CMLD3003DO CMLD3003DOG

SURFACE MOUNT SILICON DUAL, ISOLATED, OPPOSING LOW LEAKAGE SWITCHING DIODES

• The CMLD3003DOG is *Halogen Free* by design

www.centralsemi.com

DESCRIPTION:

The CENTRAL SEMICONDUCTOR CMLD3003DO and CMLD3003DOG devices contain two (2) isolated opposing configuration, silicon switching diodes, manufactured by the epitaxial planar process, epoxy molded in an SOT-563 surface mount package. These devices are designed for switching applications requiring extremely low leakage.

MARKING CODES: CMLD3003DO: C30 CMLD3003DOG: 3CG

MAXIMUM RATINGS: (T _A =25°C)	SYMBOL		UNITS
Continuous Reverse Voltage	V_{R}	180	V
Average Rectified Current	IO	200	mA
Continuous Forward Current	l _F	600	mA
Peak Repetitive Forward Current	I _{FRM}	700	mA
Peak Forward Surge Current, tp=1.0µs	I _{FSM}	2.0	Α
Peak Forward Surge Current, tp=1.0s	I _{FSM}	1.0	Α
Power Dissipation	P_{D}	250	mW
Operating and Storage Junction Temperature	T _J , T _{stg}	-65 to +150	°C
Thermal Resistance	ΘιΛ	500	°C/W

ELECTRICAL CHARACTERISTICS PER DIODE: (TA=25°C unless otherwise noted)

SYMBOL	TEST CONDITIONS	MIN	MAX	UNITS
I_{R}	V _R =125V		1.0	nA
I_{R}	V _R =125V, T _A =150°C		3.0	μΑ
I_{R}	V _R =180V		10	nA
I_{R}	V _R =180V, T _A =150°C		5.0	μΑ
BV_R	I _R =5.0μA	200		V
VF	I _F =1.0mA	0.62	0.72	V
V_{F}	I _F =10mA	0.72	0.83	V
VF	I _F =50mA	0.80	0.89	V
V_{F}	I _F =100mA	0.83	0.93	V
V_{F}	I _F =200mA	0.87	1.10	V
V_{F}	I _F =300mA	0.90	1.15	V
CJ	V _R =0, f=1.0MHz		4.0	pF