

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All recreations are done with the approval of the OCM.

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceed the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-35835
 - Class Q Military
 - Class V Space Level
- Qualified Suppliers List of Distributors (QSLD)
- Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OEM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

Quad Low-Power Voltage Comparators

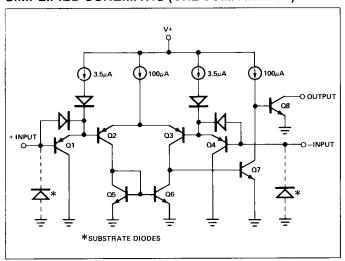
PM-139/PM-139A/PM-239

FEATURES

- Single or Dual Supply Operation
- Input Voltage Range Includes Ground
- Low Power Consumption (2mW/Comparator)
- Low Input Offset Current ±5nA
- Low Offset Voltage ±2mV
- Low Output Saturation Voltage (250mV @ 4mA)
- Logic Outputs Compatible with TTL, DTL, ECL, MOS, and CMOS
- Directly Replaces LM139 and LM139A Comparators
- Available in Die Form

ORDERING INFORMATION [†]

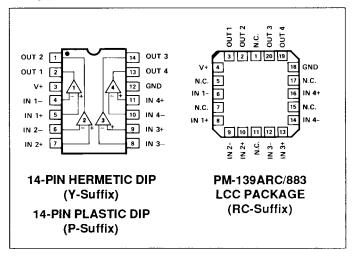
+25°C	PA	PACKAGE PACKAGE			
V _{OS} (mV)	DIP 14-PIN	LCC 20-CONTACT	TEMPERATURE RANGE		
±2*	PM139AY*	PM139ARC/883	MIL		
±5*	PM139Y*	_	MIL		
±5	PM239P	_	XIND		


For devices processed in total compliance to MIL-STD-883, add/883 after part number. Consult factory for 883 data sheet.

JAN ORDERING INFORMATION

JAN PART NUMBER	DESCRIPTION
JM38510/11201BCA	PM139Y5/38510 LEVELB
JM38510/11201BCB	PM139Y2/38510 LEVEL B
JM38510/11201SCA*	PM139Y5/38510 LEVELS

Table above is for MIL-M-38510 processing. Refer to 11201 slash sheet for electrical processing parameters.


SIMPLIFIED SCHEMATIC (ONE COMPARATOR)

GENERAL DESCRIPTION

The PM-139 has four independent voltage comparators, each with precision DC specifications. Low offset voltage, bias current, power consumption and output saturation voltage are offered in a design that features single power supply operation. The input voltage range includes ground for convenient single supply operation. The 2mA power supply current, independent of supply voltage — coupled with the single supply operation, makes this comparator ideal for low power applications. Open collector outputs allow maximum applications flexibility.

PIN CONNECTIONS

ABSOLUTE MAXIMUM RATINGS

ADOCEO LE MAXIMON	1171111400		
Supply Voltage, V+	36	V or ±18V	
Differential Input Voltage			
Input Voltage		0.3	V to +36V
Derate Above 100°C			
Output Short-Circuit to Gro	und	C	ontinuous
Input Current ($V_{IN} < -0.3V$)			50mA
Operating Temperature Ra			
PM-139A/139/139ARC		55°C	to +125°C
PM-239P		–40°C	to +85°C
Storage Temperature Rang			
Lead Temperature (Solder	ing, 60 sec)		300°C
Junction Temperature			+150°C
PACKAGE TYPE	⊖ _{jA} (Note 1)	Θ _{JC}	UNITS
14-Pin Hermetic DIP (Y)	110	26	°C/W
14-Pin Plastic DIP (P)	90	47	°C/W

NOTE:

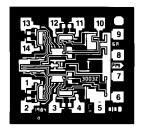
[†] Burn-in is available on commercial and industrial temperature range parts in CerDIP, plastic DIP, and TO-can packages.

^{*} Undergoing Part I qualification. Consult ADI for availability.

Θ_{jA} is specified for worst case mounting conditions, i.e., Θ_{jA} is specified for device in socket for CerDIP and P-DIP packages.

ELECTRICAL CHARACTERISTICS at V + = +5V, $T_A = 25$ °C, unless otherwise noted.

			PM-139A			PN			
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MÁX	UNITS
Input Offset Voltage V _{OS}		(Note 1)		1	2		2	5	mV
Input Bias Current	I _B	I _{IN} (+) or I _{IN} (-) with Output in Linear Range	_	25	100	_	25	100	nA
Input Offset Current	Ios	I _{IN} (+) or I _{IN} (-)		3	25		3	25	nA
Input Common-Mode Voltage Range	CMVR	(Notes 2, 5, 6)	0 — 3.5		0		3.5	V	
Supply Current	Is	R _L = ∞ on all Comparators V+ = 30V	_	0.8	2		0.8	2	mA
Voltage Gain	A _{vo}	$R_L \ge 15k\Omega$, $V + = 15V$ (To support large V_O swing) (Note 5)	50	200	_	50	200	_	V/mV
Large-Signal Response Time	t _r	$V_{IN} = TTL$ Logic Swing, $V_{REF} = 1.4V$, $V_{RL} = 5V$, $R_L = 5.1k\Omega$, (Note 4)	_	300	_		300	_	ns
Response Time	t _r	$V_{RL} = 5V, R_{L} = 5.1k\Omega$ (Notes 3, 4)				_	1.3	_	μs
Output Sink Current	Isink	$V_{IN}(-) \ge 1V, V_{IN}(+) = 0,$ $V_O \le 1.5V$				6	16	_	m A
Saturation Voltage	V _{OL}	$V_{IN}(-) \ge 1V$, $V_{IN}(+) = 0$, $I_{SINK} \le 4mA$	— 250 400		_	250	400	mV	
Output Leakage Current	I _{LEAK}	$V_{IN}(+) \ge 1V, V_{IN}(-) = 0,$ $V_O = 30V$		0.1		_	0.1	_	nA


ELECTRICAL CHARACTERISTICS at V+ = +5V, -55° C \leq T_A \leq +125 $^{\circ}$ C for PM-139A and PM-139, -40° C \leq T_A \leq +85 $^{\circ}$ C for PM-239, unless otherwise noted.

				PM-139A			PM-139/239		
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
Input Offset Voltage	Vos	(Note 1)			4			9	mV
Input Offset Current	los	I _{IN} (+) or I _{IN} (-)			100			100	nA
Input Bias Current	I _B	I _{IN} (+) OR I _{IN} (-) with Output in Linear Range	_		300	_	_	300	nA
Input Common-Mode Voltage Range	CMVR	(Notes 3, 5)	0		V+ -2	0	_	V+-2	v
Saturation Voltage	V _{OL}	$V_{IN}(-) \ge 1V$, $V_{IN}(+) = 0$,		_	700		_	700	mV
Output Leakage Current	I _{LEAK}	$V_{1N}(+) \ge 1V$, $V_{1N}(-) = 0$, $V_{0} = 30V$			1	_			μΑ
Differential Input Voltage		Keep All V _{IN's} ≥ 0V	-		36			36	V

NOTES:

- 1. At output switch point, $V_O=1.4V,\, R_S=0\Omega$ with V+ from 5V, and over the full input common-mode range (0V to V+ –1.5V).
- The input common-mode voltage or either input voltage signal should not be allowed to go negative by more than 0.3V. The upper end of the common-mode voltage range is V+-1.5V, but either or both inputs can go to +30V without damage.
- The response time specified is for a 100mV input step with 5mV overdrive.
 For larger overdrive signals 300ns can be obtained. See characteristics section.
- 4. Sample tested.
- Guaranteed by design.
- 6. Positive CMVR limit equals V + -1.5V for supply voltages other than 5V.

DICE CHARACTERISTICS

- 1. OUTPUT (2)
- 2. OUTPUT (1)
- 3. POSITIVE SUPPLY
- 4. INVERTING INPUT (1)
- 5. NONINVERTING INPUT (1)
- 6. INVERTING INPUT (2)
- 7. NONINVERTING INPUT (2)
- 8. INVERTING INPUT (3)
- 9. NONINVERTING INPUT (3)
- 10. INVERTING INPUT (4)
- 11. NONINVERTING INPUT (4)
- 12. GROUND (SUBSTRATE)
- 13. OUTPUT (4)
- 14. OUTPUT (3)

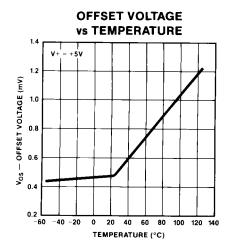
DIE SIZE 0.051×0.048 inch, 2448 sq. mils (1.295 \times 1.220 mm, 1.58 sq. mm)

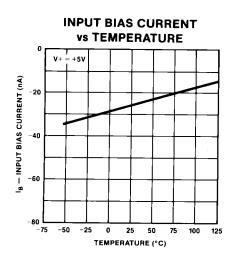
WAFER TEST LIMITS at V + = +5V, $T_A = 25$ °C, unless otherwise noted.

PARAMETER	SYMBOL	CONDITIONS	PM-139N LIMIT	UNITS
Input Offset Voltage	V _{OS}	$R_S = 0\Omega$, $R_L = 5.1k\Omega$ $V_O = 1.4V$, (Note 1)	2	mV MAX
Input Offset Current	los	$I_{1N}(+) - I_{1N}(-)$ $R_L = 5.1k\Omega$ $V_O = 1.4V$	25	nA MAX
Input Bias Current	IB	$I_{IN}(\pm)$ or $I_{IN}(\pm)$, (Note 1)	100	nA MAX
Voltage Gain	A _V	$R_L \ge 15 k\Omega$, V+ = 15V, (Note 3)	50	V/mV MIN
Input Voltage Range	CMVR	(Notes 2, 3)	V+ - 1.5	V MAX
Common-Mode Rejection Ratio	CMRR	(Note 4)	60.5	dB MIN
Power Supply Rejection Ratio	PSRR	V+ = 5V to + 18V	60.5	dB MIN
Saturation Voltage	V _{OL}	$V_{IN}(-) \ge 1V$, $V_{IN}(+) = 0$, $I_{SINK} \le 4mA$	400	mV MAX
Output Sink Current	I _{SINK}	$V_{IN}^{(-)} \ge 1V$, $V_{IN}^{(+)} = 0$, $V_0 \le 1.5V$	6	mA MIN
Output Leakage Current	leak leak	$V_{IN}(+) \ge 1V$, $V_{IN}(-) = 0$, $V_0 = 30V$	500	nA MAX
Supply Current	1+	$R_L = \infty$, All Comps V+ = 30V	2	mA MAX

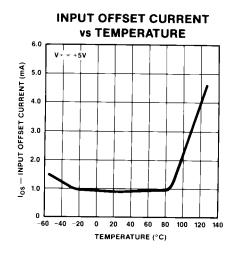
NOTES:

Electrical tests are performed at wafer probe to the limits shown. Due to variations in assembly methods and normal yield loss, yield after packaging is not guaranteed for standard product dice. Consult factory to negotiate specifications based on dice lot qualification through sample lot assembly and testing.

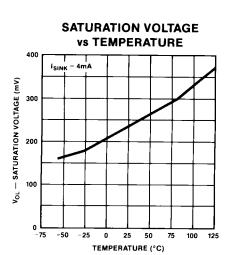

TYPICAL ELECTRICAL CHARACTERISTICS at V + = +5V, unless otherwise noted.

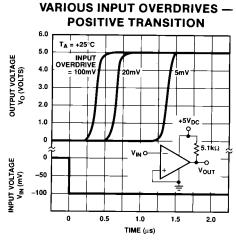

PARAMETER	SYMBOL	CONDITIONS	PM-139N TYPICAL	UNITS
Large-Signal Response Time	t _r	V _{IN} = TTL Logic Swing V _{REF} = 1.4V, (Note 5) V _{RL} = 5V, R _L = 5.1kΩ	600	ns
Small-Signal Response Time	t _r	$V_{IN} = 100$ mV Step, (Note 5) 5mV Overdrive $V_{RL} = 5$ V, $R_L = 5.1$ kΩ	1.3	μS

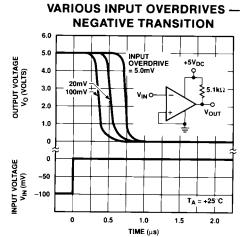
NOTES:

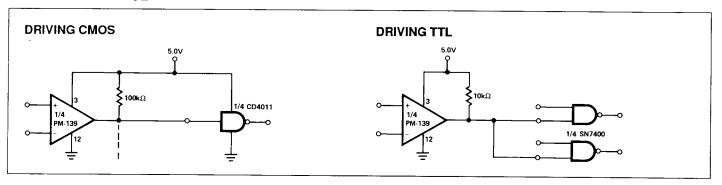

- 1. At output switch point, $V_O=1.4V,\,R_S=0\Omega$ with V+ from 5V; and over the full input common-mode range (0V to V+ -1.5V).
- 2. The input common-mode voltage or either input signal voltage should not be allowed to go negative by more than 0.3V. The upper end of the
- common-mode voltage range is $V\pm 1.5V$, but either or both inputs can go to $\pm 30V$ without damage.
- 3. Guaranteed by design.
- 4. $R_L \ge 15 k\Omega$. $V_{CM} = 1.5 V$ to 13.5 V, V + = 15 V.
- 5. Sample tested.

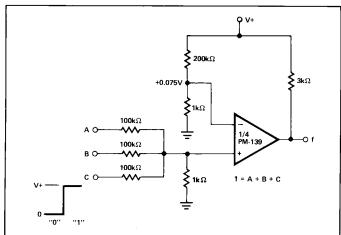
TYPICAL PERFORMANCE CHARACTERISTICS



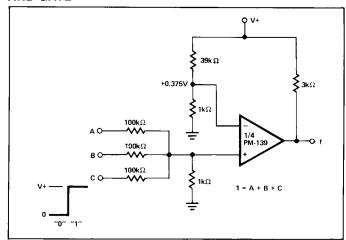



RESPONSE TIME FOR

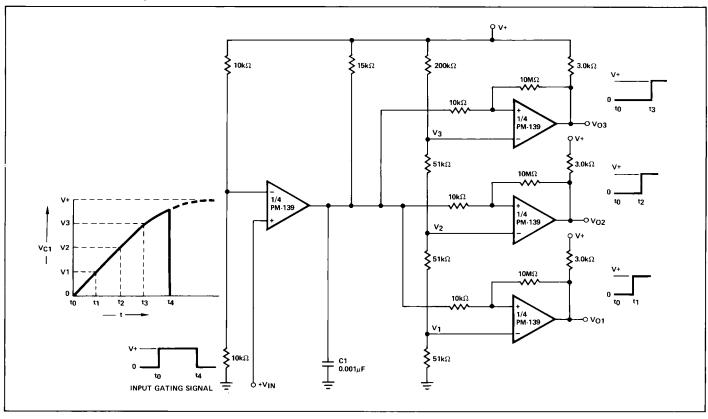

RESPONSE TIME FOR



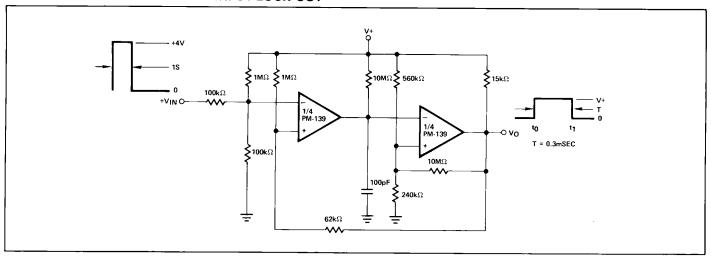
TYPICAL INTERFACE



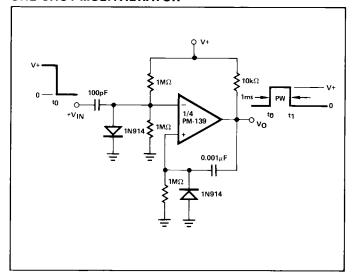
TYPICAL APPLICATIONS


OR GATE

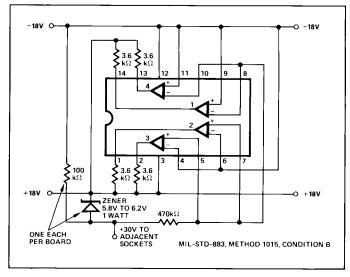
AND GATE



TIME DELAY GENERATOR



TYPICAL APPLICATIONS


ONE-SHOT MULTIVIBRATOR WITH INPUT LOCK-OUT

ONE-SHOT MULTIVIBRATOR

BURN-IN CIRCUIT

