LMX2330U,LMX2331U,LMX2332U

LMX2330U/LMX2331U/LMX2332U PLLatinum Ultra Low Power Dual Frequency
Synthesizer forRF Personal Communications LMX2330U- 2.5 GHz/600 MHz,
LMX2331U - 2.0 GHz/600 MHzLMX2332U - 1.2 GHz/600 MHz

Literature Number: SNAS058F

LMX2330U/LMX2331U/ LMX2332U

OBSOLETE July 13, 2011

PLLatinum™ Ultra Low Power Dual Frequency Synthesizer for RF Personal Communications

LMX2330U 2.5 GHz/600 MHz LMX2331U 2.0 GHz/600 MHz LMX2332U 1.2 GHz/600 MHz

General Description

The LMX233xU devices are high performance frequency synthesizers with integrated dual modulus prescalers. The LMX233xU devices are designed for use as RF and IF local oscillators for dual conversion radio transceivers.

A 32/33 or a 64/65 prescale ratio can be selected for the 2.5 GHz LMX2330U RF synthesizer. A 64/65 or a 128/129 prescale ratio can be selected for both the LMX2331U and LMX2332U RF synthesizers. The IF circuitry contains an 8/9 or a 16/17 prescaler. Using a proprietary digital phase locked loop technique, the LMX233xU devices generate very stable, low noise control signals for RF and IF voltage controlled oscillators. Both the RF and IF synthesizers include a two-level programmable charge pump. The RF synthesizer has dedicated Fastlock circuitry.

Serial data is transferred to the devices via a three-wire interface (Data, LE, Clock). Supply voltages from 2.7V to 5.5V are supported. The LMX233xU family features ultra low current consumption:

LMX2330U (2.5 GHz)—3.3 mA, LMX2331U (2.0 GHz) —2.9 mA, LMX2332U (1.2 GHz)—2.5 mA at 3.0V

The LMX233xU devices are available in 20-Pin TSSOP, 24-Pin CSP, and 20-Pin UTCSP surface mount plastic packages.

Features

- Ultra Low Current Consumption
- Upgrade and Compatible to LMX233xL Family
- 2.7V to 5.5V Operation
- Selectable Synchronous or Asynchronous Powerdown Mode:

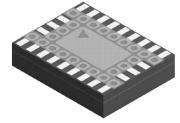
 $I_{CC-PWDN} = 1 \mu A typical$

Selectable Dual Modulus Prescaler:

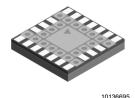
LMX2330U RF: 32/33 or 64/65 LMX2331U RF: 64/65 or 128/129 LMX2332U RF: 64/65 or 128/129 LMX2330U/31U/32U IF: 8/9 or 16/17

- Selectable Charge Pump TRI-STATE® Mode
- Programmable Charge Pump Current Levels
 RF and IF: 0.95 or 3.8 mA
- Selectable Fastlock[™] Mode for the RF Synthesizer
- Push-Pull Analog Lock Detect Output
- Available in 20-Pin TSSOP, 24-Pin CSP, and 20-Pin UTCSP

Applications


- Mobile Handsets (GSM, GPRS, W-CDMA, CDMA, PCS, AMPS, PDC, DCS)
- Cordless Handsets (DECT, DCT)
- Wireless Data
- Cable TV Tuners

Thin Shrink Small Outline Package (MTC20)


10136680

Chip Scale Package (SLB24A)

10136681

Ultra Thin Chip Scale Package (SLE20A)

1013669

PLLatinum™ is a trademark of National Semiconductor Corporation.

TRI-STATE® is a registered trademark of National Semiconductor Corporation

MICROWIRE™ is a trademark of National Semiconductor Corporation.

© 2011 National Semiconductor Corporation

101366

f_{IN} RF

 $\overline{f_{\text{IN}}}$ RF

Clock

Data LE

15-BIT RF R COUNTER

MICROWIRE

INTERFACE

GND

18-BIT RF

N COUNTER

GND

RF PRESCALER

GND

GND

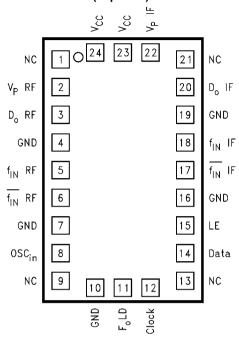
RF LOCK DETECT

DETECTOR

FASTLOCK

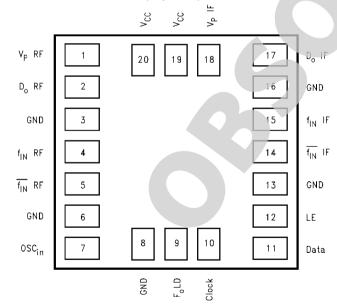
CHARGE

PUMP

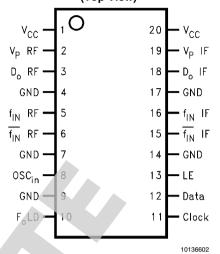

LMX2330U/LMX2331U/LMX2332U

10136601

ф D_o RF


Connection Diagrams

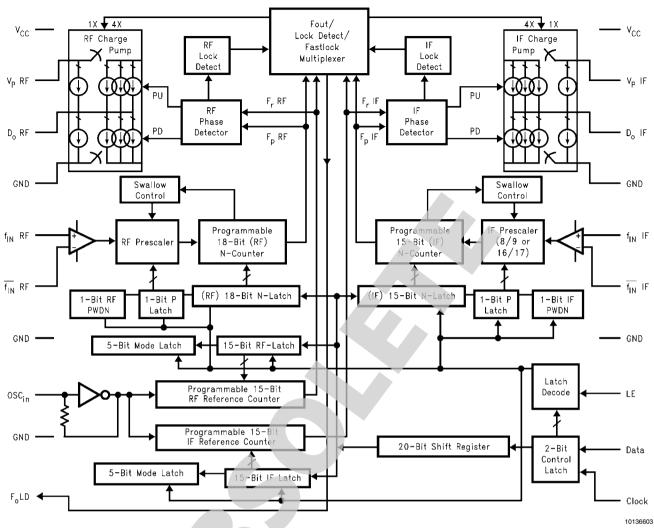
Chip Scale Package (SLB) (Top View)


10136639

Ultra Thin Chip Scale Package (SLE) (Top View)

10136696

Thin Shrink Small Outline Package (TM) (Top View)


Pin Descriptions

Pin Name	Pin No. 20-Pin UTCSP	Pin No. 24-Pin CSP	Pin No. 20-Pin TSSOP	1/0	Description
V _{CC}	20	24	1		Power supply bias for the RF PLL analog and digital circuits. $V_{\rm CC}$ may range from 2.7V to 5.5V. Bypass capacitors should be placed as close as possible to this pin and be connected directly to the ground plane.
$V_P RF$	1	2	2	_	RF PLL charge pump power supply. Must be \geq V _{CC} .
D _o RF	2	3	3	0	RF PLL charge pump output. The output is connected to the external loop filter, which drives the input of the VCO.
GND	3	4	4	_	Ground for the RF PLL digital circuitry.
f_{IN} RF $\overline{f_{IN}}$ RF	4	5	5	_	RF PLL prescaler input. Small signal input from the VCO.
f _{IN} RF	5	6	6	I	RF PLL prescaler complementary input. For single ended operation, this pin should be AC grounded. The LMX233xU RF PLL can be driven differentially when the bypass capacitor is omitted.
GND	6	7	7	-	Ground for the RF PLL analog circuitry.
OSC _{in}	7	8	8	I	Reference oscillator input. The input has an approximate $V_{\rm CC}/2$ threshold and can be driven from an external CMOS or TTL logic gate.
GND	8	10	9	_	Ground for the IF PLL digital circuits, MICROWIRE™, F _o LD, and oscillator circuits.
F _o LD	9	11	10	0	Programmable multiplexed output pin. Functions as a general purpose CMOS TRI-STATE output, RF/IF PLL push-pull analog lock detect output, N and R divider output or Fastlock output, which connects a parallel resistor to the external loop filter.
Clock	10	12	11	1	MICROWIRE Clock input. High impedance CMOS input. Data is clocked into the 22-bit shift register on the rising edge of Clock.
Data	11	14	12		MICROWIRE Data input. High impedance CMOS input. Binary serial data. The MSB of Data is shifted in first. The last two bits are the control bits.
LE	12	15	13	I	MICROWIRE Latch Enable input. High impedance CMOS input. When LE transitions HIGH, Data stored in the shift register is loaded into one of 4 internal control registers.
GND	13	16	14	_	Ground for the IF PLL analog circuitry.
f _{IN} IF	14	17	15	I	IF PLL prescaler complementary input. For single ended operation, this pin should be AC grounded. The LMX233xU IF PLL can be driven differentially when the bypass capacitor is omitted.
f _{IN} IF	15	18	16	_	IF PLL prescaler input. Small signal input from the VCO.
GND	16	19	17	_	Ground for the IF PLL digital circuitry, MICROWIRE, F_oLD , and oscillator circuits.
D _o IF	17	20	18	0	IF PLL charge pump output. The output is connected to the externa loop filter, which drives the input of the VCO.
V _P IF	18	22	19	_	IF PLL charge pump power supply. Must be ≥ V _{CC} .
V _{CC}	19	23	20		Power supply bias for the IF PLL analog and digital circuits, MICROWIRE, F _o LD, and oscillator circuits. V _{CC} may range from 2.7V to 5.5V. Bypass capacitors should be placed as close as possible to this pin and be connected directly to the ground plane.
NC	Х	1, 9, 13, 21	Х	_	No connect.

Ordering Information

Model	Temperature Range	Package Description	Packing	NS Package Number
LMX2330USLEX	-40°C to +85°C	Ultra Thin Chip Scale Package (UTCSP) Tape and Reel	2500 Units Per Reel	SLE20A
LMX2330USLBX	-40°C to +85°C	Chip Scale Package (CSP) Tape and Reel	2500 Units Per Reel	SLB24A
LMX2330UTM	-40°C to +85°C	Thin Shrink Small Outline Package (TSSOP)	73 Units Per Rail	MTC20
LMX2330UTMX	-40°C to +85°C	Thin Shrink Small Outline Package (TSSOP) Tape and Reel	2500 Units Per Reel	MTC20
LMX2331USLEX	-40°C to +85°C	Ultra Thin Chip Scale Package (UTCSP) Tape and Reel	2500 Units Per Reel	SLE20A
LMX2331USLBX	-40°C to +85°C	Chip Scale Package (CSP) Tape and Reel	2500 Units Per Reel	SLB24A
LMX2331UTM	-40°C to +85°C	Thin Shrink Small Outline Package (TSSOP)	73 Units Per Rail	MTC20
LMX2331UTMX	-40°C to +85°C	Thin Shrink Small Outline Package (TSSOP) Tape and Reel	2500 Units Per Reel	MTC20
LMX2332USLEX	-40°C to +85°C	Ultra Thin Chip Scale Package (UTCSP) Tape and Reel	2500 Units Per Reel	SLE20A
LMX2332USLBX	-40°C to +85°C	Chip Scale Package (CSP) Tape and Reel	2500 Units Per Reel	SLB24A
LMX2332UTM	-40°C to +85°C	Thin Shrink Small Outline Package (TSSOP)	73 Units Per Rail	MTC20
LMX2332UTMX	-40°C to +85°C	Thin Shrink Small Outline Package (TSSOP) Tape and Reel	2500 Units Per Reel	MTC20

Detailed Block Diagram

Notes:

- 1. A 64/65 or 128/129 prescaler ratio can be selected for the LMX2331U and LMX2332U RF synthesizers. A 32/33 or 64/65 prescaler ratio can be selected for the LMX2330U RF synthesizer.
- 2. V_{CC} supplies power to the RF and IF prescalers, RF and IF reedback dividers, RF and IF reference dividers, RF and IF phase detectors, the OSC_{in} buffer, MICROWIRE, and F_oLD circuitry.
- 3. V_P RF and V_P IF supply power to the charge pumps. They can be run separately as long as V_P RF \geq V_{CC} and V_P IF \geq V_{CC}

Absolute Maximum Ratings (Note 1, Note

2, Note 3, Note 3)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Power Supply Voltage

 $\begin{array}{lll} \text{V}_{\text{CC}} \text{ to GND} & -0.3 \text{V to } +6.5 \text{V} \\ \text{V}_{\text{P}} \text{ RF to GND} & -0.3 \text{V to } +6.5 \text{V} \\ \text{V}_{\text{P}} \text{ IF to GND} & -0.3 \text{V to } +6.5 \text{V} \\ \end{array}$

Voltage on any pin to GND (V_I)

 $\begin{tabular}{ll} Lead Temperature (solder 4 s) (T_L) & +260^{\circ}C \\ TSSOP θ_{JA} Thermal Impedance & 114.5^{\circ}C/W \\ \end{tabular}$

CSP θ_{JA} Thermal Impedance 112°C/W

Recommended Operating Conditions (Note 1)

Power Supply Voltage

 V_{CC} to GND +2.7V to +5.5V V_P RF to GND V_{CC} to +5.5V V_P IF to GND V_{CC} to +5.5V Operating Temperature (T_A) -40°C to +85°C

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Recommended Operating Conditions indicate conditions for which the device is intended to be functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, refer to the Electrical Characteristics section. The guaranteed specifications apply only for the conditions listed.

Note 2: This device is a high performance RF integrated circuit with an ESD rating <2 kV and is ESD sensitive. Handling and assembly of this device should only be done at ESD protected work stations.

Note 3: GND = 0V

Electrical Characteristics

 $V_{CC} = V_P RF = V_P IF = 3.0V, -40^{\circ}C \le T_A \le +85^{\circ}C$, unless otherwise specified

0	Davison	·	O and distance		Value		11
Symbol	Parame	ter	Conditions	Min	Тур	Max	Units
I _{CC} PARAM	ETERS						
I _{CC_{RF+IF}}	Power Supply Current,	LMX2330U	Clock, Data and LE = GND		3.3	4.3	mA
10 +11	RF + IF	LMX2331U	OSC _{in} = GND		2.9	3.8	mA
	Synthesizers	LMX2332U	PWDN RF Bit = 0 PWDN IF Bit = 0		2.5	3.3	mA
	Power Supply Current,	-	Clock, Data and LE = GND		2.3	3.0	mA
$I_{CC_{RF}}$	RF	LMX2331U	OSC _{in} = GND		1.9	2.5	mA
	Synthesizer Only	LMX2332U	PWDN RF Bit = 0 PWDN IF Bit = 1		1.5	2.0	mA
I _{CCIF}	Power Supply Current, IF Synthesizer Only	LMX233xU	Clock, Data and LE = GND OSC _{in} = GND PWDN RF Bit = 1 PWDN IF Bit = 0		1.0	1.3	mA
I _{CC-PWDN}	Powerdown Current	LMX233xU	Clock, Data and LE = GND OSC _{in} = GND PWDN RF Bit = 1 PWDN IF Bit = 1		1.0	10.0	μА
RF SYNTHE	ESIZER PARAMETERS RF Operating		-1	!			
f _{IN} RF	RF Operating	LMX2330U		500		2500	MHz
	Frequency	LMX2331U		200		2000	MHz
		LMX2332U		100		1200	MHz
N _{RF}	RF N Divider Range		Prescaler = 32/33 (Note 4)	96		65631	
			Prescaler = 64/65 (Note 4)	192		131135	
			Prescaler = 128/129 (<i>Note 4</i>)	384		262143	
R _{RF}	RF R Divider Range			3		32767	
F_{\phiRF}	RF Phase Detector Fre	equency				10	MHz

O	Dave.		O a sa aliki a sa a		Value		11
Symbol	Para	meter	Conditions	Min	Тур	Max	Unit
Pf _{IN} RF	RF Input Sensitivity		2.7V ≤ V _{CC} ≤ 3.0V	-15		0	dBr
			(Note 5)				
			3.0 < V _{CC} ≤ 5.5V	-10		0	dBr
			(Note 5)				
ID _o RF	RF Charge Pump C	Output Source	$VD_0 RF = V_P RF/2$		-0.95		m/
SOURCE	Current	·	ID RF Bit = 0				
			(Note 6)				
			VD _o RF = V _P RF/2		-3.80		m/
			ID _o RF Bit = 1				
			(Note 6)				
$\mathrm{ID}_\mathrm{o}\mathrm{RF}\mathrm{SINK}$	RF Charge Pump C	Output Sink Current	$VD_0 RF = V_P RF/2$		0.95		mA
			ID _o RF Bit = 0				
			(Note 6)				
			$VD_0 RF = V_P RF/2$		3.80		mA
			ID _o RF Bit = 1				
			(Note 6)				
ID _o RF TRI-	RF Charge Pump C	Output TRI-STATE	$0.5V \le VD_0 RF \le V_P RF - 0.5V$	-2.5		2.5	nA
STATE	Current		(Note 6)				
$\mathrm{ID}_\mathrm{o}\mathrm{RF}\mathrm{SINK}$	RF Charge Pump C		$VD_o RF = V_P RF/2$		3	10	%
Vs		utput Source Current	$T_A = +25^{\circ}C$				
ID _o RF	Mismatch		(Note 7)				
SOURCE							
ID _o RF		•	$0.5V \le VD_o RF \le V_P RF - 0.5V$		10	15	%
Vs	RF Charge Pump Output Current Magnitude Variation Vs Charge Pump Output Voltage RF Charge Pump Output Current		$T_A = +25$ °C				
VD _o RF	Magnitude Variation Vs Charge Pump Output Voltage RF Charge Pump Output Current		(Note 7)				
ID₀ RF			$VD_0 RF = V_P RF/2$		10		%
Vs	<u> </u>		(Note 7)				
T _A	Magnitude Variation Vs Temperature					ļ	
	SIZER PARAMETER			1 45 1		1 000	1
f _{IN} IF	IF Operating Frequency	LMX2330U		45		600	MH
	Trequency	LMX2331U		45		600	MH
N.1	IEN DOLL D	LMX2332U	D 1 0/0	45		600	MH
N_{IF}	IF N Divider Range		Prescaler = 8/9 (<i>Note 4</i>)	24		16391	
			Prescaler = 16/17	48		32767	1
			(Note 4)	40		32/6/	
R _{IF}	IF R Divider Range		,	3		32767	
F_{\phiIF}	IF Phase Detector	requency				10	МН
Pf _{IN} IF	IF Input Sensitivity		2.7V ≤ V _{CC} ≤ 5.5V	-10		0	dBn
			(Note 5)				

Cumbal	Davameter	Conditions		Value		Units
Symbol	Parameter	Conditions	Min	Тур	Max	Units
ID _o IF	IF Charge Pump Output Source Current	VD_o IF = V_P IF/2		-0.95		mA
SOURCE		ID _o IF Bit = 0				
		(Note 6)				
		VD_0 IF = V_P IF/2		-3.80		mA
		ID _o IF Bit = 1				
		(Note 6)				
ID _o IF	IF Charge Pump Output Sink Current	VD_0 IF = V_P IF/2		0.95		mA
SINK		ID _o IF Bit = 0				
		(Note 6)				
		VD_o IF = V_P IF/2		3.80		mA
		ID _o IF Bit = 1				
		(Note 6)				
ID _o IF TRI-	IF Charge Pump Output TRI-STATE	$0.5V \le VD_o$ IF $\le V_P$ IF - 0.5V	-2.5		2.5	l nA
STATE	Current	(Note 6)				
ID_oIF	IF Charge Pump Output Sink Current Vs			3	10	%
SINK	Charge Pump Output Source Current	$T_A = +25^{\circ}C$				
Vs	Mismatch	(Note 7)				
ID _o IF SOURCE						
	IF Charge Pump Output Current	0.51/<.VD 15/3/15 0.51/		10	15	%
ID _o IF Vs	Magnitude Variation Vs Charge Pump	$0.5V \le VD_0 \text{ IF} \le V_P \text{ IF} - 0.5V$		10	15	/0
VD _o IF	Output Voltage	T _A = +25°C (<i>Note 7</i>)				
ID _o IF	IF Charge Pump Output Current	$VD_o IF = V_P IF/2$		10	+	%
Vs	Magnitude Variation Vs Temperature	(Note 7)		10		/0
T _A	magritude variation ve remperature	(Note 1)				
	DR PARAMETERS				1	
Fosc	Oscillator Operating Frequency		2		40	MHz
V _{OSC}	Oscillator Sensitivity	(Note 8)	0.5		V _{cc}	V _{PP}
I _{osc}	Oscillator Input Current	$V_{OSC} = V_{CC} = 5.5V$			100	μΑ
000		$V_{OSC} = 0V$, $V_{CC} = 5.5V$	-100			μA
DIGITAL IN	TERFACE (Data, LE, Clock, F _o LD)	33				
V _{IH}	High-Level Input Voltage		0.8 V _{CC}			V
V _{IL}	Low-Level Input Voltage				0.2 V _{CC}	V
I _{IH}	High-Level Input Current	$V_{IH} = V_{CC} = 5.5V$	-1.0		1.0	μA
I _{IL}	Low-Level Input Current	$V_{IL} = 0V, V_{CC} = 5.5V$	-1.0		1.0	μA
V _{OH}	High-Level Output Voltage	I _{OH} = -500 μA	V _{CC} - 0.4			V
V _{OL}	Low-Level Output Voltage	I _{OL} = 500 μA	CC -		0.4	V
	E INTERFACE	I OL COO PA			1	
t _{CS}	Data to Clock Set Up Time	(Note 9)	50			ns
	Data to Clock Hold Time	(Note 9)	10			ns
t _{CH}	Clock Pulse Width HIGH	(Note 9)	50		+	ns
t _{CWH}		<u>'</u>			+	-
t _{CWL}	Clock Pulse Width LOW	(Note 9)	50		+	ns
t _{ES}	Clock to Load Enable Set Up Time	(Note 9)	50		1	ns
t _{EW}	Latch Enable Pulse Width	(Note 9)	50			ns

Cumbal	Doromo	tou	Conditions		Value		Units
Symbol	Parame	ler	Conditions	Min	Тур	Max	Units
PHASE NO	ISE CHARACTERISTIC	S				-	
L _N (f) RF	RF Synthesizer Norma Noise Contribution (<i>Note 10</i>)	lized Phase	TCXO Reference Source ID _o RF Bit = 1		-212.0		dBc/ Hz
L(f) RF	RF Synthesizer Single Side Band Phase Noise Measured	LMX2330U	$\begin{split} f_{\text{IN}} & \text{RF} = 2450 \text{ MHz} \\ f = 1 \text{ kHz Offset} \\ F_{\phi \text{RF}} = 200 \text{ kHz} \\ \text{Loop Bandwidth} = 7.5 \text{ kHz} \\ \text{N} = 12250 \\ F_{\text{OSC}} = 10 \text{ MHz} \\ \text{V}_{\text{OSC}} = 0.632 \text{ V}_{\text{PP}} \\ \text{ID}_{\text{O}} & \text{RF Bit} = 1 \\ \text{PWDN IF Bit} = 1 \\ T_{\text{A}} = +25^{\circ}\text{C} \\ \text{(Note 11)} \end{split}$		-77.24		dBc/ Hz
		LMX2331U	f_{IN} RF = 1960 MHz f = 1 kHz Offset $F_{\phi RF} = 200$ kHz Loop Bandwidth = 15 kHz N = 9800 $F_{OSC} = 10$ MHz $V_{OSC} = 0.632$ V_{PP} ID _o RF Bit = 1 PWDN IF Bit = 1 $T_A = +25$ °C (Note 11)		-79.18		dBc/ Hz
		LMX2332U	$f_{\rm IN}$ RF = 900 MHz f=1 kHz Offset $F_{\phi RF}=200$ kHz Loop Bandwidth = 12 kHz N=4500 $F_{\rm OSC}=10$ MHz $V_{\rm OSC}=0.632$ $V_{\rm PP}$ $ID_{\rm o}$ RF Bit = 1 PWDN IF Bit = 1 $T_{\rm A}=+25^{\circ}{\rm C}$ (Note 11)		-85.94		dBc/ Hz

0	D		0		Value		
Symbol	Paramet	er	Conditions	Min	Тур	Max	Units
L _N (f) IF	IF Synthesizer Normaliz Contribution (<i>Note 10</i>)	zed Phase Noise	TCXO Reference Source ID _o IF Bit = 1		-212.0		dBc/ Hz
L(f) IF	IF Synthesizer Single Side Band Phase Noise Measured	LMX233xU	f_{IN} IF = 200 MHz f = 1 kHz Offset $F_{\phi \text{IF}} = 200$ kHz Loop Bandwidth = 18 kHz N = 1000 $F_{\text{OSC}} = 10$ MHz $V_{\text{OSC}} = 0.632$ V_{PP} ID _o IF Bit = 1 PWDN RF Bit = 1 $T_{\text{A}} = +25^{\circ}\text{C}$ (Note 11)		-99.00		dBc/ Hz

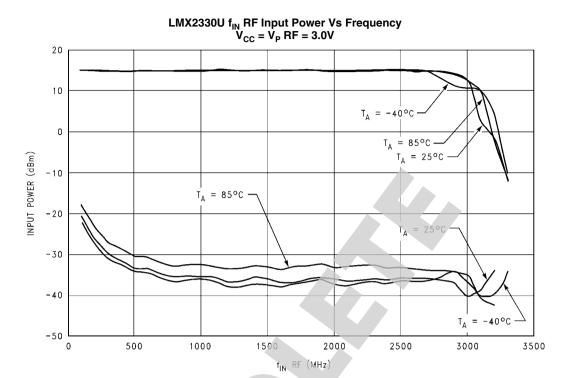
Note 4: Some of the values in this range are illegal divide ratios (B < A). To obtain continuous legal division, the Minimum Divide Ratio must be calculated. Use N ≥ P * (P-1), where P is the value of the prescaler selected.

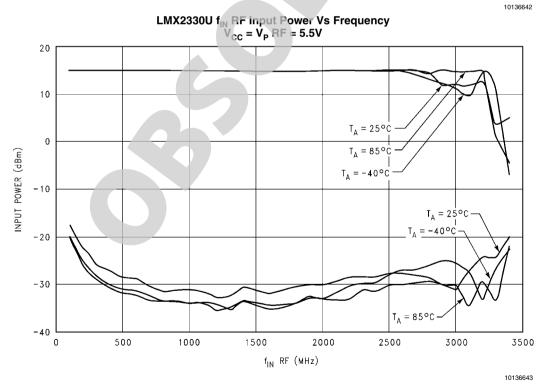
Note 5: Refer to the LMX233xU f_{IN} Sensitivity Test Setup section

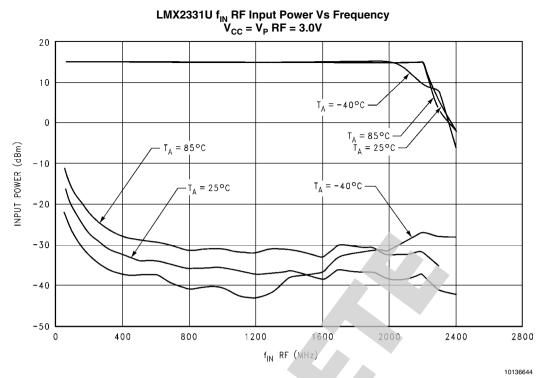
Note 6: Refer to the LMX233xU Charge Pump Test Setup section

Note 7: Refer to the Charge Pump Current Specification Definitions for details on how these measurements are made.

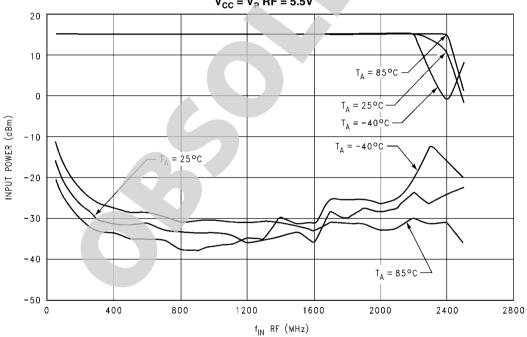
Note 8: Refer to the LMX233xU OSC_{in} Sensitivity Test Setup section

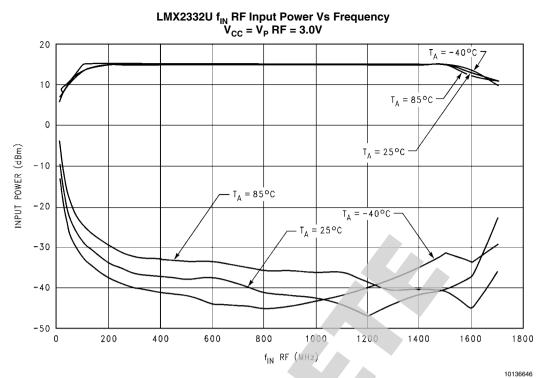

Note 9: Refer to the LMX233xU Serial Data Input Timing section

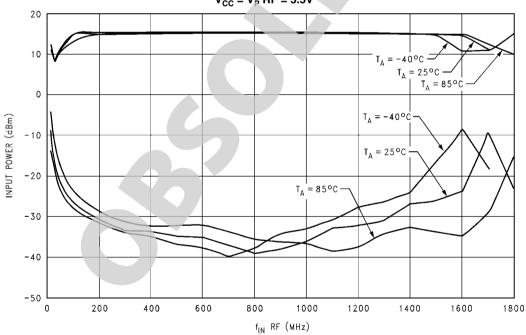

Note 10: Normalized Phase Noise Contribution is defined as: $L_N(f) = L(f) - 20 \log (N) - 10 \log (F_{\sigma})$, where L(f) is defined as the single side band phase noise measured at an offset frequency, f, in a 1 Hz bandwidth. The offset frequency, f, must be chosen sufficiently smaller than the PLL's loop bandwidth, yet large enough to avoid substantial phase noise contribution from the reference source. N is the value selected for the feedback divider and F_{ϕ} is the RF/IF phase detector comparison frequency.

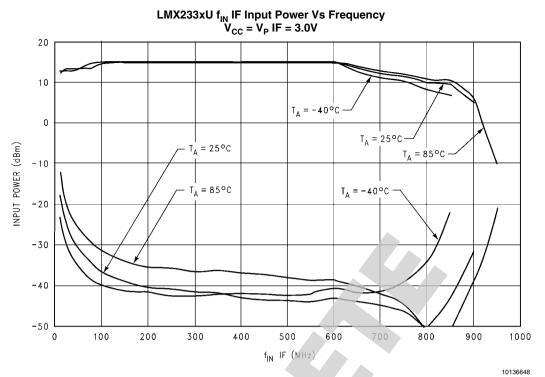

Note 11: The synthesizer phase noise is measured with the LMX2330TMEB/LMX2330SLEEB Evaluation boards and the HP8566B Spectrum Analyzer.

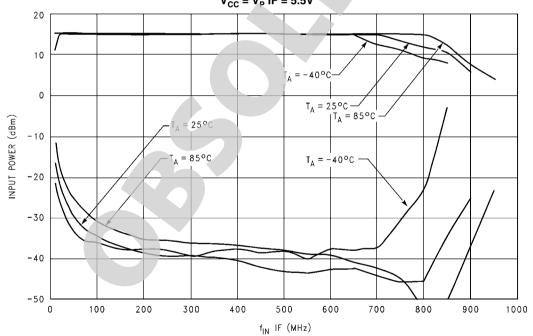
Typical Performance Characteristics

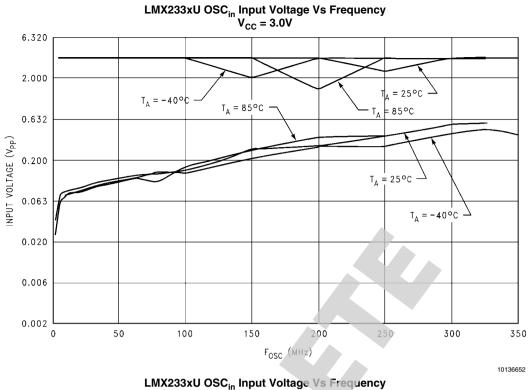

Sensitivity

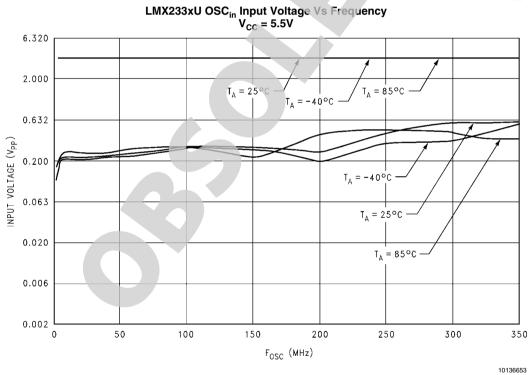




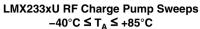

LMX2331U f_{IN} RF Input Power Vs Frequency $V_{CC} = V_{P}$ RF = 5.5V

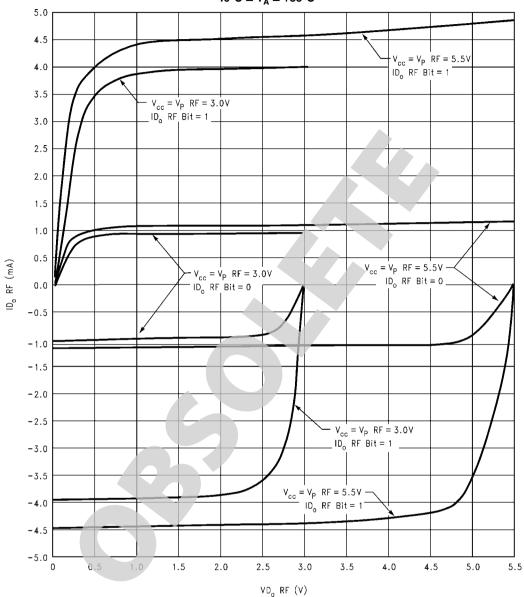


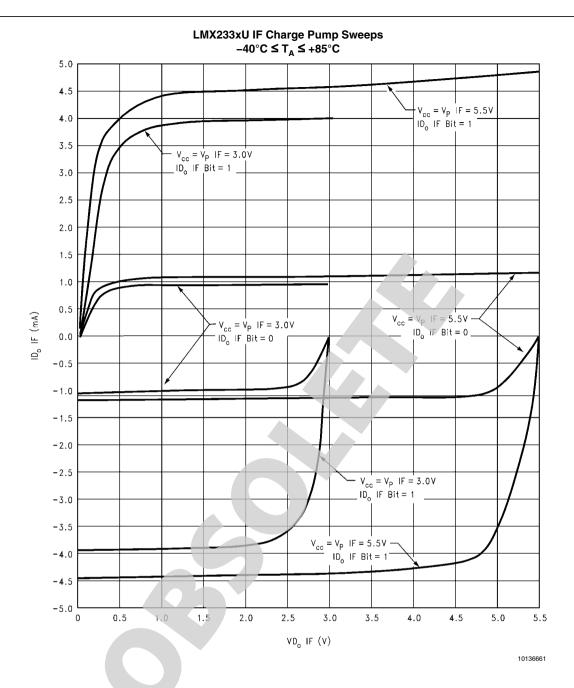

LMX2332U f_{IN} RF Input Power Vs Frequency $V_{CC} = V_{P}$ RF = 5.5V



LMX233xU f $_{\rm IN}$ IF Input Power Vs Frequency $\rm V_{CC} = \rm V_{p}$ IF = 5.5V

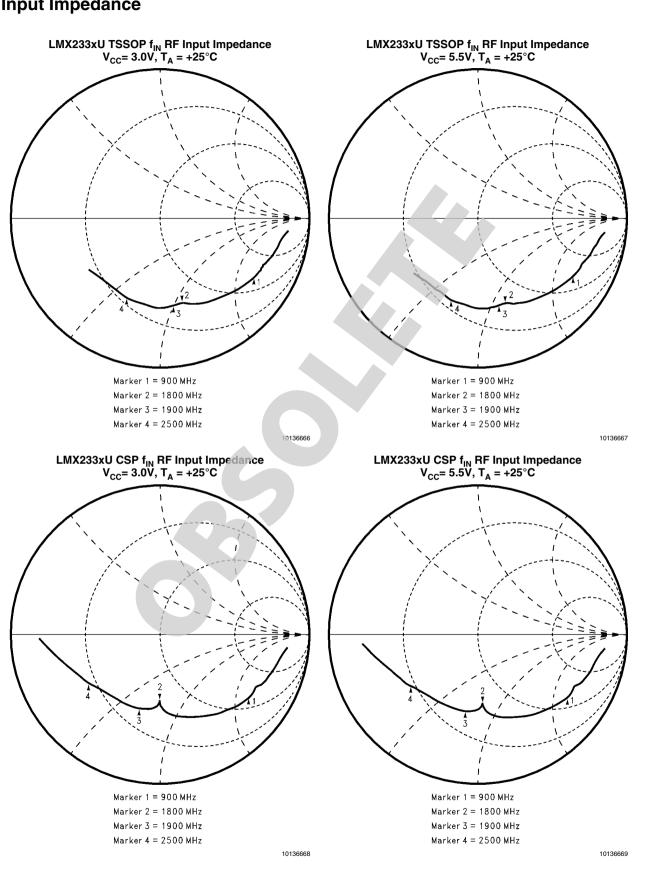


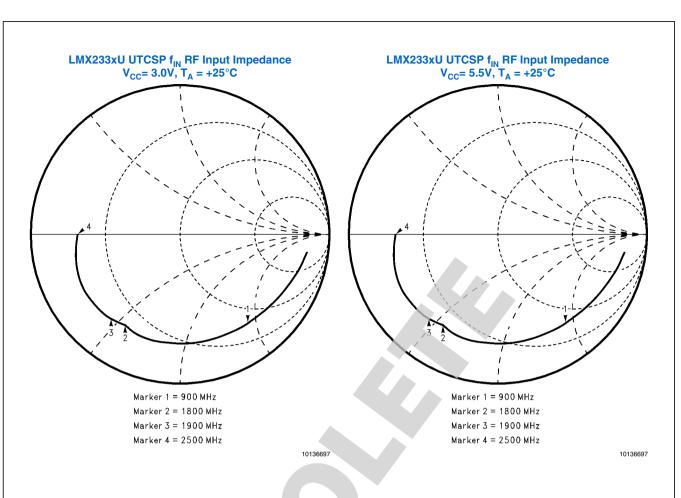




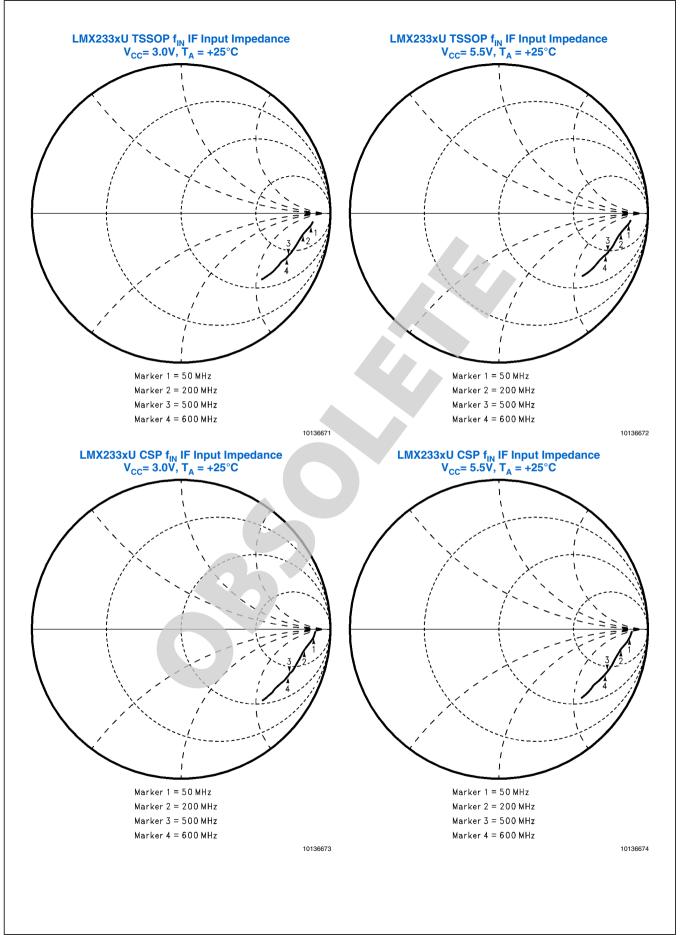
Typical Performance Characteristics

Charge Pump



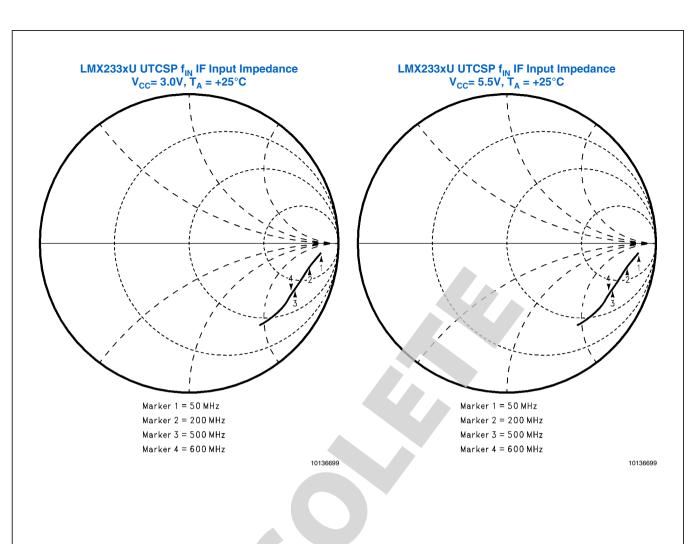

Typical Performance Characteristics

Input Impedance


LMX233xU TSSOP and LMX233xU CSP f_{IN} RF Input Impedance Table

CAL					LM	LMX233xU TSS	SOP 2	OP Zf _{IN} RF							3	LMX233xU CSP	1	Zfin RF			
			V _{cc} = V _r	, RF = 3.0	V (TA = 25	ئ _ە ر)	>	اج	# #	/ (T _A = 25	ဌ	×	l ul	11	V (T _A = 25	ဌ		/cc = V _r	11	$5.5V (T_A = 25)$	25°C)
0.889 - 6.23 439.774 - 319.866 643.788 0 0.862 - 6.07 448.230 - 318.841 550.064 0.864 - 6.44 431.004 - 330.013 642.835 0.864 - 6.30 448.200 0.889 1.890 0.889 1.380 0.889 1.890 0.889 1.380 0.889 1.890 0.889 1.380 0.889 1.890 0.889 1.380 0.889 1.890 0.889 1.380 0.889 1.890 0.889 1.380 0.899 1.38	f _{in} RF (MHz)	딥	17	Zfin RF (Ω)		IZfi _N RFI (Ω)	드			Zfin RF (Ω)	IZf _{in} RFI (Ω)	드		Zfin RF (Ω)	Zfin RF (Ω)	IZf _{in} RFI (Ω)	딥	77	æ Zfin RF (Ω)	Zfin RF	IZf _{in} RFI (Ω)
0.820 - 12.11 237.700	100	0.862				543.798	23	-	1	-			-	1	-330.013			-6.30	438.240	-327.814	547.281
0.820 - 12.11 237.70 249.291 344.52 0.827 11.66 247.284 251.089 382.406 0.821 13.24 215.318 249.361 228.732 0.808 15.24 171.345 0.808 1.65.24 12.041 13.45 0.808 1.45 14.66 14.66 14.66 14.66 14.66 14.67 14.66 14.67 14	200	0.834	-9.30	307.614	-272.274	410.803	34			$\overline{}$								-9.57	300.190	-277.552	408.838
0.009 -16.26 186.048 227.171 29.3.001 0.002 14.6 19.0 86 229.054 300.601 0.009 126.188 163.190 219.089 229.707 0.794 20.00 133.886 0.796 -18.5 147.785 203.922 251.346 0.796 -76.6 15.0 85 20.731 250.04 0.732 20.9 126.193 191.939 229.707 0.794 20.00 133.886 0.756 -24.72 106.107 -18.456 0.797 23.4 13.789 -66.8 5 207.31 20.04 0.775 -24.8 10.2956 -186.026 197.060 0.777 -23.70 109.531 0.756 -24.72 106.107 -18.5 195.129 0.757 23.4 13.789 -68.5 195.295 0.744 -22.9 0.787 -134.500 0.777 -23.70 10.396 -18.6 19.7 19.8 19.0 1.744 -22.8 19.2 19.2 17.2 17.2 17.2 17.2 17.2 17.2 17.2 17	300	0.820	-12.11	237.700	-249.291	344.452	S		47.264		352.406	0.821	13.24 2	15.318		328.702	0.821	-12.76	224.624	-249.637	335.819
0.796 18.51 14.7786 203.923 251.848 0.776 20.775 20.014 0.793 20.916 191.939 191.939 229.707 0.794 20.01 0.9531 0.775 24.285 0.775 24.285 0.755 24.285 0.755 24.285 0.755 24.285 0.755 24.285 0.755 24.285 0.755 24.285 0.755 24.285 0.755 24.295 0.755 0.755 24.295 0.755 0.755 24.295 0.755	400	0.808	-15.25	185.048	-227.171	293.001	0.808			$\overline{}$		0.808	16.88		$\overline{}$		0.808		171.345	-222.518	280.844
0.756 2.4.26 10.2.956 -168.026 197.060 0.777 23.70 109.531 0.756 2.4.27 106.107 -168.12 0.766 24.28 102.966 -168.026 197.060 0.777 23.70 109.531 0.756 2.4.27 106.107 -168.758 195.129 0.767 24.54 128.269 0.782 176.2437 0.762 27.70 96.279 0.766 2.2.35 87.384 150.266 173.2437 176.2437 0.772 23.76 176.2437 0.762 27.70 96.279 96.279 96.279 176.2437 0.772 23.70 177.2437 0.772 23.70 177.2447 0.762 23.70 96.275 176.247 176.247 176.2437 0.772 23.70 0.772 23.70 0.772 23.70 0.772 23.70 0.772 23.70 0.772 23.70 0.772 23.70 0.772 23.70 0.772 23.70 0.772 23.70 0.772 23.70 0.772 <td>200</td> <td>0.796</td> <td>-18.51</td> <td>147.785</td> <td>-203.923</td> <td>251.843</td> <td>96</td> <td>17.66</td> <td>56.935</td> <td></td> <td>260.014</td> <td>0.793 -</td> <td>20.90</td> <td>26.193</td> <td></td> <td></td> <td>0.794</td> <td>-20.00</td> <td>133.885</td> <td>-196.200</td> <td>237.528</td>	200	0.796	-18.51	147.785	-203.923	251.843	96	17.66	56.935		260.014	0.793 -	20.90	26.193			0.794	-20.00	133.885	-196.200	237.528
0.766 2.9.77 106.107 -16.3.78 195.129 0.767 -28.49 1.881 0.742 -31.2 79.737 -136.782 172.437 -30.80 -16.524 17.38 105.129 17.39 -16.524 17.38 0.762 -26.97 94.265 15.3481 181.819 0.742 -31.22 79.737 -136.782 15.327 0.746 -26.97 94.265 15.3481 181.819 0.742 -31.22 79.737 -31.22 10.737 -32.866 64.577 -13.3576 10.742 -34.37 69.066 69.216 -10.254 14.385 0.719 41.44 56.019 10.8415 10.723 -39.47 69.216 -10.254 14.216 0.664 -8.747 10.8415 10.664 -8.4403 10.837 0.717 41.25 56.019 10.0841 11.521 10.254 14.216 0.664 -8.4403 10.684 -4.253 40.269 -8.4403 10.684 -4.569 8.240 -10.1254 14.416 66.019 10.8416	009	0.781	-21.81	122.091	-181.461	218.710			30.906	185.850	227.325	0.775	24.82	02.956	-168.026	197.060	0.777	-23.70	109.531	-172.887	204.663
0.746 -28.35 87.384 -150.524 174.352 0.762 -28.35 87.384 -150.524 174.352 0.762 -28.05 -152.461 181.819 0.742 -31.25 73.77 -134.500 153.406 0.750 -30.86 160.24 -41.44 55.019 -108.415 121.577 0.742 -34.37 69.06 0.732 -36.66 64.122 -120.908 136.869 0.735 -34.73 69.215 -128.16 0.744 55.019 -108.415 121.577 0.742 -34.37 69.06 0.732 -38.66 64.012 -108.388 121.908 0.720 -39.12 60.041 -113.215 128.151 0.866 -34.403 105.311 0.742 -34.28 -34.28 -34.28 -34.28 -34.28 -34.28 -34.28 -34.28 -34.28 -34.28 -34.28 -34.28 -34.28 -34.28 -34.28 -34.37 -34.37 -34.37 -34.37 -34.37 -34.37 -34.37 -34.37 -34.	700	0.765	-24.72	106.107	-163.758	195.129	29					0.749 -				_	0.752	-27.02	96.279	-151.333	179.363
0.732 3.66 6.127 -123.961 138.769 178.669 178.09 189.769 178.270 178.668 1.739 36.04 64.577 -123.961 178.270 178.670 178.670 178.270 178.270 178.270 178.670 178.270 </td <td>800</td> <td>092.0</td> <td>-28.35</td> <td>87.984</td> <td>-150.524</td> <td>174.352</td> <td>62</td> <td></td> <td></td> <td></td> <td>181.819</td> <td>0.742</td> <td></td> <td></td> <td>-136.782</td> <td>158.327</td> <td>0.746</td> <td>-29.85</td> <td>84.470</td> <td>-141.473</td> <td>164.772</td>	800	092.0	-28.35	87.984	-150.524	174.352	62				181.819	0.742			-136.782	158.327	0.746	-29.85	84.470	-141.473	164.772
0.732 -36.68 64.122 -120.908 13.56.39 0.735 -34.73 69.215 -126.04 413.85 0.719 -41.45 56.019 -108.415 12.57 0.723 -39.46 58.684 0.717 -41.25 55.780 -108.398 121.908 0.720 -33.12 60.041 -113.215 128.151 0.664 -60.49 105.81 105.831 0.698 -45.08 105.831 0.698 -45.08 105.831 0.698 -45.08 105.831 0.698 -45.08 105.831 0.698 -45.08 105.831 0.698 -45.08 105.831 0.698 -45.08 105.831 0.698 -45.08 82.401 92.601 0.674 -51.01 45.041 92.601 0.674 -51.01 45.041 92.831 0.698 -45.08 86.475 96.60 92.337 0.610 -68.38 -68.48 -101.254 114.216 0.641 -60.42 92.811 70.308 96.47 96.83 96.81 92.418 96.818	900	0.747	-32.60	73.777	-134.500	153.406			79.270			0.739			-123.951	139.764	0.742	-34.37	69.006	-128.610	145.954
0.717 - 41.25 56.780 - 108.398 121.308 0.720 - 39.12 60.041 - 113.216 128.461 0.664 - 47.27 48.066 -94.403 105.931 0.698 - 45.08 51.159 0.688 - 46.24 49.180 -96.605 108.403 0.702 - 43.84 52.848 - 101.254 114.216 0.669 - 53.59 42.269 -82.411 92.610 0.674 - 51.01 45.061 0.663 - 56.68 39.397 -77.901 87.296 0.667 - 53.71 42.317 -82.070 92.337 0.610 - 68.33 44.01 70.308 0.613 - 64.90 0.614 - 57.01 45.016 67.481 70.308 0.613 - 64.90 0.614 - 67.91 47.481 70.31 40.481 70.31 40.230 0.614 - 68.53 87.425 0.614 - 68.53 87.426 67.481 70.31 40.481 60.898 0.614 - 68.53 67.423 76.11 6.539 67.433 67.423 76.11 67.74 70.11 40.482 73.488 60.898 67.433 66.36 67.433 67.432 76.44 48.488 60.898 67.433 67.448	1000	0.732	-36.68	64.122	-120.908	136.859	0.735					0.719					0.723	-39.46	58.684	-113.123	127.439
0.688 -46.24 49.180 -96.605 108.403 0.702 -43.84 -101.254 144.216 0.689 -53.59 -22.89 -82.401 92.610 0.674 -51.50 45.061 0.678 -51.43 43.982 -86.291 96.863 0.687 -43.77 47.173 -90.676 102.212 0.641 -60.42 37.856 -71.653 81.039 0.647 -57.50 40.230 0.663 -56.68 39.397 -77.901 87.296 0.667 -53.71 42.317 -82.070 92.337 0.610 -68.3 41.08 61.481 70.308 0.613 -64.90 36.477 0.663 -56.68 39.397 -77.901 87.296 0.667 -53.71 42.317 -82.070 92.337 0.617 -77.01 31.049 -52.388 0.689 0.651 -73.21 42.981 33.644 0.660 -72.22 31.565 -57.996 66.030 0.614 -68.51 33.590 -61.632 70.191 0.477 -27.97 100.359 58.17 11.65.99 0.543 -89.33 34.68 0.606 -72.22 31.565 -57.16 58.284 0.675	1100	0.717	-41.25	55.780	-108.398	121.908			- 1	113.215		0.694		-		105.931	0.698	-45.08	51.159	-98.547	111.035
0.678 - 51.43 43.982 - 86.291 96.863 0.683 - 48.77 47.173 -90.676 102.21 0.641 - 60.42 37.866 - 71.653 81.039 0.647 - 57.50 0.647 - 57.50 40.230 0.663 - 56.68 39.397 - 77.901 87.296 0.667 - 53.71 42.317 -82.070 92.337 0.610 - 68.33 1.0 610 - 68.33 34.108 6.1481 70.308 0.613 - 64.90 36.477 0.649 - 62.08 35.566 - 70.500 78.963 0.653 - 58.74 38.281 - 74.569 83.821 0.577 - 77.01 31.09 - 52.388 0.89 0.631 - 73.18 33.064 0.630 - 67.58 32.912 - 63.544 71.562 0.634 - 63.96 6.039 0.614 - 68.51 3.359 -61.632 7.0191 0.477 - 27.97 10.0359 58.171 115 999 0.487 - 63.98 0.541 10.0359 -61.632 0.497 - 27.93 10.0359 -61.632 0.487 - 63.98 0.48	1200	0.698	-46.24		-96.605	108.403	02			_	-	0.669		-	-82.401		0.674	-51.01	45.061	-86.388	97.434
0.663 -6.6 8 39.397 -77.901 87.296 0.667 -63.71 42.317 -82.070 92.337 0.610 -68.33 34.108 -61.481 70.308 0.613 -64.90 36.477 0.649 -62.08 35.566 -70.500 78.963 0.653 -68.74 38.281 -74.569 83.821 0.571 -77.01 31.08 60.898 0.613 -77.10 31.08 60.898 0.614 -77.10 31.08 60.898 0.614 -83.35 -67.423 76.121 0.539 -84.86 29.732 -44.852 63.895 0.543 80.36 31.648 83.108 31.654 80.36 31.648 83.108 31.648 83.108 31.648 83.108 31.648 83.108 31.648 83.108 31.648 83.108 31.648 83.108 31.648 83.108 31.648 83.108 31.648 83.108 31.648 83.108 31.648 85.108 31.648 85.108 31.648 85.108 31.648 85.108 31.648 </td <td></td> <td>0.678</td> <td>-51.43</td> <td></td> <td>-86.291</td> <td>96.853</td> <td>0.683</td> <td></td> <td>-</td> <td>$\overline{}$</td> <td>_</td> <td>0.641 -</td> <td></td> <td>_</td> <td>-71.653</td> <td></td> <td>0.647</td> <td>-57.50</td> <td>40.230</td> <td>-75.400</td> <td>85.461</td>		0.678	-51.43		-86.291	96.853	0.683		-	$\overline{}$	_	0.641 -		_	-71.653		0.647	-57.50	40.230	-75.400	85.461
0.649 -E2.08 35.566 -70.500 78.963 0.653-68.74 38.281 -74.569 83.821 0.577-77.01 31.049 -52.388 60.898 0.581-73.18 33.064 0.630 -67.58 32.912 -63.544 71.562 0.634-63.96 35.335 -67.423 76.121 0.539-84.36 29.732 -44.952 53.895 0.543-80.36 31.654 0.638 -72.22 31.565 -57.996 66.030 0.614-68.51 33.590 -61.632 70.191 0.477-27.97 100.359 -8.171 115.999 0.487-84.99 33.106 0.608 -75.22 31.565 -57.996 66.030 0.614-68.51 32.596 60.455 89.90 32.825 -37.62 48.189 0.487 -8.189 0.487 -8.186 0.487 88.99 32.825 -37.624 0.889 0.89.90 0.889 0.89.90 0.889 0.89.90 0.89.90 0.889 0.89.90 0.89.90 0.89.90 0.89.90 0.89.90 0.89.90 0.89.90 <td>1400</td> <td>0.663</td> <td>-56.68</td> <td>39.397</td> <td>-77.901</td> <td>$\overline{}$</td> <td>0.667</td> <td></td> <td>\neg</td> <td>-82.070</td> <td></td> <td>0.610</td> <td></td> <td></td> <td>-61.481</td> <td></td> <td>0.613</td> <td>-64.90</td> <td>36.477</td> <td>-64.872</td> <td>74.424</td>	1400	0.663	-56.68	39.397	-77.901	$\overline{}$	0.667		\neg	-82.070		0.610			-61.481		0.613	-64.90	36.477	-64.872	74.424
0.630 -67.58 32.912 -63.544 71.562 0.634 -63.96 -67.423 76.121 0.539 -84.86 29.732 -44.952 53.895 0.543 -80.36 31.654 0.608 -72.22 31.565 -57.996 66.030 0.614 -68.51 33.590 -61.632 70.191 0.477 -7.97 100.359 -68.171 115.999 0.487 -84.99 33.106 0.598 -75.66 30.440 -54.462 66.039 0.614 -68.51 32.358 -57.943 66.366 0.455 89.90 32.824 49.393 0.488 -89.57 -89.357 -38.214 48.189 0.500 -89.57 -89.57 -89.57 -89.57 -89.57 -89.57 -89.57 -89.57 -89.57 -89.50 -89.50 -89.50 -89.50 -89.50 -89.50 -89.50 -89.50 -89.50 -89.50 -89.50 -89.50 -89.50 -89.50 -89.50 -89.50 -89.50 -89.50 -89.50	1500	0.649	-62.08		-70.500	$\overline{}$	23		\neg	-74.569	$\neg \neg$	0.577		_	-52.388			-73.18	33.064	-55.554	64.649
0.608 72.22 31.565 -57.996 66.030 0.614 -68.51 33.590 -61.632 70.191 0.477 -27.97 100.359 -68.171 115.999 0.487 -84.99 33.866 0.596 -75.66 30.40 -54.462 62.392 0.601 -71.81 32.358 -57.943 66.366 0.455 89.90 32.82s -37.624 48.189 0.500 -88.97 -38.214 48.189 0.500 -88.90 29.377 -38.214 48.189 0.500 -88.90 29.377 -38.214 48.189 0.500 -88.90 29.377 -38.214 48.189 0.500 -88.90 29.377 -38.214 48.189 0.500 -88.90 29.577 -38.214 48.189 0.500 -88.90 29.577 -38.214 48.189 0.500 -88.90 29.577 -38.214 48.189 0.500 -88.90 29.577 -38.214 48.189 0.500 -88.90 29.525 -38.244 48.189 0.500 -88.90	1600		-67.58		-63.544	71.562	8	- 1	-	-67.423		0.539		-	-44.952		0.543	-80.36	31.654	-48.119	57.597
0.596 -75.66 30.40 -54.462 62.392 0.601 -71.81 32.358 -57.943 66.366 0.455 89.90 32.82s -37.624 49.333 0.486 -85.87 33.886 0.598 -80.06 27.915 -51.164 58.284 0.602 -76.22 29.678 -54.335 61.912 0.493 87.34 29.357 -38.214 48.189 0.500 -88.99 25.120 -35.225 43.264 0.501 84.05 26.396 -89.506 26.506 26.506 57.203 0.520 79.89 25.120 -35.225 43.264 0.521 84.05 26.396 -89.506 1.506 88.09 0.529 70.97 27.17 -30.771 37.930 0.521 84.05 26.396 86.036 27.201 -35.225 43.264 0.521 84.05 26.396 86.036 27.201 -35.207 37.930 0.522 23.556 10.502 10.502 10.502 10.502 10.502 10.502 10.502 10			-72.22		-57.996	66.030	0.614		$\overline{}$	-61.632		0.477	27.97	00.359	-58.171	115.999	0.487	-84.99	33.106	-42.105	53.562
0.598 -80.06 27.915 -51.164 58.284 0.602 -76.22 29.678 -54.335 61.912 0.493 87.34 29.357 -38.214 48.189 0.500 -88.90 29.576 -36.225 -38.214 48.189 0.500 -88.90 25.120 -35.225 -32.64 48.189 0.501 -36.225 -36.225 -32.43 48.189 0.502 70.97 -37.77 -37.77 37.390 0.52 70.37 -37.77 -37.39 0.52 75.52 23.556 0.605 84.09 21.289 49.344 0.611-86.42 21.612 42.064 47.292 0.529 70.97 22.177 -30.771 37.930 0.525 75.52 23.556 0.605 84.09 21.289 45.09 22.301 43.297 48.940 0.531 61.99 20.155 26.331 33.159 0.524 66.93 21.544 0.594 78.44 0.589 83.13 21.961 -32.35 27.1 18.533	1800	0.596	-75.66		-54.462	$\overline{}$	0.601	\rightarrow	-+	-57.943		0.455		32.828	-37.624	49.933	0.468	-85.87	33.886	-40.554	52.847
0.607 -86.31 24.914 -47.651 53.771 0.607 -81.32 26.675 -50.603 57.203 0.520 79.89 25.120 -35.225 43.264 0.521 84.05 26.396 0.612 89.24 22.502 -43.994 49.414 0.611 -86.42 21.612 42.064 47.292 0.529 70.97 22.177 -30.771 37.930 0.525 75.52 23.556 0.605 84.09 21.289 -40.358 45.629 0.602 88.61 22.901 -43.251 48.940 0.531 61.99 20.155 -26.331 33.159 0.524 66.93 21.544 0.594 78.44 20.367 -36.566 41.855 0.589 83.13 21.961 -39.298 45.018 0.553 52.71 18.533 -21.975 28.747 0.525 57.61 19.706 0.596 72.27 19.111 -32.907 38.054 77.11 20.598 -35.516 41.074 0.550 <td< td=""><td>1900</td><td>0.598</td><td>-80.06</td><td></td><td>-51.164</td><td>58.284</td><td>0.602</td><td>- 1</td><td>\neg</td><td>-54.335</td><td></td><td>0.493</td><td></td><td>29.357</td><td>-38.214</td><td></td><td>0.500</td><td>-88.90</td><td>29.576</td><td>-39.369</td><td>49.241</td></td<>	1900	0.598	-80.06		-51.164	58.284	0.602	- 1	\neg	-54.335		0.493		29.357	-38.214		0.500	-88.90	29.576	-39.369	49.241
0.612 89.24 22.502 -43.994 49.414 0.611 -86.42 21.612 42.064 47.292 0.629 70.97 22.177 -30.771 37.930 0.525 75.52 23.556 0.605 84.09 21.289 -40.358 45.629 0.602 88.61 22.901 -43.251 48.940 0.531 61.99 20.155 -26.331 33.159 0.524 66.93 21.544 0.594 78.44 20.367 -36.566 41.855 0.589 83.13 21.961 -39.298 45.018 0.553 52.71 18.533 -21.975 28.747 0.525 57.61 19.706 0.590 72.27 19.111 -32.907 38.054 77.11 20.598 -35.536 41.074 0.560 43.44 14.340 -14.328 20.272 15.66 38.69 15.416	2000	0.607	-85.31		-47.651		0.607			-50.603		0.520		_	-35.225			84.05	26.396	-37.576	45.921
-40.356 45.629 0.629 88.61 22.901 -43.251 48.940 0.6531 61.99 20.155 -26.331 33.159 0.624 66.93 21.544 -36.566 41.855 0.589 83.13 21.961 -39.298 45.018 0.533 52.71 18.533 -21.975 28.747 0.525 57.61 19.706 -32.907 38.054 0.584 77.11 20.598 -35.536 41.074 0.550 43.48 17.883 24.385 0.537 47.69 17.671 -30.064 35.194 0.576 72.09 19.792 -32.516 38.066 0.583 34.44 14.340 -14.328 20.272 0.566 38.69 15.416	2100	0.612	89.24		-43.994		0.611		21.612	42.064	47.292	0.529		22.177	-30.771		0.525	75.52	23.556	-33.043	40.580
-36.566 41.855 0.589 83.13 21.961 -39.298 45.018 0.533 52.71 18.533 -21.975 28.747 0.525 57.61 19.706 -32.907 38.054 0.584 77.11 20.598 -35.536 41.074 0.550 43.18 16.578 -17.883 24.385 0.537 47.69 17.671 -30.064 35.194 0.576 72.09 19.792 -32.516 38.066 0.583 34.44 14.340 -14.328 20.272 0.566 38.69 15.416	2200		84.09		-40.358	45.629	0.602	88.61	\neg	-43.251	$\neg \neg$	0.531	\rightarrow	-	-26.331	33.159	0.524	66.93	21.544	-28.595	35.802
-32.907 38.054 0.584 77.11 20.598 -35.536 41.074 0.550 43.18 16.578 -17.883 24.385 0.537 47.69 17.671 20.064 35.194 0.576 72.09 19.792 -32.516 38.066 0.583 34.44 14.340 -14.328 20.272 0.566 38.69 15.416	2300	$\overline{}$	78.44		-36.566	41.855	8		\neg	-39.298	45.018			-	-21.975	28.747	0.525	57.61	19.706	-24.119	31.146
30.064 35.194 0.576 72.09 19.792 -32.516 38.066 0.583 34.44 14.340 -14.328 20.272 0.566 38.69 15.416	2400	0.590	72.27	19.111	-32.907		0.584	77.11	-	-35.536	$\neg \neg$	0.550		16.578	-17.883			47.69	17.671	-19.749	26.501
	2500	0.586	67.24	18.297	-30.064		0.576		19.792	-32.516	38.066	0.583		14.340	-14.328	20.272	0.566	38.69	15.416	-16.055	22.257

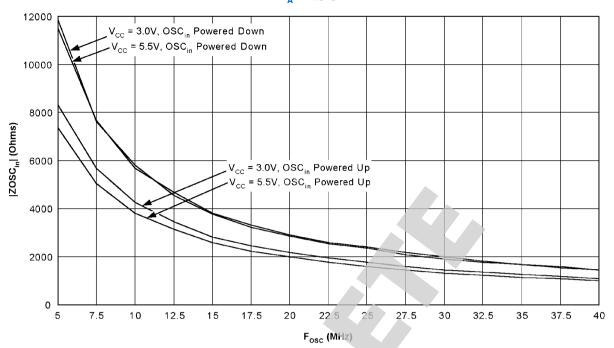
LMX233xU UTCSP f_{IN} RF Input Impedance Table


					LMX233xU UTCSP Zf _{IN} RF	TCSP Zfin Ri				
		V _{cc} =	$V_{CC} = V_P RF = 3.0V (T_A = 25^{\circ}C)$	T _A = 25°C)				$V_{CC} = V_P RF = 5.5V (T_A = 25^{\circ}C)$	(T _A = 25°C)	
f _{in} RF (MHz)	ırı	77	Re Zf _{IN} RF (Ω)	Im Zf _{IN} RF (Ω)	IZf _{IN} RFI (Ω)	깁	A	Re Zf _{IN} RF (Ω)	Im Zf _{IN} RF (Ω)	IZf _{iν} RFI (Ω)
100	98.0	-8.57	335,53	-330.26	470.80	98.0	-8.61	333.98	-330.26	469.70
200	0.83	-13.59	206.36	-258.74	330.95	0.83	-13.55	207.11	-258.92	331.57
300	0.81	-18.53	143.19	-214.36	257.79	0.81	-18.45	144.05	-214.75	258.59
400	08.0	-23.67	103.09	-183.95	210.86	0.80	-23.63	103.36	-184.12	211.15
200	0.79	-29.24	76.58	-157.24	174.89	0.79	-29.07	77.30	-157.87	175.78
009	0.77	-34.87	61.79	-133.64	147.24	0.77	-34.64	62.46	-134.31	148.12
200	92.0	-40.52	50.03	-116.97	127.23	92.0	-40.33	50.42	-117.43	127.80
800	92.0	-46.45	39.82	-103.86	111.24	0.76	-46.18	40.22	-104.42	111.89
006	0.75	-53.27	32.87	-90.33	96.13	0.75	-52.89	33.27	-90.97	96.86
1000	0.74	-60.04	27.98	-79.30	84.09	0.74	-59.70	28.24	-79.77	84.63
1100	0.73	-66.62	24.49	-70.27	74.42	0.73	-66.10	24.81	-70.90	75.11
1200	0.73	-74.07	20.63	-62.00	65.34	0.73	-73.57	20.85	-62.52	65.91
1300	0.73	-81.67	17.67	-54.66	57.45	0.73	-81.15	17.85	-55.13	57.95
1400	0.73	-89.59	15.34	-47.95	50.34	0.73	-88.94	15.51	-48.47	50.89
1500	0.73	-97.85	13.48	-41.75	43.87	0.73	-97.12	13.63	-42.27	44.41
1600	0.73	-106.72	11.96	-35.80	37.74	0.73	-105.87	12.09	-36.34	38.30
1700	0.72	-115.82	11.22	-30.21	32.22	0.72	-114.76	11.35	-30.82	32.84
1800	0.70	-123.41	11.28	-25.85	28.20	0.70	-122.28	11.40	-26.45	28.80
1900	0.72	-130.68	9.80	-22.22	24.29	0.72	-129.92	98.6	-22.61	24.66
2000	0.74	-140.55	8.41	-17.48	19.39	0.74	-139.88	8.44	-17.80	19.70
2100	0.74	-150.74	7.97	-12.74	15.03	0.74	-150.01	7.99	-13.07	15.32
2200	0.73	-160.86	8.02	-8.22	11.48	0.73	-160.03	8.04	-8.58	11.76
2300	0.71	-170.43	8.54	-4.06	9.46	0.71	-169.62	8.55	-4.41	9.62
2400	69.0	-179.08	9.17	-0.39	9.18	69.0	-178.32	9.17	-0.71	9.20
2500	0.67	172.38	9.92	3.20	10.43	0.67	173.11	9.91	2.89	10.33

LMX233xU TSSOP and LMX233xU CSP f_{IN} IF Input Impedance Table

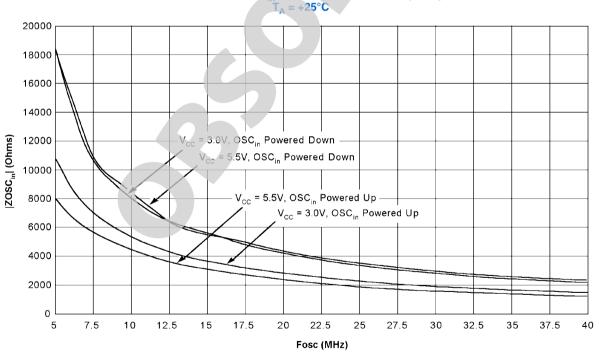
				LM	LMX233xU TSSOP Zfin IF	SSOP	Zf _{IN} IF								LMX233xU CSP Zfin IF	CSP 2	Zf _{IN} IF			
		V _{cc} = V	$V_{CC} = V_P \text{ IF} = 3.0V (T_A = 25^{\circ}C)$	$I_A = 25$	(5)		V _{cc} = V _P IF	H I	$5.5V (T_A = 25^{\circ}C)$	ဌ	>	V _{cc} = V _P IF	IF = 3.0V	$(T_A = 25^{\circ}C)$	(၁		V _{cc} = V	$= V_P IF = 5.5$	$5.5V (T_A = 25^{\circ}C)$	O
f _{in} IF (MHz)	LII.	77	26 Zfin IF (Ω)	? Zf _{in} IF (Ω)	IZf _{in} IFI (Ω)	ī	77	Æ Zf _{in} IF (Ω)	<i>?m</i> Zf _{in} IF (Ω)	IZf _{in} IFI (Ω)	딥	77	26 Zf _{IN} IF (Ω)	% Zf _{in} IF (Ω)	IZf _{in} IFI (Ω)	ī	77	Æ Zfin IF (Ω)	% Zf _{IN} IF (Ω)	i Zf_{in} IF i (Ω)
20	0.884	0.884 -3.93	621.523	621.523 -345.924 711.305 0.885	711.305		-3.81	630.568 -	-340.995	716.864 0.899		-1.69	874.934	-242.583	907.940 0.899	0.899	-1.67	874.127	-239.189	906.261
75	0.873	-5.30	0.873 -5.30 503.424 -340.786 607.923 0.8	-340.786	607.923	33	-5.18	511.352	-338.259	613.107	0.891	-3.44	383.122	683.122 -354.024 769.408		0.891	-3.33	692.599	-349.036	775.577
100	0.861	-6.42	0.861 -6.42 429.629 -319.996 535.704 0.861	-319.996	535.704	0.861	6.24	438.666 -318.001	-318.001	541.805 0.880	0.880	-4.98	535.334	535.334 -360.736 645.533	645.533	0.879	-4.85	543.967	-357.157	650.739
125	0.851	0.851 -7.27	384.494 -301.186 488.414 0.852	-301.186	488.414		-7.10	391.664	-300.482	493.650 0.868		-6.23	445.309	-339.295	559.840	0.868	-6.06	454.188	-337.263	565.715
150	0.844	-8.11	0.844 -8.11 349.099 -288.744 453.038 0.84	-288.744	453.038	0.844	-7.90	356.461	-287.182	356.451 -287.182 457.753 0.858 -7.26 388.975 -319.049 503.085 0.858 -7.07	0.858	-7.26	388.975	-319.049	503.085	0.858	-7.07	397.015	-317.892	508.603
175	0.837	-8.85	0.837 -8.85 322.082 -276.707 424.622 0.837	-276.707	424.622		-8.57	330.546	-275.058	430.020 0.850		-8.18	348.616	-303.517	462.229	0.850	-7.98	356.200	-303.914	468.233
200	0.832	-9.54	0.832 -9.54 300.314 -268.356 402.745 0.832	-268.356	402.745	0.832	-9.22	309.296	267.480	309.296 -267.480 408.913 0.843 -9.07	0.843		316.481	-291.646	316.481 -291.646 430.369 0.844 -8.84	0.844		324.033	-291.128	435.606
225	0.827	-10.29	0.827 -10.29 279.576 -260.995 382.467 0.827	-260.995	382.467		-9.95	288.264	288.264 -260.187	388.322 0.838 -9.93	0.838	-9.93	289.893	-282.342	289.893 -282.342 404.666 0.839	0.839	-9.66	297.640	-282.345	410.254
250	0.823	-11.04	0.823 -11.04 261.205 -254.758 364.870 0.823 -10.64	-254.758	364.870	0.823		270.659	-254.417	371.462	0.834 -	10.77	267.263	0.834 -10.77 267.263 -274.027	382.780 0.834 -10.45	0.834		275.672	-273.085	388.034
275	0.819	-11.80	0.819 -11.80 244.399 -248.227 348.350 0.8	-248.227	348.350		18-11.38	253.507 -247.511		354.299	0.830	11.63	247.024	-265.175	0.830 -11.63 247.024 -265.175 362.407 0.829 -11.24	0.829	-11.24	256.102	-265.264	368.719
300	0.814	-12.58	0.814 -12.58 228.964 -241.239 332.597	-241.239		0.815 -12.14	-12.14	237.587	-241.965	339.109	0.826	12.50	0.826 -12.50 228.671	-257.705	344.532 0.826 -12.08	0.826		237.603	-257.879	350.652
325	0.812	-13.36	0.812 -13.36 214.910 -236.082 319.251 0.811 -12.84 224.277 -236.738	-236.082	319.251	0.811	-12.84	224.277	-236.738	326.106 0.823 -13.38 212.305 -250.287 328.203 0.822 -12.90	0.823	13.38	212.305	-250.287	328.203	0.822	-12.90	221.471	221.471 -251.212	334.899
350	0.807	-14.18	0.807 -14.18 201.728 -228.591 304.874 0.807 -13.62	-228.591	304.874	0.807		210.927	-230.202	312.223	0.819 -14.23		198.231	-242.453	313.176 0.819 -13.73	0.819	-13.73	206.868	-244.557	320.316
375	0.804	-14.98	0.804 -14.98 189.889 -223.629 293.373 0.804 -14.44 198.121 -224.602 299.497 0.816 -15.21	-223.629	293.373	0.804	-14.44	198.121	-224.602	299.497	0.816		183.656	-234.712	298.025	0.815	-14.63	192.740	183.656 -234.712 298.025 0.815 -14.63 192.740 -236.735	305.274
400	0.801	-15.85	0.801 -15.85 178.372 -217.315 281.144 0.801 -15.20 187.401 -219.200	-217.315	281.144	0.801	-15.20	187.401	-219.200	288.388 0.812 -16.09 172.185	0.812	16.09	172.185	-227.189	285.066	0.812	-15.48	285.066 0.812 -15.48 180.755	-229.880	292.433
425	0.797	-16.72	0.797 -16.72 167.895 -211.342 269.915 0.797	-211.342	269.915	0.797	-16.02	-16.02 176.917	-213.413	277.208 0.809 -17.02 160.959 -220.345	- 608.0	17.02	160.959	-220.345	272.873 0.808 -16.36 169.600	0.808	-16.36	169.600	-222.898	280.085
450	0.794	-17.57	0.794 -17.57 158.542 -205.691 259.700 0.794	-205.691	259.700	0.794	-16.81	167.586	-16.81 167.586 -208.198	267.267	0.805 -17.99	17.99	150.694	-213.253	261.124		-17.28	0.805 -17.28 158.914	-216.102	268.242
475	0.790	-18.41	0.790 -18.41 150.375 -199.750 250.026 0.791	-199.750	250.026	0.791	-17.67	-17.67 158.301	-202.585	257.099	0.802 -18.98		141.126	-206.449	250.075	0.802	0.802 -18.16	149.611	-210.221	258.024
200	0.787	-19.24	0.787 -19.24 142.803 -194.502 241.295 0.787 -18.43 150.871 -197.426 248.474 0.799 -19.92 132.835 -200.364	-194.502	241.295	0.787	-18.43	150.871	-197.426	248.474	0.799	19.92	132.835	-200.384	240.414		-19.09	140.765	0.799 -19.09 140.765 -204.004	247.856
525	0.783	-20.10	0.783 -20.10 135.793 -188.890 232.635 0.783 -19.20 144.065	-188.890	232.635	0.783	-19.20		-192.240 240.231		0.796 -20.90	20.90	125.186	-193.960	230.851	0.796	0.796 -20.03	132.797	-197.693	238.154
550	0.779	-20.93	0.779 -20.93 129.745 -183.353 224.616 0.780 -19.97 137.814 -187.051 232.338 0.793 -21.89 118.197 -187.808 221.906 0.792 -20.97 125.698	-183.353	224.616	0.780	-19.97	137.814	-187.051	232.338	0.793 -	21.89	118.197	-187.808	221.906	0.792	-20.97	125.698	-191.502	229.070
575	0.775	-21.73	0.775 -21.73 124.298 -178.182 217.253 0.776 -20.75 131.867	-178.182	217.253	0.776	-20.75		-182.250	-182.250 224.954 0.789 -22.85	0.789 -	22.85	112.161	-181.851	213.658		0.789 -21.92	118.871	-185.881	220.640
900	0.770	-22.59	119.110	-172.763	209.843	0.771	-21.53	126.693	-176.798	217.506	0.785	23.86	106.393	-175.910	205.581	0.785	-22.85	113.154	0.770 -22.59 119.110 -172.763 209.843 0.771 -21.53 126.693 -176.798 217.506 0.785 -23.86 106.393 -175.910 205.581 0.785 -22.85 113.154 -180.132	212.723

10136675



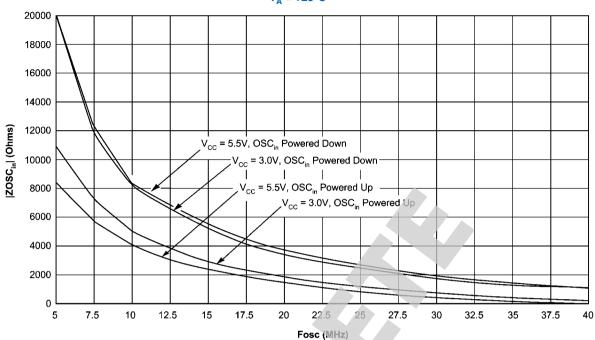
LMX233xU UTCSP f_{IN} IF Input Impedance Table

					LMX233xU	LMX233xU UTCSP ZfMIF	L.			
		Vcc	- VP I	F = 3.0V (T _A = 25°C)				$V_{cc} = V_P \text{ IF} = 5.5V \text{ (T}_A = 25^{\circ}\text{C)}$	(T _A = 25°C)	
f _{in} IF (MHz)	IJ	Δſ	Re Zfin IF (Ω)	Im Zfin IF (Ω)	IZf _{iN} IFI (Ω)	딥	TZ	Re Zfi _N IF (Ω)	mI Zf _{IN} IF (Ω)	IZf _{in} IFI (Ω)
20	0.89	-4.56	586,15	-398.99	709.057	0.89	-4.47	593.52	-396.04	713.521
75	0.87	-5.99	460.41	-343.89	574.669	0.87	-5.94	463.18	-343.08	576.407
100	0.86	-7.21	392.16	-325.10	509.397	0.86	-7.14	395.29	-324.53	511.442
125	0.85	-8.17	349.02	-303.86	462.760	0.85	-8.15	349.77	-303.76	463.257
150	0.84	-9.27	309.63	-284.63	420.576	0.84	-9.07	315.84	-284.12	424.831
175	0.83	-10.05	286.09	-266.39	390.911	0.83	-10.01	287.15	-266.33	391.651
200	0.83	-11.08	259.93	-266.55	372.306	0.83	-10.88	264.82	-266.71	375.850
225	0.82	-11.94	241.30	-249.92	347.397	0.82	-11.78	244.69	-250.08	349.881
250	0.82	-12.68	226.25	-248.62	336.156	0.82	-12.63	227.23	-248.73	336.903
275	0.81	-13.75	208.36	-233.29	312.791	0.81	-13.55	211.78	-233.74	315.416
300	0.81	-14.72	192.62	-230.56	300.430	0.81	-14.48	196.38	-231.31	303.431
325	0.80	-15.64	181.38	-217.32	283.068	0.80	-15.43	184.29	-217.93	285.405
350	0.80	-16.65	168.09	-214.06	272.169	08.0	-16.32	172.30	-215.19	275.668
375	0.80	-17.56	157.13	-210.69	262.830	08.0	-17.37	159.34	-211.42	264.743
400	0.79	-18.53	149.15	-199.24	248.883	0.79	-18.32	151.35	-199.96	250.784
425	0.79	-19.54	139.12	-195.59	240.020	0.79	-19.31	141.33	-196.44	241.998
450	0.79	-20.53	130.12	-191.80	231.770	0.79	-20.28	132.32	-192.77	233.814
475	0.78	-21.62	123.81	-181.72	219.888	0.78	-21.28	126.52	-182.91	222.403
200	0.78	-22.58	116.56	-178.29	213.012	0.78	-22.24	119.06	-179.52	215.410
525	0.77	-23.62	111.89	-169.59	203.177	0.77	-23.27	114.24	-170.73	205.428
550	0.77	-24.52	106.14	-166.63	197.557	0.77	-24.17	108.33	-167.78	199.714
575	0.77	-25.49	100.37	-163.40	191.761	0.77	-25.82	98.50	-162.29	189.848
009	0.77	-26.55	94.54	-159.86	185.721	0.77	-26.14	96.74	-161.23	188.022


101366a0

LMX233xU TSSOP OSC $_{in}$ Input Impedance Vs Frequency $T_A = +25^{\circ}C$

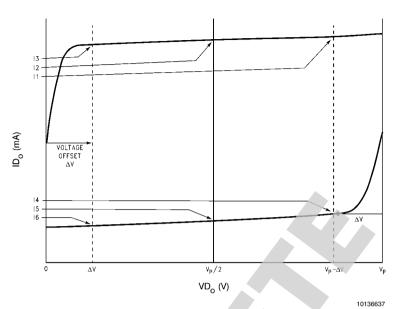
10136676


LMX233xU CSP OSC in Input impedance Vs Frequency

LMX233xU TSSOP and LMX233xU CSP OSC_{in} Input Impedance Table

		N.N.	ZOSCII	18544.50	10756.68	3854.633	3313.367	5729.443	1994.613	1356.174	3939.464	511.232	3217.422	938.443	2784.920	9603.500	424.228	307.942			
		OSC _{in} BUFFER POWERED DOWN	ZOSCin	-18073.24 18544.50	0602.90	800.590	-6248.932 6313.367	-5712.788	4985.007 4994.613	345.597	-3935.873 3939.464	-3506.895 3511.232	213.478	-2934.223 2938.443	-2780.469 2784.920	-2600.472 2603.500	-2419.904 2424.228	302.913			
	A = 25°C	OSC	ZOSC _m Z	8	1812.311 -10602.90 10756.68	976.808 -8800.590 8854.633	99.697 -6	436.542 -5	309.618 -4	303.378 4345.597 4356.174	168.163 -3	174.460 -3	159.273 -3213.478 3217.422	157.424 -2	157.389 -2	125.530 -2	144.727 -2	52.283 -2			
	V _{cc} = 5.5V (T _A = 25°C)		7.					3098.519 43										0.654			
	8	OSC, BUFFER POWERED UP	ZOSC _{in} IZC	4.007 806	8.105 564	9.219 45	6.982 366	-2977.931 309	-2605.886 2697.692	8.961 238	1.170 209	-1865.270 1912.986	4.793 175	-1567.979 1608.182	-1461.571 1498.818	-1358.120 1390.840	-1274.370 1305.774	9.918 123			
LMX233xU CSP ZOSCin		OSC, POWE	Re ZOSC _{in} ZO	90	2626.329 -4998.105 5646.119	5.723 -420	1182.342 -3466.982 3663.045	856.006 -297	697.781 -260	554.417 -2318.961 2384.315	485.437 -2041.170 2098.100	424.599 -186	379.086 -1714.793 1756.195	357.340 -156	332.065 -146	299.913 -135	284.654 -127	273.323 -1199.918 1230.654 152.283 -2302.913 2307.942			
SP						1625															
1X233xl		FER	Ž	-18073.24 18544.50	-10205.48 10325.74	8418.46	-6341.105 6382.730	-5658.273 5675.536	-4799.917 4809.039	5 4246.94	-3777.847 3782.429	-3402.400 3406.648	3120.76	2843.55	3 2667.60	2473.01	2334.66	3 2183.98			
5	္င	OSC _{in} BUFFER POWERED DOWN	ZOSCIN	-18073.2	-10205.4	-8350.65	-6341.10			194.872 4242.475 4246.948	-3777.84	-3402.40	191.739 -3114.867 3120.763	188.280 -2837.317 2843.557	129.014 -2664.486 2667.608	-2471.170 2473.011	117.732 -2331.694 2334.664	-2182.473 2183.987			
	(T _A = 25	S §	Re ZOSC	4154.104	1571.331	1066.661	727.756	442.319	296.061	194.872	186.123	170.072	191.739	188.280	129.014	95.424	117.732	81.318			
	V∞ = 3.0V (T _A = 25°C)	e: •	IZOSCI ^{II}		6920.146	432.335	373.153	3663.861	232.825	1847.441	551.129	304.307	092.491	926.747	810.480	675.961	578.377	481.260			
	8	OSC, BUFFER POWERED UP	ZOSC _{in}	526.374	-6544.475	170.920	245.537 4	-3558.426	-3158.030 3232.825	-2791.912 2847.441	-2512.522 2551.129	-2261.024 2304.307	060.013	-1893.442 1926.747	-1776.540 1810.480	1648.356 1675.961	-1549.601 1578.377	454.298			
		OSC POW	Re ZOSC _{in} Z	5107.688 -9526.374 10809.27	2249.061 -6	484.656 -5659.675 5680.388 1664.886 -5170.920 5432.335 1066.661 -8350.651 8418.499 1625.723 4209.219 4512.261	1048.750 4245.537 4373.153	872.629 -3	691.377	559.597 -2	442.147 -2	444.524 -2	367.245 -2060.013 2092.491	356.692 -1	48.916 -1	302.932 -1	300.020	281.334 -1454.298 1481.260 81.318			
		z	兲	04.282 51	7692.910 22	90.388 16	4669.295	3803.003	3311.570 6	2918.215 5	2610.449 4	2389.913 4	2162.832 3	1985.928 3	1813.090	1690.365 3	1591,854				
		DOW		600 115	92 608	375 56	69 46					$\overline{}$	02 216	69 198				82 147			
Çin	(2°C)	OSC _{in} BUFFER POWERED DOWN	Im ZOSCin	1-11436.	-7675.309	-5659.6	-4665.169	-3799.626	-3305.741	-2917.281	-2608.411	-2308.967	-2161.702	-1984.769	-1812.700	-1689.748	-1591.439	-1470.482 1471.004			
OSC _{in}	Vcc = 5.5V (TA = 25°C)	- 8	ZOSC	1246.07	520.098		196.239	160.236	196.400	73.816	103.131	67.246	69.923	67.843	37.610	45.646	36.346	39.180			
) = 5.5	유명	IZOSC ^{II}	7342.982	5023.579	673 3826.886	3126.584	-2536.243 2570.238	-2192.584 2214.372	1987.347	1754.310	1598.857	1444.646	4.929 1322.520	3.403 1219.482	.429 1137.399	1070.066	544 990.631			
SCin	۲	OSC, BUFFER POWERED UP	ZOSC	6774.525	4861.053	-3754.673	-3078.845	-2536.243	-2192.584	1974.267	1741.101	-1589.814	-1435.713	-1314.929	-1213.403	-1131.429	1064.461				
SOP ZC		S O	Re ZOSC,	2832.878	1267.479 4861.053	739.926	544.280	416.644	309.867	227.640	214.873 -174	169.812 -1589.814	160.401 -1435.713 1444.646	141.501 -131	121.612	116.385 -1131.	109.381 -1064.461 1070.066	100.267			
LMX233xU TSSOP ZOSCin		æ ×	IZOSCIII ZOSCIII	1866.234	645.994	799,207									_			439.919			
LMX2	×	BUFFER RED DOWN	OSC _{II} BUFFER POWERED DOWN	C _{in} BUFFER ERED DOW	OSC, BUFFER	ZOSC _{in}	985.863 -11825.209 11866.234 2832.878 6774.525 7342.982 1246.071 -11436.600 11504.282	1202.389 -5538.197 5667.218 294.460 -7640.322 7645.994	791.970 -4218.658 4292.353 266.942 -5793.060 5799.207	4547.094 4551.397	-3761.566 3765.044	316.446 -2439.647 2460.085 141.326 -3203.351 3206.467	-2879.931 2880.631	-2543.330 2545.222	-2340.221 2341.923	-2106.253 2107.405	-1926.889 1928.604	-1750.824 1751.443	-1662.230 1662.666	-1547.816 1548.263	108.280 -1089.931 1095.296 36.351 -1439.460 1439.919 100.267 -985
	$V_{cc} = 3.0V (T_A = 25^{\circ}C)$	OSC _{in} BL POWERED	OSC _{in} B POWERE	Re ZOSC _{in} Z	35.863 -1	94.460 -7	56.942 -5	197.874 ~4		41.326 -3	63.505 -2	98.108 -2	89.270 -2	69.675 -2	1- 81.310	46.548 -1	38.046 -1	37.202 -1	6.351 -1		
	= 3.0V (i	m ^	OSC _{in} i z		67.218 29	92.353		343.020 -2817.993 2838.794 161.801	50.085									95.296			
	Vcc	OSC, BUFFER POWERED UP	ZOSC _{in} ZOSC _{in}	76 83	38.197 56	18.658 42	527.664 -3418.978 3459.456	17.993 28	39.647 24	228.526 -2179.146 2191.096	211.659 -1932.535 1944.091	163.618 -1762.903 1770.480	163.733 -1589.620 1598.030	148.446 -1463.071 1470.583	130.683 -1340.206 1346.562	126.059 -1255.034 1261.349	115.848 -1178.954 1184.632	39.931 109			
		OSC _{in} POWE	Re ZOSCin ZO	1.113 -800	2.389 -550	.970 -42	.664 -34	1.020 -28	.446 -24	1.526 -217	.659 -193	1.618 -176	733 -158	1.446 -146	.683 -134	.059 -125	.848 -117	.280 -108			
		<u></u>	Fosc		7.5 120	10.0	12.5 527	15.0 343	17.5 316	20.0	22.5 211	25.0 163	27.5 163	30.0 148	32.5 130	35.0 126	37.5 115	40.0 108			
			Ę	5	7	10	1,5	4	17	Z	22	8	27	30	32	35	37	4			

LMX233xU UTCSP OSC_{in} Input Impedance Vs Frequency $T_A = +25^{\circ}C$


101366a1

LMX233xU UTCSP OSCin Input Impedance Table

,												
					L	LMX233xU UTCSP ZOSC _{in}	TCSP ZOSC	'n				
			V _{CC} = 3.0V	3.0V (T _A = 25°C)					V _{cc} = 5.5V	(T _A = 25°C)		
	0 @	OSC _{in} BUFFER POWERED UP	8 . ₽	0.0	OSC _{in} BUFFER POWERED DOWN	π N	OŒ	OSC _{in} BUFFER POWERED UP	د م	0.0	OSC _{in} BUFFER POWERED DOWN	« ×
F _{osc}	Re ZOSC _{in} (Ω)	Im ZOSCin (Ω)	IZOSC _{in} l	Re ZO SC in (Ω)	Im ZOSC _{in} (Ω)	IZOSC _{in} l (Ω)	Re ZOSC _{in} (Ω)	Im ZOSC _{in} (Ω)	IZOSC _{in} l	Re ZOSC _{in} (Ω)	Im ZOSC _{in} (Ω)	IZOSC _{in} I (Ω)
5.0	5918.57	-9897.80	11532.39	1822.62	-19947.73	20030.82	4982.73	-7668.32	9144.98	2478.02	-19591.11	19747.21
7.5	3097.46	-7441.43	8060.35	2238.93	-12114.22	12319.38	2742.97	-6062.16	6653.85	2483.54	-12531.99	12775.71
10.0	1695.22	-5720.83	5966.72	998.16	-9046.84	9101.74	1582.29	-4875.36	5125.70	1064.38	-9063.97	9126.25
12.5	1241.03	-4759.14	4918.29	660.39	-7338.93	7368.58	1150.39	-4034.66	4195.46	621.48	-7679.86	7704.97
15.0	820.55	-3955.33	4039.55	471.57	-6142.40	6160.48	861.48	-3448.80	3554.76	591.34	-6481.87	6208.79
17.5	646.18	-3417.20	3477.76	317.24	-5165.41	5175.14	599.49	-3009.04	3068.18	154.67	-5518.01	5520.17
20.0	520.20	-3006.22	3050.90	223.35	-4567.95	4573.41	491.78	-2647.38	2692.67	120.99	-4867.07	4868.57
22.5	459.63	-2666.05	2705.38	219.57	-4040.96	4046.92	396.64	-2342.62	2375.96	137.85	-4301.63	4303.84
25.0	391.21	-2398.19	2429.89	172.20	-3664.77	3668.81	323.46	-2108.25	2132.92	89.00	-3864.60	3865.62
27.5	348.79	-2210.66	2238.01	169.02	-3291.50	3295.84	312.14	-1920.70	1945.90	114.48	-3476.68	3478.56
30.0	285.07	-1996.71	2016.96	110.02	-3005.42	3007.43	260.59	-1763.82	1782.97	121.11	-3185.26	3187.56
32.5	267.83	-1847.30	1866.61	117.14	-2725.46	2727.97	239.41	-1612.35	1630.02	111.70	-2876.34	2878.50
35.0	252.27	-1719.32	1737.73	114.38	-2558.44	2561.00	222.16	-1503.76	1520.08	115.42	-2690.37	2692.84
37.5	224.94	-1639.80	1655.15	70.31	-2408.64	2409.67	191.46	-1422.88	1435.71	48.06	-2550.41	2550.86
40.0	208.96	-1512.91	1527.27	76.50	-2242.79	2244.09	180.75	-1329.24	1341.47	72.61	-2353.73	2354.85

101366a2

Charge Pump Current Specification Definitions

I1 = Charge Pump Sink Current at $VD_0 = V_P - \Delta V$

I2 = Charge Pump Sink Current at VD_o = V_P/2

I3 = Charge Pump Sink Current at $VD_0 = \Delta V$

I4 = Charge Pump Source Current at $VD_0 = V_P - \Delta V$

I5 = Charge Pump Source Current at VD_o = V_P/2

 $I6 = Charge Pump Source Current at VD_0 = \Delta V$

 $\Delta V = Voltage$ offset from the positive and negative rails. Dependent on the VCO tuning range relative to V_{CC} and GND. Typical values are between 0.5V and 1.0V.

 V_P refers to either V_P RF or V_P IF

 VD_{o} refers to either VD_{o} RF or VD_{o} IF

ID, refers to either ID, RF or ID, IF

Charge Pump Output Current Magnitude Variation Vs Charge Pump Output Voltage

$$ID_{0} \text{ Vs VD}_{0} = \frac{(|11| - |13|)}{(|11| + |13|)} \times 100\%$$

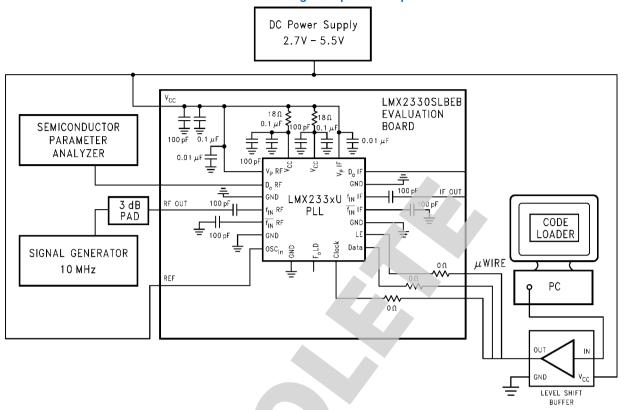
$$= \frac{(|14| - |16|)}{(|14| + |16|)} \times 100\%$$

10136663

Charge Pump Output Sink Current Vs Charge Pump Output Source Current Mismatch

ID_o SINK Vs ID_o SOURCE =
$$\frac{|12| - |15|}{\frac{1}{2}(|12| + |15|)} \times 100\%$$

10136664


Charge Pump Output Current Magnitude Variation Vs Temperature

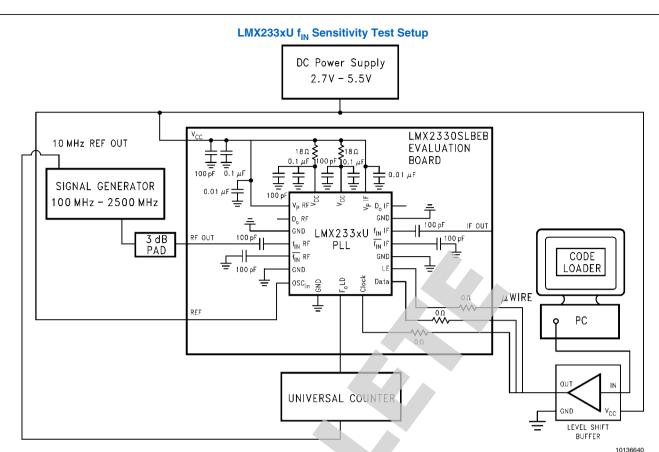
$$ID_{o} \text{ Vs } T_{A} = \frac{|I_{2}||_{T_{A}} - |I_{2}||_{T_{A} = 25^{\circ}C}}{|I_{2}||_{T_{A} = 25^{\circ}C}} \times 100\%$$

$$= \frac{|I_{5}||_{T_{A}} - |I_{5}||_{T_{A} = 25^{\circ}C}}{|I_{5}||_{T_{A} = 25^{\circ}C}} \times 100\%$$

Test Setups

LMX233xU Charge Pump Test Setup

The block diagram above illustrates the setup required to measure the LMX233xU device's RF charge pump sink current. The same setup is used for the LMX2330TMEB/LMX2330SLEEB Evaluation Boards. The IF charge pump measurement setup is similar to the RF charge pump measurement setup. The purpose of this test is to assess the functionality of the RF charge pump.

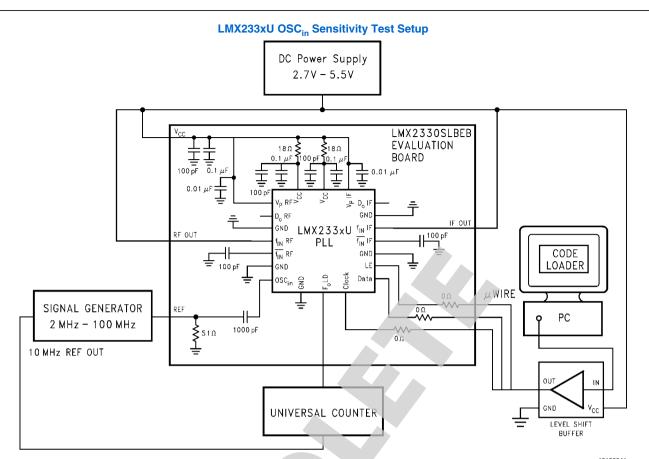

This setup uses an open loop configuration. A power supply is connected to V_{cc} and swept from 2.7V to 5.5V. By means of a signal generator, a 10 MHz signal is typically applied to the f_{IN} RF pin. The signal is one of two inputs to the phase detector. The 3 dB pad provides a 50 Ω match between the PLL and the signal generator. The OSC in pin is tied to V_{cc} . This establishes the other input to the phase detector. Alternatively, this input can be tied directly to the ground plane. With the D_0 RF pin connected to a Semiconductor Parameter Analyzer in this way, the sink, source, and TRI-STATE currents can be measured by simply toggling the **Phase Detector Polarity** and **Charge Pump State** states in Code Loader. Similarly, the LOW and HIGH currents can be measured by

switching the **Charge Pump Gain's** state between **1X** and **4X** in Code Loader.

Let F_r represent the frequency of the signal applied to the OSC $_{\rm in}$ pin, which is simply zero in this case (DC), and let F_p represent the frequency of the signal applied to the $f_{\rm IN}$ RF pin. The phase detector is sensitive to the rising edges of F_r and F_p . Assuming positive VCO characteristics; the charge pump turns ON and sinks current when the first rising edge of F_p is detected. Since F_r has no rising edge, the charge pump continues to sink current indefinitely.

Toggling the **Phase Detector Polarity** state to negative VCO characteristics allows the measurement of the RF charge pump source current. Likewise, selecting **TRI-STATE** (TRI-STATE ID $_{\rm o}$ RF Bit = 1) for **Charge Pump State** in Code Loader facilitates the measurement of the TRI-STATE current

The measurements are repeated at different temperatures, namely $T_A = -40$ °C, +25 °C, and +85 °C.



The block diagram above illustrates the setup required to measure the LMX233xU device's RF input sensitivity level. The same setup is used for the LMX2330TMEB/LMX2330SLEEB Evaluation Boards. The IF input sensitivity test setup is similar to the RF sensitivity test setup. The purpose of this test is to measure the acceptable signal level to the $f_{\rm IN}$ RF input of the PLL chip. Outside the acceptable signal range, the feedback divider begins to divide incorrectly and miscount the frequency.

The setup uses an open loop configuration. A power supply is connected to V_{cc} and swept from 2.7V to 5.5V. The IF PLL is powered down (PWDN IF Bit = 1). By means of a signal generator, an RF signal is applied to the $f_{\rm IN}$ RF pin. The 3 dB pad provides a 50 Ω match between the PLL and the signal generator. The OSC $_{\rm in}$ pin is fied to V_{cc} . The N value is typically set to 10000 in Code Loader, i.e. RF N_ CNTRB Word = 156 and RF N_CNTRA Word = 16 for PRE RF Bit = 1 (LMX2330U) or PRE RF = 0 (LMX2331U and LMX2332U). The feedback divider output is routed to the F_{o} LD pin by selecting the RF

PLL N Divider Output word (F_o LD Word = 6 or 14) in Code Loader. A Universal Counter is connected to the F_o LD pin and tied to the 10 MHz reference output of the signal generator. The output of the feedback divider is thus monitored and should be equal to f_{IN} RF / N.

The f_{IN} RF input frequency and power level are then swept with the signal generator. The measurements are repeated at different temperatures, namely T_{A} = -40°C, +25°C, and +85°C. Sensitivity is reached when the frequency error of the divided RF input is greater than or equal to 1 Hz. The power attenuation from the cable and the 3 dB pad must be accounted for. The feedback divider will actually miscount if too much or too little power is applied to the f_{IN} RF input. Therefore, the allowed input power level will be bounded by the upper and lower sensitivity limits. In a typical application, if the power level to the f_{IN} RF input approaches the sensitivity limits, this can introduce spurs and degradation in phase noise. When the power level gets even closer to these limits, or exceeds it, then the RF PLL loses lock.

The block diagram above illustrates the setup required to measure the LMX233xU device's OSC $_{in}$ buffer sensitivity level. The same setup is used for the LMX2330TMEB/ LMX2330SLEEB Evaluation Boards. This setup is similar to the f_{IN} sensitivity setup except that the signal generator is now connected to the OSC $_{in}$ pin and both f_{IN} pins are tied to $V_{\rm CC}$. The 51 Ω shunt resistor matches the OSC $_{in}$ input to the signal generator. The R counter is typically set to 1000, i.e. RF R_CNTR Word = 1000 or IF R_CNTR Word = 1000. The reference divider output is routed to the F_{o} LD pin by selecting the RF PLL R Divider Output word (F_{o} LD Word = 2 or 10) or the IF PLL R Divider Output word (F_{o} LD Word = 1 or 9)

in Code Loader. Similarly, a Universal Counter is connected to the F_oLD pin and is tied to the 10 MHz reference output from the signal generator. The output of the reference divider is monitored and should be equal to OSC_{in}/ RF R_CNTR or OSC_{in}/ IF R_CNTR.

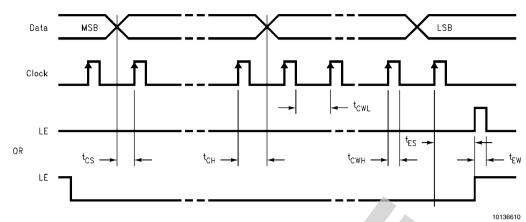
Again, V_{CC} is swept from 2.7V to 5.5V. The OSC_{in} input frequency and voltage level are then swept with the signal generator. The measurements are repeated at different temperatures, namely $T_A = -40^{\circ}\text{C}$, $+25^{\circ}\text{C}$, and $+85^{\circ}\text{C}$. Sensitivity is reached when the frequency error of the divided input signal is greater than or equal to 1 Hz.

LMX233xU f_{IN} Impedance Test Setup DC Power Supply 2.7V - 5.5VLMX2330SLBEB **EVALUATION** 18Ω \$18Ω $\frac{\perp}{0.1}$ BOARD RF GNI 100 pF IF OUT GND LMX233xU f_{IN} IF RF OUT 100 pF NETWORK ANALYZER f_{IN} RF PLL f_{IN} IF CODE $\overline{f_{\mathsf{IN}}}$ RF GNI 100 pF LOADER GND Data **uWIRE** PC LEVEL SHIFT

The block diagram above illustrates the setup required to measure the LMX233xU device's RF input impedance. The IF input impedance and reference oscillator impedance setups are very much similar. The same setup is used for the LMX2330TMEB/ LMX2330SLEEB Evaluation Boards. Measuring the device's input impedance facilitates the design of appropriate matching networks to match the FLL to the VCO, or in more critical situations, to the characteristic impedance of the printed circuit board (PCB) trace, to prevent undesired transmission line effects.

Before the actual measurements are taken, the Network Analyzer needs to be calibrated, i.e. the error coefficients need to be calculated. Therefore, three standards will be used to calculate these coefficients: an **open**, **short** and a **matched load**. A 1-port calibration is implemented here.

To calculate the coefficients, the PLL chip is first removed from the PCB. The Network Analyzer port is then connected to the RF OUT connector of the evaluation board and the desired operating frequency is set. The typical frequency range selected for the LMX233xU device's RF synthesizer is from 100 MHz to 2500 MHz. The standards will be located down the length of the RF OUT transmission line. The transmission line adds electrical length and acts as an offset from the ref-


erence plane of the Network Analyzer; therefore, it must be included in the calibration. Although not shown, 0 Ω resistors are used to complete the RF OUT transmission line (trace).

To implement an **open** standard, the end of the RF OUT trace is simply left open. To implement a **short** standard, a 0 Ω resistor is placed at the end of the RF OUT transmission line. Last of all, to implement a **matched load** standard, two 100 Ω resistors in parallel are placed at the end of the RF OUT transmission line. The Network Analyzer calculates the calibration coefficients based on the measured \mathbf{S}_{11} parameters. With this all done, calibration is now complete.

The PLL chip is then placed on the PCB. A power supply is connected to V_{CC} and swept from 2.7V to 5.5V. The OSC_{in} pin is tied to the ground plane. Alternatively, the OSC_{in} pin can be tied to V_{CC} . In this setup, the complementary input $(\overline{f_{IN}}\mbox{ RF})$ is AC coupled to ground. With the Network Analyzer still connected to RF OUT, the measured f_{IN} RF impedance is displayed.

Note: The impedance of the reference oscillator is measured when the oscillator buffer is powered up (PWDN RF Bit = 0 or PWDN IF Bit = 0), and when the oscillator buffer is powered down (PWDN RF Bit = 1 and PWDN IF Bit = 1).

LMX233xU Serial Data Input Timing

Notes:

- 1. Data is clocked into the 22-bit shift register on the rising edge of Clock
- 2. The MSB of Data is shifted in first.

1.0 Functional Description

The basic phase-lock-loop (PLL) configuration consists of a high-stability crystal reference oscillator, a frequency synthesizer such as the National Semiconductor LMX233xU, a voltage controlled oscillator (VCO), and a passive loop filter. The frequency synthesizer includes a phase detector, current mode charge pump, programmable reference R and feedback N frequency dividers. The VCO frequency is established by dividing the crystal reference signal down via the reference divider to obtain a comparison reference frequency. This reference signal, Fr, is then presented to the input of a phase/ frequency detector and compared with the feedback signal, F_n, which was obtained by dividing the VCO frequency down by way of the feedback divider. The phase/frequency detector measures the phase error between the F_r and F_p signals and outputs control signals that are directly proportional to the phase error. The charge pump then pumps charge into or out of the loop filter based on the magnitude and direction of the phase error. The loop filter converts the charge into a stable control voltage for the VCO. The phase/frequency detector's function is to adjust the voltage presented to the VCO until the feedback signal's frequency and phase match that of the reference signal. When this "Phase-Locked" condition exists, the VCO frequency will be N times that of the comparison frequency, where N is the feedback divider ratio.

1.1 REFERENCE OSCILLATOR INPUT

The reference oscillator frequency for both the RF and IF PLLs is provided from an external reference via the OSC_{in} pin. The reference buffer circuit supports input frequencies from 5 to 40 MHz with a minimum input sensitivity of 0.5 V_{PP} . The reference buffer circuit has an approximate $V_{CC}/2$ input threshold and can be driven from an external CMOS or TTL logic gate. Typically, the OSC_{in} pin is connected to the output of a crystal oscillator.

1.2 REFERENCE DIVIDERS (R COUNTERS)

The reference dividers divide the reference input signal, OSC_{in} , by a factor of R. The output of the reference divider circuits feeds the reference input of the phase detector. This reference input to the phase detector is often referred to as the comparison frequency. The divide ratio should be chosen such that the maximum phase comparison frequency ($F_{\phi RF}$ or $F_{\phi IF}$) of 10 MHz is not exceeded.

The RF and IF reference dividers are each comprised of 15-bit CMOS binary counters that support a continuous integer divide ratio from 3 to 32767. The RF and IF reference divider circuits are clocked by the output of the reference buffer circuit which is common to both.

1.3 PRESCALERS

The $f_{\rm IN}$ RF ($f_{\rm IN}$ IF) and $\overline{f_{\rm IN}}$ RF ($\overline{f_{\rm IN}}$ IF) input pins drive the input of a bipolar, differential-pair amplifier. The output of the bipolar, differential-pair amplifier drives a chain of ECL D-type flipflops in a dual modulus configuration. The output of the prescaler is used to clock the subsequent feedback dividers. The RF and IF PLL complementary inputs can be driven differentially, or the negative input can be AC coupled to ground through an external capacitor for single ended configuration. A 32/33 or a 64/65 prescale ratio can be selected for the 2.5 GHz LMX2330U RF synthesizer. A 64/65 or a 128/129

prescale ratio can be selected for both the LMX2331U and LMX2332U RF synthesizers. The IF circuitry contains an 8/9 or a 16/17 prescaler.

1.4 PROGRAMMABLE FEEDBACK DIVIDERS (N COUNTERS)

The programmable feedback dividers operate in concert with the prescalers to divide the input signal, f_{IN} , by a factor of N. The output of the programmable reference divider is provided to the feedback input of the phase detector circuit. The divide ratio should be chosen such that the maximum phase comparison frequency (F $_{\phi RF}$ or F $_{\phi IF}$) of 10 MHz is not exceeded. The programmable feedback divider circuit is comprised of an A counter (swallow counter) and a B counter (programmble binary counter). The RF N_CNTRA counter is a 7-bit CMOS swallow counter, programmable from 0 to 127. The IF N CN-TRA counter is also a 7-bit CMOS swallow counter, but programmable from 0 to 15. The three most significant bits are 'don't cares' in this case. The RF N_CNTRB and IF N_CNTRB counters are both 11-bit CMOS binary counters, programmable from 3 to 2047. A continuous integer divide ratio is achieved if $N \ge P^* (P-1)$, where P is the value of the prescaler selected. Divide ratios less than the minimum continuous divide ratio are achievable as long as the binary programmable counter value is greater than the swallow counter value (N_CNTRB ≥ N_CNTRA). Refer to Sections 2.5.1, 2.5.2, 2.7.1 and 2.7.2 for details on how to program the N_CNTRA and N_CNTRB counters. The following equations are useful in determining and programming a particular value

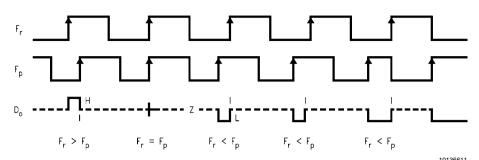
 $N = (P \times N_CNTRB) + N_CNTRA$

 $f_{IN} = N \times F_{\phi}$ **Definitions:**

 F_{ω} : RF or IF phase detector comparison frequen-

су

f_{IN}: RF or IF input frequency N_CNTRA: RF or IF A counter value N_CNTRB: RF or IF B counter value


P: Preset modulus of the dual modulus prescaler

LMX2330U RF synthesizer: P = 32 or 64 LMX2331U RF synthesizer: P = 64 or 128 LMX2332U RF synthesizer: P = 64 or 128 LMX233xU IF synthesizer: P = 8 or 16

1.5 PHASE/FREQUENCY DETECTORS

The RF and IF phase/frequency detectors are driven from their respective N and R counter outputs. The maximum frequency for both the RF and IF phase detector inputs is 10 MHz. The phase/frequency detector outputs control the respective charge pumps. The polarity of the pump-up or pump-down control signals are programmed using the PD_POL RF or PD_POL IF control bits, depending on whether the RF or IF VCO characteristics are positive or negative. Refer to Sections 2.4.2 and 2.6.2 for more details. The phase/frequency detectors have a detection range of -2π to $+2\pi$. The phase/frequency detectors also receive a feedback signal from the charge pump in order to eliminate dead zone.

PHASE COMPARATOR AND INTERNAL CHARGE PUMP CHARACTERISTICS

Notes:

- 1. The minimum width of the pump-up and pump-down current pulses occur at the Do RF or Do IF pins when the loop is phase locked.
- 2. The diagram assumes positive VCO characteristics, i.e. PD_POL RF or PD_POL IF = 1.
- 3. F, is the phase detector input from the reference divider (R counter).
- 4. F_p is the phase detector input from the programmable feedback divder (N counter).
- 5. Do refers to either the RF or IF charge pump output.

1.6 CHARGE PUMPS

The charge pump directs charge into or out of an external loop filter. The loop filter converts the charge into a stable control voltage which is applied to the tuning input of the VCO. The charge pump steers the VCO control voltage towards $V_{\rm P}$ RF or $V_{\rm P}$ IF during pump-up events and towards GND during pump-down events. When locked, $D_{\rm o}$ RF or $D_{\rm o}$ IF are primarily in a TRI-STATE mode with small corrections occuring at the phase comparator rate. The charge pump output current magnitude can be selected by toggling the $ID_{\rm o}$ RF or $ID_{\rm o}$ IF control bits.

1.7 MICROWIRE SERIAL INTERFACE

The programmable register set is accessed via the MI-CROWIRE serial interface. The interface is comprised of three signal pins: Clock, Data and LE (Latch Enable). Serial data is clocked into the 22-bit shift register on the rising edge of Clock. The last two bits decode the internal control register address. When LE transitions HIGH, data stored in the shift register is loaded into one of four control registers depending on the state of the address bits. The MSB of Data is loaded in first. The synthesizers can be programmed even in power down mode. A complete programming description is provided in **Section 2.0 Programming Description**.

1.8 MULTI-FUNCTION OUTPUTS

The LMX233xU device's F_oLD output pin is a multi-function output that can be configured as the RF FastLock output, a push-pull analog lock detect output, counter reset, or used to monitor the output of the various reference divider (R counter) or feedback divider (N counter) circuits. The F_oLD control word is used to select the desired output function. When the PLL is in powerdown mode, the F_oLD output is pulled to a LOW state. A complete programming description of the multifunction output is provided in **Section 2.8** F_oLD .

1.8.1 Push-Pull Analog Lock Detect Output

An analog lock detect status generated from the phase detector is available on the $\rm F_oLD$ output pin if selected. The lock detect output goes HIGH when the charge pump is inactive. It goes LOW when the charge pump is active during a comparison cycle. When viewed with an oscilloscope, narrow negative pulses are observed when the charge pump turns on. The lock detect output signal is a push-pull configuration.

Three separate lock detect signals are routed to the multiplexer. Two of these monitor the 'lock' status of the individual synthesizers. The third detects the condition when both the RF and IF synthesizers are in a 'locked state'. External circuitry however, is required to provide a steady DC signal to indicate when the PLL is in a locked state. Refer to **Section 2.8 F_oLD** for details on how to program the different lock detect options.

1.8.2 Open Drain FastLock Output

The LMX233xU Fastlock feature allows faster loop response time during lock aguisition. The loop response time (lock time) can be approximately halved if the loop bandwidth is doubled. In order to achieve this, the same gain/ phase relationship at twice the loop bandwidth must be maintained. This can be achieved by increasing the charge pump current from 0.95 mA (ID RF Bit = 0) in the steady state mode, to 3.8 mA (ID RF Bit = 1) in Fastlock. When the FoLD output is configured as a FastLock output, an open drain device is enabled. The open drain device switches in a parallel resistor R2' to ground, of equal value to resistor R2 of the external loop filter. The loop bandwidth is effectively doubled and stability is maintained. Once locked to the correct frequency, the PLL will return to a steady state condition. Refer to Section 2.8 FoLD for details on how to configure the FoLD output to an open drain Fastlock output.

1.8.3 Counter Reset

Three separate counter reset functions are provided. When the F_oLD is programmed to **Reset IF Counters**, both the IF feedback divider and the IF reference divider are held at their load point. When the **Reset RF Counters** is programmed, both the RF feedback divider and the RF reference divider are held at their load point. When the **Reset All Counters** mode is enabled, all feedback dividers and reference dividers are held at their load point. When the device is programmed to normal operation, both the feedback divider and reference divider are enabled and resume counting in 'close' alignment to each other. Refer to **Section 2.8 F_oLD** for more details.

1.8.4 Reference Divider and Feedback Divider Output

The outputs of the various N and R dividers can be monitored by selecting the appropriate F_oLD word. This is essential when performing OSC $_{\rm in}$ or $f_{\rm IN}$ sensitivity measurements. Refer to the **Test Setups** section for more details. Refer to **Section 2.8** F_oLD for more details on how to route the appropriate divider output to the F_oLD pin.

1.9 POWER CONTROL

Each synthesizer in the LMX233xU device is individually power controlled by device powerdown bits. The powerdown word is comprised of the PWDN RF (PWDN IF) bit, in conjuction with the TRI-STATE ID_o RF (TRI-STATE ID_o IF) bit. The powerdown control word is used to set the operating mode of the device. Refer to Sections 2.4.4, 2.5.4, 2.6.4, and 2.7.4 for details on how to program the RF or IF powerdown bits.

When either the RF synthesizer or the IF synthesizer enters the powerdown mode, the respective prescaler, phase detector, and charge pump circuit are disabled. The Do RF (Do IF), f_{IN} RF (f_{IN} IF), and $\overline{f_{IN}}$ RF ($\overline{f_{IN}}$ IF) pins are all forced to a high impedance state. The reference divider and feedback divider circuits are held at the load point during powerdown. The oscillator buffer is disabled when both the RF and IF synthesizers are powered down. The OSC_{in} pin is forced to a HIGH state through an approximate 100 k Ω resistance when this condition exists. When either synthesizer is activated, the respective prescaler, phase detector, charge pump circuit, and the oscillator buffer are all powered up. The feedback divider, and the reference divider are held at load point. This allows the reference oscillator, feedback divider, reference divider and prescaler circuitry to reach proper bias levels. After a finite delay, the feedback and reference dividers are enabled and they resume counting in 'close' alignment (the maximum error is one prescaler cycle). The MICROWIRE control register remains active and capable of loading and latching data while in the powerdown mode.

Synchronous Powerdown Mode

In this mode, the powerdown function is gated by the charge pump. When the device is configured for synchronous powerdown, the device will enter the powerdown mode upon completion of the next charge pump pulse event.

Asynchronous Powerdown Mode

In this mode, the powerdown function is NOT gated by the completion of a charge pump pulse event. When the device is configured for asynchronous powerdown, the part will go into powerdown mode immediately.

TRI-STATE ID _o	PWDN	Operating Mode
0	0	PLL Active, Normal Operation
1	0	PLL Active, Charge Pump Output in High Impedance State
0	1	Synchronous Powerdown
1	1	Asynchronous Powerdown

Notes

- 1. TRI-STATE ID_0 refers to either the TRI-STATE ID_0 RF or TRI-STATE ID_0 IF bit .
- 2. PWDN refers to either the PWDN RF or PWDN IF bit.

2.0 Programming Description

2.1 MICROWIRE INTERFACE

The 22-bit shift register is loaded via the MICROWIRE interface. The shift register consists of a 20-bit *Data[19:0] Field* and a 2-bit *Address[1:0] Field* as shown below. The Address Field is used to decode the internal control register address. When LE transitions HIGH, data stored in the shift register is loaded into one of 4 control registers depending on the state of the address bits. The MSB of Data is loaded in first. The Data Field assignments are shown in **Section 2.3 CONTROL REGISTER CONTENT MAP**.

MSB			LSB
	Data[19:0]		Address[1:0]
21		2	1 0

2.2 CONTROL REGISTER LOCATION

The address bits Address[1:0] decode the internal register address. The table below shows how the address bits are mapped into the target control register.

1	ss[1:0] eld	Target Register
0	0	IF R
0	1	IF N
1	0	RF R
1	1	RÉN

2.3 CONTROL REGISTER CONTENT MAP

The control register content map describes how the bits within each control register are allocated to specific control functions.

Factor Folicy F	Reg.	Reg. Most Significant Bit	gnificar	ıt Bit							SHIFT	REGIS	SHIFT REGISTER BIT LOCATION	LOCA	TION						Least	Signific	Least Significant Bit
FoLDO FoLDO TRI- ID. PD- IF R_CNTR[14:0] IF R_CNTR[14:0] PWDN PRE IF TRI- ID. PD- IF R_CNTRB[10:0] IF R_CNTRB[14:0] PWDN PRE ID. PD- PRE ID. PRE ID. PRE ID. PWDN PRE ID. PRE ID. PRE ID. PRE ID. PRE ID. PWDN PRE ID. PRE ID. PRE ID. PRE ID. PRE ID. PRE ID. PRE ID. PRE ID. PRE ID. PRE ID. PRE ID. PRE ID. PRE ID. PRE ID. PRE ID. PRE ID. PRE ID.		21	20	19	18			15	14	13	12	1	10	6	8	7	9	2	4	ဗ	2	-	0
F _o LD0 TRI- 2 ID _o IF TRI- IF ID _o IF IF R_CNTR[14:0] IF R_CNTRR[14:0] PWDN PRE IF TRI- ID _o ID _o ID _o ID _o ID _o ID _o IF IF R_CNTRR[14:0] IF R_CNTRR[14:0] PWDN PRE ID _o ID _o ID _o ID _o ID _o IF PRE R_CNTRR[14:0] PRE R_CNTRR[14:0] PWDN PRE R_CNTRR[10:0] PRE R_CNTRR[16:0]											Data Fi	ield										Addres	Address Field
PRE IF N_CNTRA[6:0] IF N_CNTRA[6:0] IF STATE RF POL ID STATE RF POL RF RF RF R_CNTR[14:0] PRE RF N_CNTRA[6:0] RF RF N_CNTRA[6:0]	ਜ R	F _o LD0	F _o LD	TRI- STATE ID _o IF	 								<u>∓</u> R_	CNTR[1	4:0]							0	0
F _o LD TRI- ID _o PD_ 3 STATE RF POL ID _o RF RF RF N_CNTRB[10:0]	Z L	PWDN	PRE					N_CNTF	*B[10:0]								N H	NTRA[[0:0]			0	-
PRE RF.N_CNTRB[10:0]	я я	F _o LD1	F _o LD 3	TRI- STATE ID _o RF	D _o	PO_ PO_ RF							RF R_	CNTR	[14:0]							-	0
	RF N	PWDN	PRE RF				RF	N_CNT	AB[10:0								RF N_	CNTRA	[6:0]			1	-

2.4 IF R REGISTER

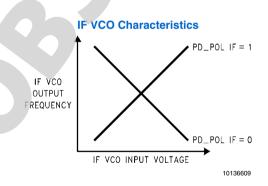
The IF R register contains the IF R_CNTR, PD_POL IF, ID $_{\rm o}$ IF, and TRI-STATE ID $_{\rm o}$ IF control words, in addition to two bits that compose the F $_{\rm o}$ LD control word. The detailed descriptions and programming information for each control word is discussed in the following sections. IF R_CNTR[14:0]

Reg	Most	Signif	icant B	it					SHI	FT RI	EGIS	TER E	IT LC	CAT	ION				Leas	t Sigr	nifica	nt Bit
-	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
									E	ata F	ield							,				lress eld
IF R	F _o LD0	F _o LD2	TRI- STATE ID _o IF	ID₀ IF	PD_ POL IF							IF R_	CNTR	R[14:0]						0	0

2.4.1 IF R_CNTR[14:0] IF Synthesizer Programmable Reference Divider (R Counter)

IF R[2:16]

The IF reference divider (IF R_CNTR) can be programmed to support divide ratios from 3 to 32767. Divide ratios less than 3 are prohibited.


Divide Ratio							IF R_	CNTR	[14:0]						
	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
3	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1
4	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
•	•	•	•		•	•	•		•	•	•	•	•	•	•
32767	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

IF R[17]

The PD_POL IF bit is used to control the IF synthesizer's phase detector polarity based on the VCO tuning characteristics.

Control Bit	Register Location	Description	Fund	ction
			0	1
PD_POL IF	IF R[17]	IF Phase Detector	IF VCO Negative Tuning	IF VCO Positive Tuning
		Polarity	Characteristics	Characteristics

2.4.3 ID_o IF IF Synthesizer Charge Pump Current Gain

IF R[18]

The ${\rm ID_0}$ IF bit controls the IF synthesizer's charge pump gain. Two current levels are available.

Control Bit	Register Location	Description	Fund	ction
			0	1
ID _o IF	IF R[18]	IF Charge Pump Current	LOW	HIGH
		Gain	0.95 mA	3.80 mA

IF R[19]

The TRI-STATE ID $_0$ IF bit allows the charge pump to be switched between a normal operating mode and a high impedance output state. This happens asynchronously with the change in the TRI-STATE ID $_0$ IF bit.

Furthermore, the TRI-STATE ${\rm ID_o}$ IF bit operates in conjuction with the PWDN IF bit to set a synchronous or an asynchronous powerdown mode.

Control Bit	Register Location	Description	Fund	ction
			0	1
TRI-STATE ID _o IF	IF R[19]	IF Charge Pump TRI-	IF Charge Pump Normal	IF Charge Pump Output in
-		STATE Current	Operation	High Impedance State

2.5 IF N REGISTER

The IF N register contains the IF N_CNTRA, IF N_CNTRB, PRE IF, and PWDN IF control words. The IF N_CNTRA and IF N_CNTRB control words are used to setup the programmable feedback divider. The detailed description and programming information for each control word is discussed in the following sections.

Reg	Most 9	Signifi	cant E	3it					SHI	FT R	EGIST	TER E	IT LO	CAT	ION				Leas	t Sigr	nifica	nt Bit
	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
						•	•		Ĺ	Data F	ield						•	•				ress eld
IF N	PWDN IF	PRE IF				IF N	N_CN	TRB[1	0:0]			4				IF N_	CNTF	RA[6:0]		0	1

2.5.1 IF N_CNTRA[6:0] IF Synthesizer Swallow Counter (A Counter).

IF N[2:8]

IF N[9:19]

The IF N_CNTRA control word is used to setup the IF synthesizer's A counter. The A counter is a 7-bit swallow counter used in the programmable feedback divider. The IF N_CNTRA control word can be programmed to values ranging from 0 to 15. The three most significant bits are 'don't care bits' in this case.

Divide Ratio				F N_CNTRA[6:0)]		
	6	5	4	3	2	1	0
0	X	X	X	0	0	0	0
1	Х	Х	X	0	0	0	1
•	•	·		•	•	•	•
15	Х	X	X	1	1	1	1

2.5.2 IF N_CNTRB[10:0] IF Synthesizer Programmable Binary Counter (B Counter)

The IF N_CNTRB control word is used to setup the IF synthesizer's B counter. The B counter is an 11-bit programmable binary counter used in the programmable feedback divider. The IF N_CNTRB control word can be programmed to values ranging from 3 to 2047.

Divide					IF N	I_CNTRB[1	0:0]				
Ratio	10	9	8	7	6	5	4	3	2	1	0
3	0	0	0	0	0	0	0	0	0	1	1
4	0	0	0	0	0	0	0	0	1	0	0
•	•	•	•	•	•	•	•	•	•	•	•
2047	1	1	1	1	1	1	1	1	1	1	1

2.5.3 PRE IF IF Synthesizer Prescaler Select

IF N[20]

The IF synthesizer utilizes a selectable dual modulus prescaler.

Control Bit	Register Location	Description	Fund	ction
			0	1
PRE IF	IF N[20]	IF Prescaler Select	8/9 Prescaler Selected	16/17 Prescaler Selected

2.5.4 PWDN IF IF SYNTHESIZER POWERDOWN

IF N[21]

The PWDN IF bit is used to switch the IF PLL between a powered up and powered down mode.

Furthermore, the PWDN IF bit operates in conjuction with the TRI-STATE ${\rm ID_0}$ IF bit to set a synchronous or an asynchronous powerdown mode.

Control Bit	Register Location	Description	Fund	ction
			0	1
PWDN IF	IF N[21]	IF Powerdown	IF PLL Active	IF PLL Powerdown

2.6 RF R REGISTER

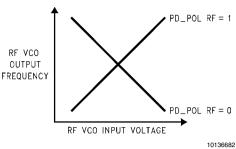
The RF R register contains the RF R_CNTR, PD_POL RF, ID_o RF, and TPI-STATE ID_o RF control words, in addition to two bits that compose the F_o LD control word. The detailed descriptions and programming information for each control word is discussed in the following sections.

Reg	Most	Signific	ant Bi	t					SHI	FT RE	GIS	TER E	BIT LO	CAT	ION				Leas	t Sigr	nifica	nt Bit
	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		Data Field									lress eld											
RF R	F _o LD1	F _o LD3	TRI- STATE ID _o RF	ID _o RF	PD_ POL RF						F	RF R_	CNTR	[14:0)]						1	0

2.6.1 RF R_CNTR[14:0] RF Synthesizer Programmable Reference Divider (R Counter) RF R[2:16]

The RF reference divider (RF R_CNTR) can be programmed to support divide ratios from 3 to 32767. Divide ratios less than 3 are prohibited.

Divide Ratio		RF R_CNTR[14:0]													
	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
3	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1
4	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
•	•			•		•			•		•	•	•		•
32767	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1


2.6.2 PD_POL RF RF Synthesizer Phase Detector Polarity

RF R[17]

The PD_POL RF bit is used to control the RF synthesizer's phase detector polarity based on the VCO tuning characteristics.

Control Bit	Register Location	Description	Fund	ction
			0	1
PD_POL RF	RF R[17]	RF Phase Detector	RF VCO Negative Tuning	RF VCO Positive Tuning
		Polarity	Characteristics	Characteristics

RF VCO Characteristics

2.6.3 ID RF RF Synthesizer Charge Pump Current Gain

RF R[18]

The ID RF bit controls the RF synthesizer's charge pump gain. Two current levels are available.

Control Bit	Register Location	Description		Fund	ction
				0	1
ID _o RF	RF R[18]	RF Charge Pump Current		LOW	HIGH
		Gain	0	.95 mA	3.80 mA

2.6.4 TRI-STATE ID RF RF Synthesizer Charge Pump TRI-STATE Current

RF R[19]

The TRI-STATE ID_o RF bit allows the charge pump to be switched between a normal operating mode and a high impedance output state. This happens asynchronously with the change in the TRI-STATE ID_o RF bit.

Furthermore, the TRI-STATE ID_o RF bit operates in conjuction with the PWDN RF bit to set a synchronous or an asynchronous powerdown mode.

Control Bit	Register Location	Description	Fund	ction
			0	1
TRI-STATE ID _o RF	RF R[19]	RF Charge Pump TRI-	RF Charge Pump Normal	RF Charge Pump Output
		STATE Current	Operation	in High Impedance State

2.7 RF N REGISTER

The RF N register contains the RF N_CNTRA, RF N_CNTRB, PRE RF, and PWDN RF control words. The RF N_CNTRA and RF N_CNTRB control words are used to setup the programmable feedback divider. The detailed description and programming information for each control word is discussed in the following sections.

Reg	Most S	Signif	icant	Bit		7			SH	IFT R	EGIS	TER E	IT LO	CATI	ON				Leas	t Sigr	nifica	nt Bit
	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Data Field									lress eld												
RF N	PWDN RF	PRE RF				RF	N_CN	TRB[1	10:0]							RF N_	CNT	RA[6:0)]		1	1

2.7.1 RF N_CNTRA[6:0] RF Synthesizer Swallow Counter (A Counter)

RF N[2:8]

The RF N_CNTRA control word is used to setup the RF synthesizer's A counter. The A counter is a 7-bit swallow counter used in the programmable feedback divider. The RF N_CNTRA control word can be programmed to values ranging from 0 to 127.

Divide Ratio		RF N_CNTRA[6:0]										
	6	5 4 3 2 1 0										
0	0	0	0	0	0	0	0					
1	0	0	0	0	0	0	1					
•	•	•	•	•	•	•	•					
127	1	1	1	1	1	1	1					

2.7.2 RF N_CNTRB[10:0] RF Synthesizer Programmable Binary Counter (B Counter) RF N[9:19]

The RF N_CNTRB control word is used to setup the RF synthesizer's B counter. The B counter is an 11-bit programmable binary counter used in the programmable feedback divider. The RF N_CNTRB control word can be programmed to values ranging from 3 to 2047.

Divide		RF N_CNTRB[10:0]										
Ratio	10	9	8	7	6	5	4	3	2	1	0	
3	0	0	0	0	0	0	0	0	0	1	1	
4	0	0	0	0	0	0	0	0	1	0	0	
•	•	•	•	•	•	•	•	•	•	•	•	
2047	1	1	1	1	1	1	1	1	1	1	1	

2.7.3 PRE RF

RF Synthesizer Prescaler Select

RF N[20]

The RF synthesizer utilizes a selectable dual modulus prescaler.

LMX2330U RF Synthesizer Prescaler Select

Control Bit	Register Location	Description	Fun	ction
			0	1
PRE RF	RF N[20]	RF Prescaler Select	32/33 Prescaler Selected	64/65 Prescaler Selected

LMX2331U and LMX2332U RF Synthesizer Prescaler Select

Control Bit	Register Location	Description		Fund	ction
				0	1
PRE RF	RF N[20]	RF Prescaler Select	64/6	65 Prescaler Selected	128/129 Prescaler Selected

2.7.4 PWDN RF RF SYNTHESIZER POWERDOWN

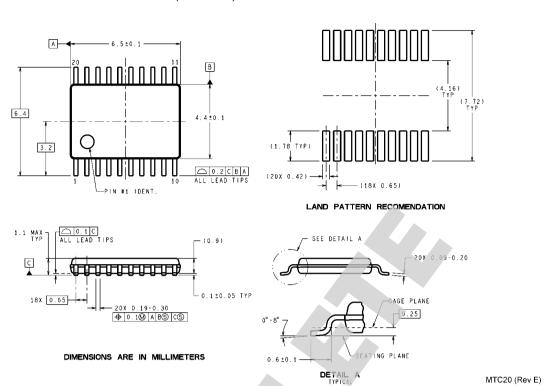
RF N[21]

The PWDN RF bit is used to switch the RF PLL between a powered up and powered down mode.

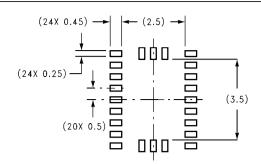
Furthermore, the PWDN RF bit operates in conjuction with the TRI-STATE ${\rm ID_o}$ RF bit to set a synchronous or an asynchronous powerdown mode.

Control Bit	Register Location	Description	Function	
			0	1
PWDN RF	RF N[21]	RF Powerdown	RF PLL Active	RF PLL Powerdown

2.8 F_oLD[3:0]

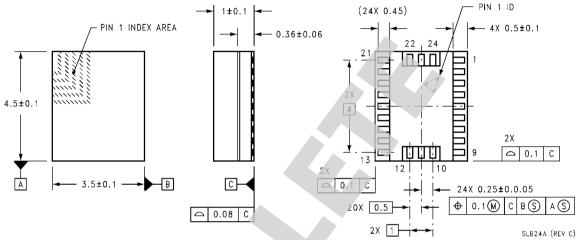

MULTI-FUNCTION OUTPUT SELECT

[RF R[20], IF R[20], RF R [21], IF R[21]]

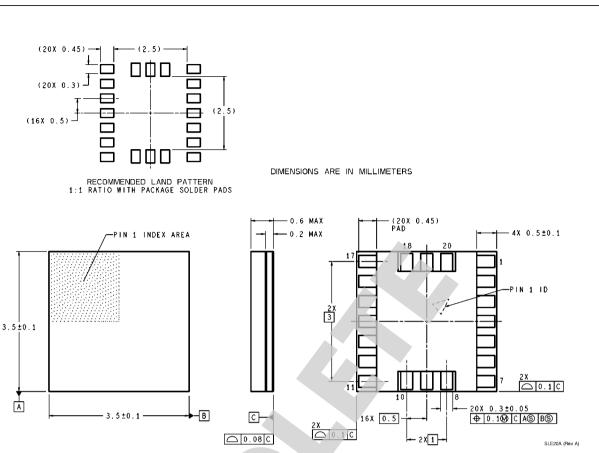

The F_oLD control word is used to select which signal is routed to the F_oLD pin.

F _o LD3	F _o LD2	F _o LD1	F _o LD0	F _o LD Output State	
0	0	0	0	LOW Logic State Output	
0	0	0	1	IF PLL R Divider Output, Push-Pull Output	
0	0	1	0	RF PLL R Divider Output, Push-Pull Output	
0	0	1	1	Open Drain Fastlock Output	
0	1	0	0	IF PLL Analog Lock Detect, Push-Pull Output	
0	1	0	1	IF PLL N Divider Output, Push-Pull Output	
0	1	1	0	RF PLL N Divider Output, Push-Pull Output	
0	1	1	1	Reset IF Counters, LOW Logic State Output	
1	0	0	0	RF Analog Lock Detect, Push-Pull Output	
1	0	0	1	IF PLL R Divider Output, Push-Pull Output	
1	0	1	0	RF PLL R Divider Output, Push-Pull Output	
1	0	1	1	Reset RF Counters, LOW Logic State Output	
1	1	0	0	RF and IF Analog Lock Detect, Push-Pull Output	
1	1	0	1	IF PLL N Divider Output, Push-Pull Output	
1	1	1	0	RF PLL N Divider Output, Push-Pull Output	
1	1	1	1	Reset All Counters, LOW Logic State Output	

Physical Dimensions inches (millimeters) unless otherwise noted

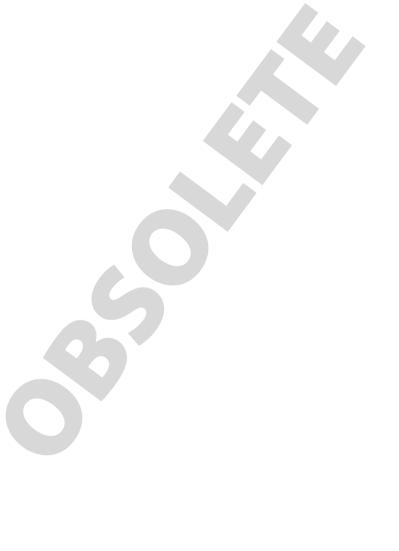


20-Pin Thin Shrink Small Outline Package (TM)
NS Package Number MTC20



DIMENSIONS ARE IN MILLIMETERS

RECOMMENDED LAND PATTERN 1:1 RATIO WITH PACKAGE SOLDER PADS



24-Pin Chip Scale Package (SLB) NS Package Number SLB24A

20-Pin Ultra Thin Chip Scale Package (SLE) NS Package Number SLE20A

Notes

For more National Semiconductor product information and proven design tools, visit the following Web sites at: www national com

Pr	oducts	Design Support		
Amplifiers	www.national.com/amplifiers	WEBENCH® Tools	www.national.com/webench	
Audio	www.national.com/audio	App Notes	www.national.com/appnotes	
Clock and Timing	www.national.com/timing	Reference Designs	www.national.com/refdesigns	
Data Converters	www.national.com/adc	Samples	www.national.com/samples	
Interface	www.national.com/interface	Eval Boards	www.national.com/evalboards	
LVDS	www.national.com/lvds	Packaging	www.national.com/packaging	
Power Management	www.national.com/power	Green Compliance	www.national.com/quality/green	
Switching Regulators	www.national.com/switchers	Distributors	www.national.com/contacts	
LDOs	www.national.com/ldo	Quality and Reliability	www.national.com/quality	
LED Lighting	www.national.com/led	Feedback/Support	www.national.com/feedback	
Voltage References	www.national.com/vref	Design Made Easy	www.national.com/easy	
PowerWise® Solutions	www.national.com/powerwise	Applications & Markets	www.national.com/solutions	
Serial Digital Interface (SDI) www.national.com/sdi		Mil/Aero	www.national.com/milaero	
Temperature Sensors www.national.com/tempsensors		SolarMagic™	www.national.com/solarmagic	
PLL/VCO	www.national.com/wireless	PowerWise® Design University	www.national.com/training	

THE CONTENTS OF THIS DOCUMENT ARE PROVIDED IN CONNECTION WITH NATIONAL SEMICONDUCTOR CORPORATION ("NATIONAL") PRODUCTS. NATIONAL MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS PUBLICATION AND RESERVES THE RIGHT TO MAKE CHANGES TO SPECIFICATIONS AND PRODUCT DESCRIPTIONS AT ANY TIME WITHOUT NOTICE. NO LICENSE, WHETHER EXPRESS, IMPLIED, ARISING BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS

TESTING AND OTHER QUALITY CONTROLS ARE USED TO THE EXTENT NATIONAL DEEMS NECESSARY TO SUPPORT NATIONAL'S PRODUCT WARRANTY. EXCEPT WHERE MANDATED BY GOVERNMENT REQUIREMENTS, TESTING OF ALL PARAMETERS OF EACH PRODUCT IS NOT NECESSARILY PERFORMED. NATIONAL ASSUMES NO LIABILITY FOR APPLICATIONS ASSISTANCE OR BUYER PRODUCT DESIGN. BUYERS ARE RESPONSIBLE FOR THEIR PRODUCTS AND APPLICATIONS USING NATIONAL COMPONENTS. PRIOR TO USING OR DISTRIBUTING ANY PRODUCTS THAT INCLUDE NATIONAL COMPONENTS, BUYERS SHOULD PROVIDE ADEQUATE DESIGN, TESTING AND OPERATING SAFEGUARDS.

EXCEPT AS PROVIDED IN NATIONAL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS. NATIONAL ASSUMES NO LIABILITY WHATSOEVER, AND NATIONAL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY RELATING TO THE SALE AND/OR USE OF NATIONAL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF THE CHIEF EXECUTIVE OFFICER AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b) support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in a significant injury to the user. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness.

National Semiconductor and the National Semiconductor logo are registered trademarks of National Semiconductor Corporation. All other brand or product names may be trademarks or registered trademarks of their respective holders.

Copyright© 2011 National Semiconductor Corporation

For the most current product information visit us at www.national.com

National Semiconductor **Americas Technical** Support Center Email: support@nsc.com ww.national.com Tel: 1-800-272-9959

National Semiconductor Europe Technical Support Center Email: europe.support@nsc.com

National Semiconductor Asia Pacific Technical Support Center Email: ap.support@nsc.com

National Semiconductor Japan **Technical Support Center** Email: ipn.feedback@nsc.com

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Applications

Audio www.ti.com/audio Communications and Telecom www.ti.com/communications **Amplifiers** amplifier.ti.com Computers and Peripherals www.ti.com/computers dataconverter.ti.com Consumer Electronics www.ti.com/consumer-apps **Data Converters DLP® Products** www.dlp.com **Energy and Lighting** www.ti.com/energy DSP dsp.ti.com Industrial www.ti.com/industrial Clocks and Timers www.ti.com/clocks Medical www.ti.com/medical Interface interface.ti.com Security www.ti.com/security

Logic Space, Avionics and Defense <u>www.ti.com/space-avionics-defense</u>

Power Mgmt power.ti.com Transportation and Automotive www.ti.com/automotive
Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID <u>www.ti-rfid.com</u>
OMAP Mobile Processors www.ti.com/omap

Wireless Connectivity <u>www.ti.com/wirelessconnectivity</u>

TI E2E Community Home Page <u>e2e.ti.com</u>

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2011, Texas Instruments Incorporated