SRAM ## **512K x 8 SRAM** 3.3V OPERATION WITH OUTPUT ENABLE, REVOLUTIONARY PINOUT ### **FEATURES** **OPTIONS** - All I/O pins are 5V tolerant - High speed: 12, 15, 20, 25 and 35ns - High-performance, low-power, CMOS double-metal process - Multiple center power and ground pins for improved noise immunity MARKING - Single +3.3V ±0.3V power supply - Easy memory expansion with CE and OE options - All inputs and outputs are TTL-compatible - Fast OE access time: 6, 8, 10, 12 and 15ns - Complies to JEDEC low-voltage TTL standards #### Timing 12ns access -12 15ns access -15 20ns access -2025ns access -25 35ns access -35 Packages Plastic SOJ (400 mil) DΪ Plastic TSOP (400 mil) TG 2V data retention L Low power Р Temperature Commercial (0°C to +70°C) None Industrial (-40°C to +85°C) IT Automotive (-40°C to +125°C) AT Extended (-55°C to +125°C) XT • Part number example: MT5LC512K8D4DI-20 P NOTE: Not all combinations of operating temperature, speed, data retention and low power are necessarily available. Please contact the factory for availability of specific part number combinations. ### GENERAL DESCRIPTION The MT5LC512K8D4 is organized as a 524,288 x 8 SRAM using a four-transistor memory cell with a high-speed, low-power CMOS process. Micron 4 Meg SRAMs are fabricated using double-layer metal, triple-layer polysilicon technology. For flexibility in high-speed memory applications, Micron offers chip enable (\overline{OE}) and output enable (\overline{OE}) capability. These enhancements can place the outputs in High-Z for additional flexibility in system design. | | n SOJ
0-6) | 36-Pin TSOP (SE-2) | | | | |--------|----------------------|---------------------------|----|--|--| | A0 [1 | 36 | A0 [1 | 36 | | | Writing to these devices is accomplished when write enable (\overline{WE}) and \overline{CE} inputs are both LOW. Reading is accomplished when \overline{WE} remains HIGH and \overline{CE} goes LOW. The device offers a reduced power standby mode when disabled. This allows system designers to meet low standby power requirements. The "P" version also provides a 90 percent reduction in TTL standby current (ISBI) through the use of gated inputs, which also facilitate the design of battery-backed systems. That is, the gated inputs simplify the design effort and circuitry required to protect against inadvertent battery current drain during power-down, when inputs may be at undefined levels. All devices operate from a single +3.3V power supply and all inputs and outputs are fully TTL-compatible and 5V tolerant. These low-voltage parts are ideal for mixed 3.3V and 5V systems. ### **FUNCTIONAL BLOCK DIAGRAM** ### **TRUTH TABLE** | MODE | ŌĒ | CE | WE | DQ | POWER | |--------------|----|----|----|--------|---------| | STANDBY | Χ | Н | Х | HIGH-Z | STANDBY | | READ | L | L | H | Q | ACTIVE | | NOT SELECTED | Н | L | Н | HIGH-Z | ACTIVE | | WRITE | Х | L | L | D | ACTIVE | ### THERMAL IMPEDENCE (EST)16 | PACKAGE | NUMBER
OF PINS | JL | | θ _{JA} *
(°C/W) | |---------|-------------------|-----|----|-----------------------------| | SOJ | 36 | 1.0 | 15 | 55 | | TSOP | 36 | 1.0 | 5 | 65 | ^{*}The thermal impedence numbers assume the device is socketted on a PC board and air flow is zero. # MT5LC512K8D4 REVOLUTIONARY PINOUT 512K x 8 SRAM ### **ABSOLUTE MAXIMUM RATINGS*** *Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability. **Maximum junction temperature depends upon package type, cycle time, loading, ambient temperature and airflow. See technical note TN-05-14 for more information. ### **ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS** $(0^{\circ}C \le T_A \le 70^{\circ}C; Vcc = 3.3V \pm 0.3V)$ | DESCRIPTION | CONDITIONS | SYMBOL | MIN | MAX | UNITS | NOTES | |------------------------------|---------------------------------------|--------|------|-----|-------|-------| | Input High (Logic 1) Voltage | - | ViH | 2.2 | 5.5 | V | 1, 2 | | Input Low (Logic 0) Voltage | | VIL | -0.5 | 0.8 | V | 1, 2 | | Input Leakage Current | 0V ≤ VIN ≤ VCC | ILı | -1 | 1 | μА | | | Output Leakage Current | Output(s) disabled
0V ≤ Vo∪t ≤ Vcc | ILo | -1 | 1 | μА | | | Output High Voltage | Iон = -4.0mA | Vон | 2.4 | | V | 1 | | Output Low Voltage | IoL = 8.0mA | Vol | | 0.4 | V | 1 | | Supply Voltage | | Vcc | 3.0 | 3.6 | V | 1 | | | | | | | | MAX | | | | | |--|--|--------|-----|-----|-----|-----|-----|-----|-------|-------| | DESCRIPTION | CONDITIONS | SYMBOL | VER | -12 | -15 | -20 | -25 | -35 | UNITS | NOTES | | Power Supply
Current: Operating | CE ≤ VIL; Vcc = MAX
outputs open
f = MAX = 1/¹RC | lcc | | 185 | 165 | 160 | 155 | 145 | mA | 3 | | Power Supply
Current: Standby | outputs open I _{SB1} | lan. | STD | 35 | 30 | 25 | 25 | 20 | mA | | | Ourient. Standby | | Р | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | mA | | | | | CE ≥ Vcc - 0.2V;
Vcc = MAX | ISB2 | STD | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | mA | | | $V_{IN} \ge V_{CC} - 0.2V$ or $V_{IN} \le V_{SS} + 0.2V$; f = 0 | | Р | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | mA | | | ### **CAPACITANCE** | DESCRIPTION | CONDITIONS | SYMBOL | MAX | UNITS | NOTES | |--------------------|--|--------|-----|-------|-------| | Input Capacitance | $T_A = 25^{\circ}C; f = 1 \text{ MHz}$ | Cı | 5 | pF | 4 | | Output Capacitance | Vcc = 3.3V | Co | 7 | pF | 4 | # MT5LC512K8D4 REVOLUTIONARY PINOUT 512K x 8 SRAM ### **ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS** (Notes 5, 13) $(0^{\circ}C \le T_A \le 70^{\circ}C; Vcc = 3.3V \pm 0.3V)$ | DESCRIPTION | | -12 -15 | | 15 | -2 | 20 | -2 | 25 | -3 | 35 | | | | |------------------------------------|-------------------|---------|----------|-----|-----|-----|-----|-----|-----|-----|-----|-------|-------| | DESCRIPTION | SYM | MIN | MAX | UNITS | NOTES | | READ Cycle | | | | | | | | | | | | | | | READ cycle time | ^t RC | 12 | | 15 | | 20 | | 25 | | 35 | | ns | | | Address access time | t _{AA} | | 12 | | 15 | | 20 | | 25 | | 35 | ns | | | Chip Enable access time | 1ACE | | 12 | | 15 | | 20 | | 25 | | 35 | ns | | | Output hold from address change | tOH | 3 | | 3 | | 3 | | 3 | | 3 | | ns | | | Chip Enable to output in Low-Z | †LZCE | 3 | | 3 | | 5 | | 5 | | 5 | | ns | 7 | | Chip disable to output in High-Z | ^t HZCE | | 6 | | 7 | | 8 | | 10 | | 15 | ns | 6, 7 | | Chip Enable to power-up time | ¹PU | 0 | | 0 | | 0 | | 0 | | 0 | | ns | | | Chip disable to power-down time | ^t PD | | 12 | | 15 | | 20 | | 25 | | 35 | ns | | | Output Enable access time | ^t AOE | | 6 | | 8 | | 10 | | 12 | | 15 | ns | | | Output Enable to output in Low-Z | ¹ LZOE | 0 | | 0 | | 0 | | 0 | | 0 | | ns | | | Output disable to output in High-Z | tHZOE | | 5 | | 6 | | 7 | | 10 | | 12 | ns | 6 | | WRITE Cycle | | | | | | | | | | • | | | | | WRITE cycle time | tWC | 12 | | 15 | | 20 | | 25 | | 35 | | ns | | | Chip Enable to end of write | tCW | 8 | | 10 | | 12 | | 15 | | 20 | | ns | | | Address valid to end of write | ^t AW | 8 | | 10 | | 12 | | 15 | | 20 | | ns | | | Address setup time | ^t AS | 0 | · - | 0 | | 0 | | 0 | | 0 | | ns | | | Address hold from end of write | ^t AH | 0 | | 0 | | 0 | | 0 | | 0 | | ns | | | WRITE pulse width | tWP1 | 8 | | 9 | | 12 | | 15 | | 20 | | ns | | | WRITE pulse width | tWP2 | 9 | | 11 | | 14 | | 17 | | 22 | | ns | | | Data setup time | tDS | 6 | | 7 | | 8 | | 10 | | 15 | | ns | | | Data hold time | ^t DH | 0 | | 0 | | 0 | | 0 | | 0 | | ns | | | Write disable to output in Low-Z | ¹LZWE | 3 | <u> </u> | 3 | | 5 | | 5 | | 5 | | ns | 7 | | Write Enable to output in High-Z | ¹HZWE | | 5 | | 6 | | 8 | | 10 | | 15 | ns | 6, 7 | ### MT5LC512K8D4 REVOLUTIONARY PINOUT 512K x 8 SRAM ### **AC TEST CONDITIONS** | Input pulse levels | Vss to 3.0V | |-------------------------------|---------------------| | Input rise and fall times | 3ns | | Input timing reference levels | 1.5V | | Output reference levels | 1.5V | | Output load | See Figures 1 and 2 | Fig. 1 OUTPUT LOAD EQUIVALENT Fig. 2 OUTPUT LOAD EQUIVALENT ### **NOTES** - 1. All voltages referenced to Vss (GND). - Overshoot: ViH ≤ +6.0V for t ≤ ¹RC/2 Undershoot: ViL ≥ -2.0V for t ≤ ¹RC/2 Power-up: ViH ≤ +6.0V and Vcc ≤ 3.1V for t ≤ 200msec. - 3. Icc is dependent on output loading and cycle rates. - 4. This parameter is sampled. - 5. Test conditions as specified with the output loading as shown in Fig. 1 unless otherwise noted. - tHZCE, tHZOE and tHZWE are specified with CL = 5pF as in Fig. 2. Transition is measured ±200mV from steady state voltage. - At any given temperature and voltage condition, [†]HZCE is less than [†]LZCE and [†]HZWE is less than [†]LZWE. - 8. $\overline{\text{WE}}$ is HIGH for READ cycle. - 9. Device is continuously selected. All chip enables and output enables are held in their active state. - 10. Address valid prior to, or coincident with, latest occurring chip enable. - 11. tRC = Read Cycle Time. - 12. Chip enable and write enable can initiate and terminate a WRITE cycle. - Contact Micron for IT/AT/XT timing and current specifications; they may differ from the commercial temperature range specifications shown in this data sheet. - 14. Output enable (\overline{OE}) is inactive (HIGH). - 15. Output enable (\overline{OE}) is active (LOW). - 16. Micron does not warrant functionality nor reliability of any product in which the junction temperature exceeds 150°C. Care should be taken to limit power to acceptable levels. ### DATA RETENTION ELECTRICAL CHARACTERISTICS (L and LP versions only) | DESCRIPTION | CONDITIONS | SYMBOL | MIN | MAX | UNITS | NOTES | |---|--|------------------|-----|-----|-------|-------| | Vcc for Retention Data | | VDR | 2 | | V | | | Data Retention Current
L version | $\overline{CE} \ge (Vcc - 0.2V)$ $Vin \ge (Vcc - 0.2V)$ $or \le 0.2V$ $Vcc = 2V$ | ICCDR | - | 700 | μА | | | Data Retention Current
LP version | CE ≥ (Vcc -0.2V)
Vcc = 2V | ICCDR | | 700 | μА | | | Chip Deselect to Data
Retention Time | | [†] CDR | 0 | | ns | 4 | | Operation Recovery Time | | ^t R | tRC | | ns | 4, 11 | ### LOW Vcc DATA RETENTION WAVEFORM ### READ CYCLE NO. 18.9 ### READ CYCLE NO. 27,8,10 # MT5LC512K8D4 REVOLUTIONARY PINOUT 512K x 8 SRAM ## WRITE CYCLE NO. 1 12 (Chip Enable Controlled) ## WRITE CYCLE NO. 2 12, 14 (Write Enable Controlled) ## MICRON # MT5LC512K8D4 REVOLUTIONARY PINOUT 512K x 8 SRAM ## WRITE CYCLE NO. 3 7, 12, 15 (Write Enable Controlled)