

AP3008

General Description

The AP3008 is a 1.2MHz PWM boost switching regulator designed for constant-current white LED driver applications.

The AP3008 can drive a string of 2 to 3 white LEDs from a 2.7V supply in series, ensuring uniform brightness and eliminating several ballast resistors. The AP3008 implements a constant frequency 1.2MHz PWM control scheme. The high frequency PWM operation also saves board space by reducing external component sizes. To improve efficiency, the feedback voltage is set to 95 mV, which reduces the power dissipation in the current setting resistor.

The AP3008 is equipped with OVP protection ability, the SW pin monitors the output voltage and will turn off the device if an over-voltage condition is present to prevent damage from an open circuit condition.

The AP3008 is available in SOT-23-5 package.

Features

- Inherently Uniform LED Current
- High Efficiency up to 84%
- Drives 2 to 3 LEDs from a 2.7V Supply
- 1.2MHz PWM Operation Frequency
- Requires Only 0.22µF Output Capacitor
- Shutdown Current: <1μA
- Built-in Output Over-Voltage Protection
- Under Voltage Lock Out (UVLO)

Applications

- · Digital Cameras
- · LCD modules
- GPS Receivers
- Cellular Phones
- PDAs, Handheld Computers

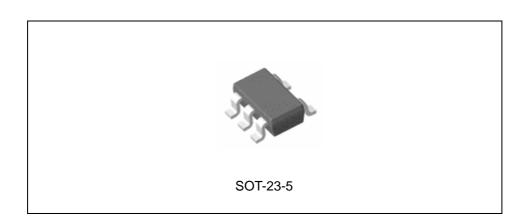


Figure 1. Package Type of AP3008

AP3008

Pin Configuration

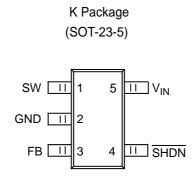


Figure 2. Pin Configuration of AP3008 (Top View)

Pin Description

Pin Number	Pin Name	Function
1	SW	Switch Pin. Connect inductor/diode here. The output voltage can range up to 29V but not extend this limit. If the voltage on this pin is higher than the overvoltage protection threshold (OVP), the device comes back to shutdown mode. To restart the chip, one must then send a low to high sequence on shutdown pin or switch off the $V_{\rm IN}$ supply.
2	GND	Ground Pin.
3	FB	Voltage Feedback. Reference voltage is 95mV.
4	SHDN	Shutdown Pin. Connect to 1.5V or higher to enable device; Connect to 0.4V or less to disable device.
5	V _{IN}	Input Supply Pin. Must be locally bypassed.

AP3008

Functional Block Diagram

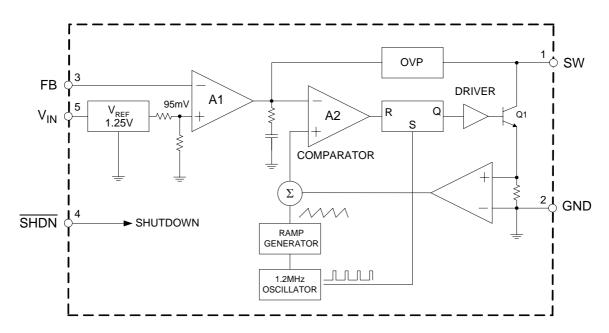
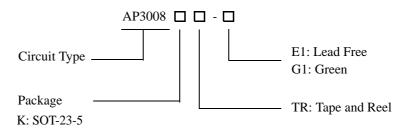



Figure 3. Functional Block Diagram of AP3008

Ordering Information

Package	Temperature	Part Number		Marking ID		Packing	
	Range	Lead Free	Green	Lead Free	Green	Type	
SOT-23-5	-40 to 85°C	AP3008KTR-E1	AP3008KTR-G1	E1B	G1B	Tape & Reel	

BCD Semiconductor's Pb-free products, as designated with "E1" suffix in the part number, are RoHS compliant. Products with "G1" suffix are available in green packages.

AP3008

Absolute Maximum Ratings (Note 1)

Parameter	Symbol	Value	Unit
Input Voltage	V_{IN}	15	V
SW Voltage		36	V
FB Voltage		10	V
SHDN Voltage		15	V
Thermal Resistance (Junction to Atmosphere, no Heat sink)	$R_{\theta JA}$	265	°C/W
Operating Junction Temperature		150	°C
Storage Temperature Range	T_{STG}	-65 to 150	°C
Lead Temperature (Soldering, 10sec)	T_{LEAD}	260	°C
ESD (Machine Model)		250	V
ESD (Human Body Model)		2000	V

Note 1: Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "Recommended Operating Conditions" is not implied. Exposure to "Absolute Maximum Ratings" for extended periods may affect device reliability.

Recommended Operating Conditions

Parameter	Symbol	Min	Max	Unit
Operating Temperature Range	T_{OP}	-40	85	°C
Operating Voltage Range		2.5	12	V

AP3008


Electrical Characteristics

(V_{IN} =3V, $V_{\overline{SHDN}}$ =3V, T_A =25°C, unless otherwise specified.)

Parameter	Symbol	Conditions	Min	Тур	Max	Unit	
Feedback Voltage	V_{FB}	I _{SW} =100mA, Duty Cycle=66%	86	95	104	mV	
FB Pin Bias Current				45	100	nA	
Supply Current	I_{CC}	$V_{\overline{SHDN}} = V_{IN}, V_{FB} = V_{IN}$, No switching		1.9	2.5	mA	
Supply Current	I_Q	V _{SHDN} =0V		0.1	1.0	μΑ	
Switch Frequency	f		0.8	1.2	1.6	MHz	
Maximum Duty Cycle	D _{MAX}		85	90		%	
Switch Current Limit	I_{LIM}	Duty=15%		320		mA	
Switch VCESAT	V _{CESAT}	I _{SW} =250mA		350		mV	
Switch Leakage Current		V _{SW} =5V		0.01	5	μΑ	
	V _{TH}	High	1.5				
SHDN Voltage	V_{TL}	Low			0.4	V	
SHDN Pin Bias Current				50		μΑ	
OVP Voltage	V _{OVP}			29		V	

Typical Performance Characteristics

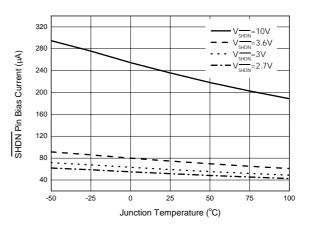
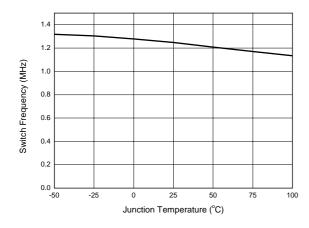



Figure 4. Quiescent Current vs. V_{IN}

Figure 5. SHDN Pin Bias Current vs. Junction Temperature

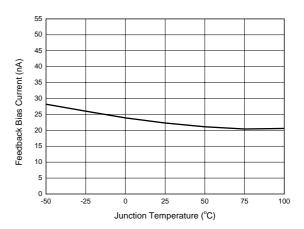
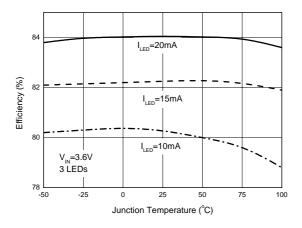



Figure 6. Switch Frequency vs. Junction Temperature

Figure 7. Feedback Bias Current vs. Junction Temperature

Typical Performance Characteristics (Continued)

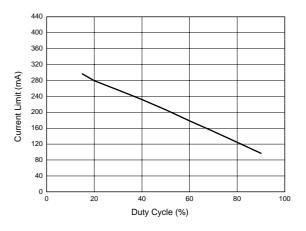
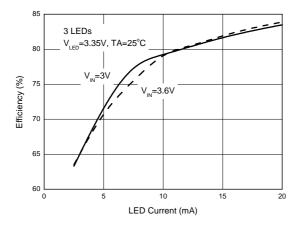
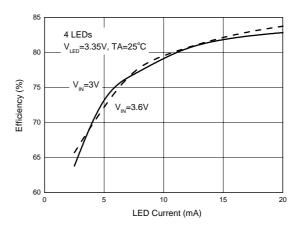



Figure 8. Efficiency vs. Junction Temperature

Figure 9. Switch Current vs. Duty Cycle



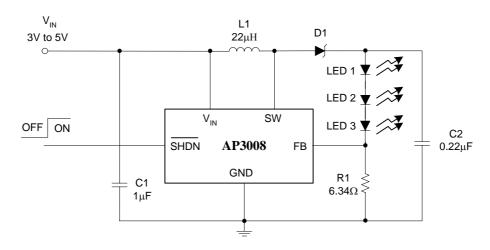

Figure 10. Efficiency vs. LED Current

Figure 11. Efficiency vs. LED Current

AP3008

Typical Application

C1, C2: X5R or X7R Dielectric

L1: SUMIDA CDRH5D28R-220NC or Equivalent

Figure 12. Three White LEDs Driver

AP3008

Mechanical Dimensions

SOT-23-5 Unit: mm(inch)

BCD Semiconductor Manufacturing Limited

http://www.bcdsemi.com

IMPORTANT NOTICE

BCD Semiconductor Manufacturing Limited reserves the right to make changes without further notice to any products or specifications herein. BCD Semiconductor Manufacturing Limited does not assume any responsibility for use of any its products for any particular purpose, nor does BCD Semiconductor Manufacturing Limited assume any liability arising out of the application or use of any its products or circuits. BCD Semiconductor Manufacturing Limited does not convey any license under its patent rights or other rights nor the rights of others.

MAIN SITE

- Headquarters

BCD Semiconductor Manufacturing Limited

No. 1600, Zi Xing Road, Shanghai ZiZhu Science-based Industrial Park, 200241, China Tel: +86-21-24162266, Fax: +86-21-24162277

REGIONAL SALES OFFICE

Shenzhen Office

Shanghai SIM-BCD Semiconductor Manufacturing Co., Ltd., Shenzhen Office Room E, 5F, Noble Center, No.1006, 3rd Fuzhong Road, Futian District, Shenzhen, 518026, China Tel: +86-755-8826 7951

Fax: +86-755-8826 7865

- Wafer Fab

Shanghai SIM-BCD Semiconductor Manufacturing Co., Ltd. 800 Yi Shan Road, Shanghai 200233, China Tel: +86-21-6485 1491, Fax: +86-21-5450 0008

Taiwan Office

BCD Semiconductor (Taiwan) Company Limited 4F, 298-1, Rui Guang Road, Nei-Hu District, Taipei,

Taiwan Tel: +886-2-2656 2808 Fax: +886-2-2656 2806

USA Office BCD Semiconductor Corp. 30920 Huntwood Ave. Hayward, CA 94544, USA Tel: +1-510-324-2988

Fax: +1-510-324-2788