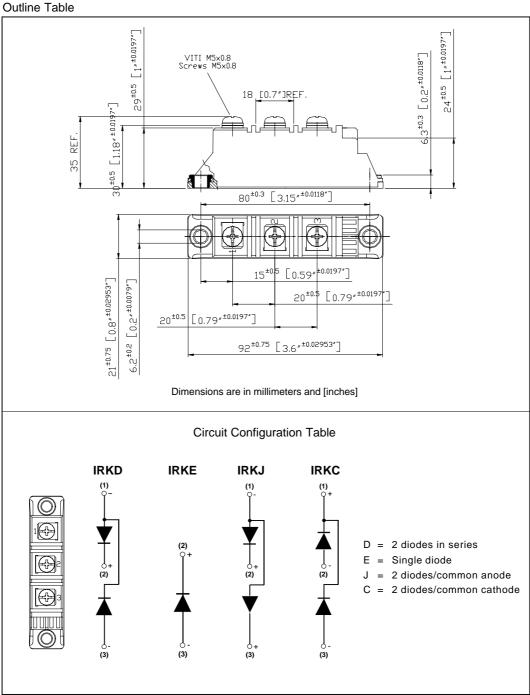
Blocking

	Parameter	IRK.91	Units	Conditions		
I _{RR}	Max. peak reverse leakage current	10	mA	T _J = 150°C		
VIN	RMS isolation voltage	3500 (1 sec)	V	50 Hz, circuit to base, all terminals shorted		

Bulletin I27141 rev. F 10/02

Thermal and Mechanical Specifications


	Parameter		IRK.91	Units	Conditions
T _J	Max. junction operating temp	-40 to 150			
T _{stg}	Storage temperature range	-40 to 150	°C		
R _{thJC}	Max. thermal resistance, jur	0.35	K/W	Per junction, DC operation	
R _{thCS}	Typical thermal resistance, c	0.1		Mounting surface flat, smooth and greased	
Т	Mounting torque ±10%	to heatsink	5	Nm	A mounting compound is recommended and the
		busbar	4	1	torque should be rechecked after a period of 3 hours to allow for the spread of the compound
wt	Approximate weight		110 (4)	g (oz)	
	Case style		TO-240AA		JEDEC


ΔR Conduction (per Junction)

(The following table shows the increment of thermal resistance R_{thJC} when devices operate at different conduction angles than DC)

Devices Sine half wave conduction					Rect. wave conduction				Units		
	180°	120°	90°	60°	30°	180°	120°	90°	60°	30°	
IRK.91	0.052	0.064	0.082	0.112	0.164	0.043	0.069	0.088	0.115	0.165	°C/W

Ordering Information Table

NOTE: To order the Optional Hardware see Bulletin I27900

Document Number: 93584 www.vishay.com

Bulletin I27141 rev. F 10/02

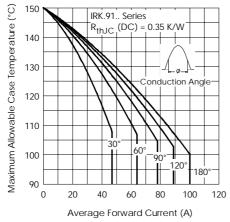


Fig. 1 - Current Ratings Characteristics

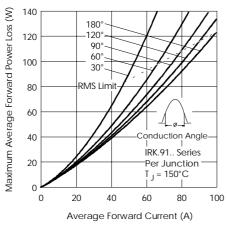


Fig. 3 - Forward Power Loss Characteristics

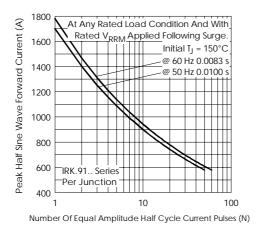


Fig. 5 - Maximum Non-Repetitive Surge Current

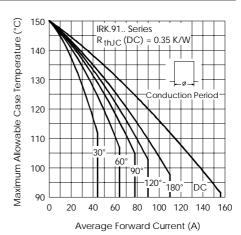


Fig. 2 - Current Ratings Characteristics

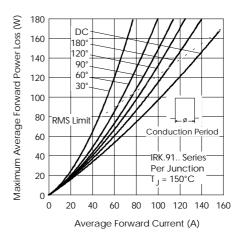


Fig. 4 - Forward Power Loss Characteristics

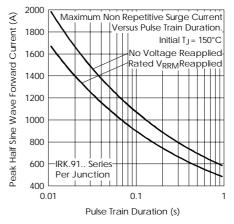


Fig. 6 - Maximum Non-Repetitive Surge Current

Document Number: 93584 www.vishay.com

IRK.91 Series

Bulletin I27141 rev. F 10/02

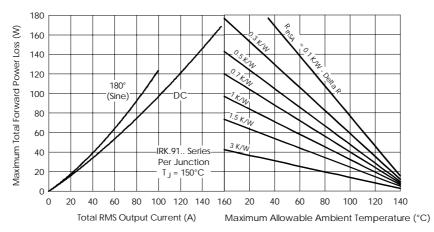


Fig. 7 - Forward Power Loss Characteristics

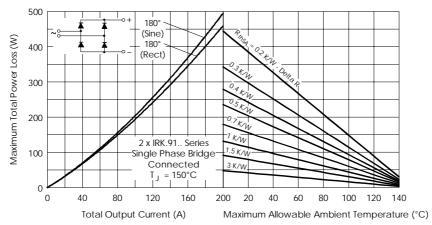


Fig. 8 - Forward Power Loss Characteristics

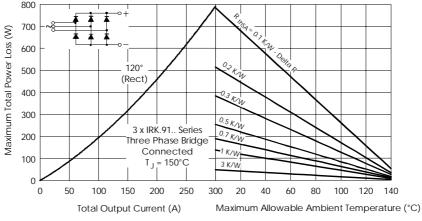


Fig. 9 - Forward Power Loss Characteristics

Document Number: 93584 www.vishay.com

Bulletin I27141 rev. F 10/02

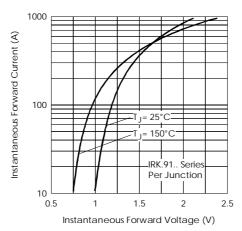


Fig. 10 - Forward Voltage Drop Characteristics

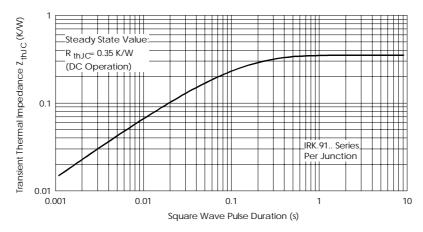


Fig. 11 - Thermal Impedance \boldsymbol{Z}_{thJC} Characteristic

Data and specifications subject to change without notice. This product has been designed and qualified for Industrial Level.

Qualification Standards can be found on IR's Web site.

International TOR Rectifier

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7309

0/02

Vishay

Notice

The products described herein were acquired by Vishay Intertechnology, Inc., as part of its acquisition of International Rectifier's Power Control Systems (PCS) business, which closed in April 2007. Specifications of the products displayed herein are pending review by Vishay and are subject to the terms and conditions shown below.

Specifications of the products displayed herein are subject to change without notice. Vishay Intertechnology, Inc., or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Vishay's terms and conditions of sale for such products. Vishay assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of Vishay products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Vishay for any damages resulting from such improper use or sale.

International Rectifier®, IR®, the IR logo, HEXFET®, HEXSense®, HEXDIP®, DOL®, INTERO®, and POWIRTRAIN® are registered trademarks of International Rectifier Corporation in the U.S. and other countries. All other product names noted herein may be trademarks of their respective owners.

Document Number: 99901 www.vishay.com Revision: 12-Mar-07