
LINEAR SYSTEMS

Twenty-Five Years Of Quality Through Innovation

FEATURES						
Direct Replacement for Siliconix J/SST: 108, 109, 110, & 110A						
LOW ON RESISTANCE	$r_{DS(on)} \le 8\Omega$					
FAST SWITCHING $t_{ON} \le 4ns$						
ABSOLUTE MAXIMUM RATINGS ¹						
@ 25 °C (unless otherwise stated)						
Maximum Temperatures						
Storage Temperature	-55 to 150°C					
Junction Operating Temperature	-55 to 150°C					
Maximum Power Dissipation						
Continuous Power Dissipation ³	350mW					
Maximum Currents						
Gate Current	50mA					
Maximum Voltages						
Gate to Drain or Source	-25V					

J/SST108 SERIES

LOW NOISE SINGLE N-CHANNEL JFET SWITCH

STATIC ELECTRICAL CHARACTERISTICS @25 °C (unless otherwise stated)

-				J/SST108 J/SST109 J/SST110		T110					
SYM.	CHARACTERISTIC	;	ТҮР	MIN	MAX	MIN	MAX	MIN	MAX	UNIT	CONDITIONS
BV_{GSS}	Gate to Source Bre	akdown Voltage		-25		-25		-25			$I_G = -1\mu A$, $V_{DS} = 0V$
V _{GS(off)}	Gate to Source Cut	off Voltage		-3	-10	-2	-6	-0.5	-4	V	$V_{DS} = 5V, I_D = 1\mu A$
V _{GS(F)}	Gate to Source For	ward Voltage	0.7								$I_G = 1mA$, $V_{DS} = 0V$
I _{DSS}	Drain to Source Saturation Current ²			80		40		10		mA	$V_{DS}=15V,V_{GS}=0V$
I _{GSS}	Gate Leakage Curr	ent	-0.01		-3		-3		-3	$V_{GS} = -15V, V_{DS} = 0V$	
l _G	Gate Operating Cur	rent	-0.01							nA	$V_{DG} = 10V, I_D = 10mA$
I _{D(off)}	Drain Cutoff Curren	t	0.02		3		3		3		$V_{DS} = 5V, V_{GS} = -10V$
Drain to Source	108, 109, 110			8		12		18	~		
r _{DS(on)}	On Resistance	110A							25	Ω	$V_{GS} = 0V, V_{DS} \le 0.1V$

DYNAMIC ELECTRICAL CHARACTERISTICS @25 °C (unless otherwise stated)

SYM.	CHARACTERISTIC		ТҮР	J/SST108		J/SST109		J/SST110		UNIT	CONDITIONS
5 T IVI.				MIN	MAX	MIN	MAX	MIN	MAX	UNIT	CONDITIONS
g _{fs}	Forward Transconductance		17							mS	V _{DS} = 5V, I _D = 10mA
g _{os}	Output Conductance		0.6							113	f = 1 kHz
r _{ds(on)}	Drain to Source On Resi	stance			8		12		18	Ω	$V_{GS} = 0V, I_D = 1mA$ f = 1kHz
	Innut Consoitanoo	SST	60								$V_{DS} = 0V, V_{GS} = 0V$ f = 1MHz
C _{iss}	Input Capacitance	J	60		85		85		85	pF	
C	C _{rss} Reverse Transfer Capacitance	SST	11							- pr	$V_{DS} = 0V, V_{GS} = -10V$
Urss		J	11		15		15		15		f = 1MHz
en	Equivalent Input Noise Voltage		3.5							nV/√Hz	$V_{DS} = 5V, I_D = 10mA$ f = 1kHz

Linear Integrated Systems

SWITCHING CHARACTERISTICS

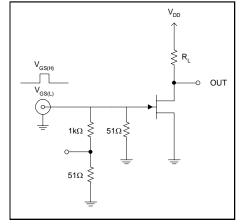
SYM.	CHARACTERISTIC	TYP	UNIT	CONDITIONS		
t _{d(on)}		3	ns			
tr	Turn On Time	1		$V_{DD} = 1.5V$ $V_{GS(H)} = 0V$		
t _{d(off)}		4				
t _f	Turn Off Time	18				

SWITCHING CIRCUIT CHARACTERISTICS

SYM.	J/SST108	J/SST109	J/SST110
V _{GS(L)}	-12V	-7V	-5V
RL	150Ω	150Ω	150Ω
I _{D(on)}	10mA	10mA	10mA

TO-92 **SOT-23** 0.175 0.130 105 0.045 LS XXX 0.170 VVMM 1.20 2.10 D.016 0.014 0.022 0.500 0.54 0.013 DIMENSIONS IN MILLIMETERS 0.095 0.045 DIMENSIONS IN INCHES. 0 105

NOTES


- 1. Absolute maximum ratings are limiting values above which serviceability may be impaired.
- 2. Pulse test: PW \leq 300µs, Duty Cycle \leq 3%
- 3. Derate 2.8mW/°C above 25 °C

Linear Integrated Systems

Information furnished by Linear Integrated Systems is believed to be accurate and reliable. However, no responsibility is assumed for its use; nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Linear Integrated Systems.

Linear Integrated Systems (LIS) is a 25-year-old, third-generation precision semiconductor company providing high-quality discrete components. Expertise brought to LIS is based on processes and products developed at Amelco, Union Carbide, Intersil and Micro Power Systems by company President John H. Hall. Hall, a protégé of Silicon Valley legend Dr. Jean Hoerni, was the director of IC Development at Union Carbide, co-founder and vice president of R&D at Intersil, and founder/president of Micro Power Systems.

SWITCHING TEST CIRCUIT

4042 Clipper Court Fremont, CA 94538 Tel: 510 490-9160 Fax: 510 353-0261 Doc 20118 6/15/13 Rev#A6 ECN# J SST 108