FEATURES

2 pF off capacitance
1 pC charge injection
33 V supply range
120Ω on resistance
Fully specified at $\pm 15 \mathrm{~V} / 12 \mathrm{~V}$
3 V logic compatible inputs
Rail-to-rail operation
Break-before-make switching action
16-lead TSSOP and $4 \mathrm{~mm} \times 4 \mathrm{~mm}$ LFCSP packages
Typical power consumption ($<0.03 \mu \mathrm{~W}$)

APPLICATIONS

Audio and video routing
Automatic test equipment
Data acquisition systems
Battery-powered systems
Sample-and-hold systems
Communication systems

GENERAL DESCRIPTION

The ADG1208 and ADG1209 are monolithic iCMOS analog multiplexers comprising eight single channels and four differential channels, respectively. The ADG1208 switches one of eight inputs to a common output as determined by the 3-bit binary address lines A0, A1, and A2. The ADG1209 switches one of four differential inputs to a common differential output as determined by the 2-bit binary address lines A0 and A1. An EN input on both devices is used to enable or disable the device. When disabled, all channels are switched OFF.

The i CMOS (industrial-CMOS) modular manufacturing process combines high-voltage CMOS (complementary metaloxide semiconductor) and bipolar technologies. It enables the development of a wide range of high performance analog ICs capable of $33-\mathrm{V}$ operation in a footprint that no other generation of high-voltage parts has been able to achieve. Unlike analog ICs using conventional CMOS processes, iCMOS components can tolerate high supply voltages, while providing increased performance, dramatically lower power consumption, and reduced package size.

FUNCTIONAL BLOCK DIAGRAMS

Figure 1.

The ultralow capacitance and charge injection of these multiplexers make them ideal solutions for data acquisition and sample-and-hold applications, where low glitch and fast settling are required. Fast switching speed coupled with high signal bandwidth make the parts suitable for video signal switching. iCMOS construction ensures ultralow power dissipation, making the parts ideally suited for portable and battery powered instruments.

PRODUCT HIGHLIGHTS

1. 2 pF off capacitance ($\pm 15 \mathrm{~V}$ supply).
2. 1 pC charge injection.
3. 3 V logic compatible digital input $\mathrm{V}_{\mathrm{IH}}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}$.
4. \quad 16-lead TSSOP and $4 \mathrm{~mm} \times 4 \mathrm{~mm}$ LFCSP package.

TABLE OF CONTENTS

Specifications.
REVISION HISTORY

 3Dual Supply 3
Single Supply 4
Dual Supply

\qquad
Error! Bookmark not defined.
7
Absolute Maximum Ratings
ESD Caution 7
Pin Configurations-TSSOP 8
Terminology 9
Typical Performance CharacteristicS. 10
Test Circuits 12
Outline Dimensions 14
Ordering Guide 14

SPECIFICATIONS

DUAL SUPPLY ${ }^{1}$

$\mathrm{V}_{\mathrm{DD}}=+15 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=-15 \mathrm{~V} \pm 10 \%$, GND $=0 \mathrm{~V}$, unless otherwise noted.
Table 1.

Parameter	$+25^{\circ} \mathrm{C}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	Unit	Test Conditions/Comments
C_{5} (OFF)	1.5		pF typ	
C_{D} (OFF)				
ADG1208	11		pF typ	
ADG1209	6		pF typ	
$\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{5}(\mathrm{ON})$				
ADG1208	15		pF typ	
ADG1209	8		pF typ	
POWER REQUIREMENTS				$\mathrm{V}_{\mathrm{DD}}=+16.5 \mathrm{~V}, \mathrm{~V}_{S S}=-16.5 \mathrm{~V}$
IDD	0.001		$\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max	Digital inputs $=0 \mathrm{~V}$ or V_{DD}
		5		
ldo	150		μA typ $\mu \mathrm{A}$ max	Digital inputs $=5 \mathrm{~V}$
		300		
Iss	0.001		$\mu \mathrm{A}$ typ	Digital inputs $=0 \mathrm{~V}$ or V_{DD}
		5	$\mu \mathrm{A}$ max	
Ignd	0.001		$\mu \mathrm{A}$ typ	Digital inputs $=0 \mathrm{~V}$ or V_{DD}
		5	$\mu \mathrm{A}$ max	
IGnd	150		$\mu \mathrm{A}$ typ	Digital inputs $=5 \mathrm{~V}$
		300	$\mu \mathrm{A}$ max	

${ }^{1}$ Temperature ranges are as follows: B Version: $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
${ }^{2}$ Guaranteed by design, not subject to production test.

SINGLE SUPPLY ${ }^{1}$

$\mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V} \mathrm{~V} \pm 10 \%$, V SS $=0 \mathrm{~V}$, GND $=0 \mathrm{~V}$, unless otherwise noted.
Table 2.

Parameter	$+25^{\circ} \mathrm{C}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	Unit	Test Conditions/Comments
ANALOG SWITCH Analog Signal Range Ron Ron Flatness Δ Ron	$\begin{aligned} & 300 \\ & 150 \\ & 5 \end{aligned}$	0 to VDD	V Ω typ Ω max Ω typ Ω max Ω typ Ω max	$\begin{aligned} & \mathrm{V}_{\mathrm{D}}=3 \mathrm{~V}, 10 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-1 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{D}}=3 \mathrm{~V}, 10 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-1 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{D}}=3 \mathrm{~V}, 10 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-1 \mathrm{~mA} \end{aligned}$
LEAKAGE CURRENTS Source OFF Leakage Is (OFF) Drain OFF Leakage I_{D} (OFF) ADG1208 ADG1209 Channel ON Leakage $I_{D}, I_{S}(O N)$ ADG1208 ADG1209	$\begin{aligned} & \pm 0.01 \\ & \pm 0.5 \\ & \pm 1 \\ & \pm 1 \\ & \\ & \pm 1 \\ & \pm 1 \end{aligned}$	± 5 ± 10 ± 5 $\begin{aligned} & \pm 10 \\ & \pm 5 \end{aligned}$	nA typ nA max	$V_{D}= \pm 10 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=-10 \mathrm{~V} ;$ Test Circuit 2 ± 0.5 $V_{D}= \pm 10 \mathrm{~V} ; \mathrm{V}_{\mathrm{S}}= \pm 10 \mathrm{~V} ;$ Test Circuit 3 $\mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}=8 \mathrm{~V} / 0 \mathrm{~V} ;$ Test Circuit 4
DIGITAL INPUTS Input High Voltage, $\mathrm{V}_{\mathrm{INH}}$ Input Low Voltage, VINL Input Current		$\begin{aligned} & 2.0 \\ & 0.8 \end{aligned}$	$\begin{aligned} & V_{\text {min }} \\ & V_{\text {max }} \end{aligned}$	

Preliminary Technical Data
 ADG1208/ADG1209

Parameter	$+25^{\circ} \mathrm{C}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	Unit	Test Conditions/Comments
linL or linh CIN, Digital Input Capacitance	8	± 10	$\mu \mathrm{A}$ max pF typ	$\begin{aligned} & V_{\text {IN }}=0 \text { or } V_{D D} \\ & f=1 \mathrm{MHz} \end{aligned}$
DYNAMIC CHARACTERISTICS ${ }^{2}$ $t_{\text {transition }}$	130		ns typ	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} ; \\ & \mathrm{V}_{\mathrm{S} 1}=8 \mathrm{~V} / 0 \mathrm{~V}, \mathrm{~V}_{\mathrm{S} 8}=0 \mathrm{~V} / 8 \mathrm{~V} ; \\ & \text { Test Circuit } 5 \end{aligned}$
Тввм ton (EN)	10 140	1	ns typ ns min ns typ	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} ; \\ & \mathrm{V}_{\mathrm{S}}=5 \mathrm{~V} ; \text { Test Circuit } 6 \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} ; \\ & \mathrm{V}_{\mathrm{S}}=5 \mathrm{~V} \text {; Test Circuit } 7 \end{aligned}$

ADG1208/ADG1209

[^0]${ }^{2}$ Guaranteed by design, not subject to production test.

ABSOLUTE MAXIMUM RATINGS

Absolute maximum ratings $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.
Table 3.

Parameter	Rating
$\mathrm{V}_{\text {DD }}$ to $\mathrm{V}_{\text {SS }}$	36 V
Vod to GND	-0.3 V to +25 V
Vss to GND	+0.3 V to -25V
Analog, Digital Inputs ${ }^{1}$	$V_{S S}-0.3 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$ or 20 mA , whichever occurs first
Continuous Current, S or D	30 mA
Peak Current, S or D (Pulsed at 1 ms , 10\% Duty Cycle max)	100 mA
Operating Temperature Range	
Industrial (B Version)	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Automotive (Y Version)	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature	$150^{\circ} \mathrm{C}$
TSSOP Package, Power Dissipation	450 mW
θ_{JA}, Thermal Impedance	$150.4{ }^{\circ} \mathrm{C} / \mathrm{W}$
θ_{cc}, Thermal Impedance	$50^{\circ} \mathrm{C} / \mathrm{W}$
LFCSP, Package, Power Dissipation	450 mW
Lead Temperature, Soldering	
Vapor Phase (60 sec)	$215^{\circ} \mathrm{C}$
Infrared (15 sec)	$220^{\circ} \mathrm{C}$

${ }^{1}$ Overvoltages at A, EN, S, or D are clamped by internal diodes. Current should be limited to the maximum ratings given

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Only one absolute maximum rating may be applied at any one time.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

PIN CONFIGURATIONS

Figure 2. Pin Configurations-TSSOP

Table 5. ADG1209 Truth Table

AI	AO	EN	ON SWITCH PAIR
X	X	0	NONE
0	0	1	1
0	1	1	2
1	0	1	3
1	1	1	4

Figure 3. Pin Configurations $-4 m m \times 4 m m$ LFCSP

TERMINOLOGY

Table 6.

Mnemonic	Description
$V_{\text {DD }}$	Most positive power supply potential.
$V_{\text {ss }}$	Most negative power supply potential in dual supplies. In single supply applications, it may be connected to ground.
GND	Ground (0 V) reference.
Ron	Ohmic resistance between D and S.
\triangle Ron	Difference between the Ron of any two channels.
Is (OFF)	Source leakage current when the switch is off.
ld (OFF)	Drain leakage current when the switch is off.
$\mathrm{ld}, \mathrm{ls}(\mathrm{ON})$	Channel leakage current when the switch is on.
V_{D} (vs)	Analog voltage on terminals D, S.
C_{s} (OFF)	Channel input capacitance for OFF condition.
$C_{\text {d }}$ (OFF)	Channel output capacitance for OFF condition.
$\mathrm{Cd}_{\mathrm{d}} \mathrm{C}_{\mathrm{s}}(\mathrm{ON})$	ON switch capacitance.
Cl_{N}	Digital input capacitance.
ton (EN)	Delay time between the 50% and 90% points of the digital input and switch ON condition.
toff (EN)	Delay time between the 50% and 90% points of the digital input and switch OFF condition.
$\mathrm{t}_{\text {transition }}$	Delay time between the 50% and 90% points of the digital inputs and the switch ON condition when switching from one address state to another.
topen	OFF time measured between the 80% point of both switches when switching from one address state to another.
Vint	Maximum input voltage for Logic 0 .
$\mathrm{V}_{\text {INH }}$	Minimum input voltage for Logic 1.
IINL (IINH)	Input current of the digital input.
ldo	Positive supply current.
Iss	Negative supply current.
Off Isolation	A measure of unwanted signal coupling through an OFF channel.
Charge Injection	A measure of the glitch impulse transferred from the digital input to the analog output during switching.
Bandwidth	The frequency at which the output is attenuated by 3 dBs .
On Response	The frequency response of the "ON" switch.
THD + N	The ratio of the harmonic amplitude plus noise of the signal to the fundamental.

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 4. On Resistance as a Function of VD(VS) for Single Supply

Figure 5. On Resistance as a Function of VD(VS) for Dual Supply

Figure 6. On Resistance as a Function of VD(VS) for Different Temperatures, Single Supply

Figure 7. On Resistance as a Function of VD(VS) for Different Temperatures, Single Supply

Figure 8. On Resistance as a Function of VD(VS) for Different Temperatures, Dual Supply

Figure 9. Leakage Currents as a Function of $V_{D}\left(V_{S}\right)$

Figure 10. Leakage Currents as a function of Temperature

Figure 11. Supply Currents vs. Input Switching Frequency

Figure 12. Charge Injection vs. Source Voltage

Figure 13. TON/TOFF Times vs. Temperature)

Figure 14. Off Isolation vs. Frequency

Figure 15. Crosstalk vs. Frequency

Figure 16. On Response vs. Frequency

Figure 17. $T H D+N$ vs. Frequency

TEST CIRCUITS

Figure 18. Test Circuit 1. On Resistance

Figure 19. Test Circuit 2. I (OFF)

Figure 20. Test Circuit 3. ID (OFF)

Figure 21. Test Circuit 4. ID (ON)

Figure 22. Test Circuit 5. Switching Time of Multiplexer, $t_{\text {TRANSITION }}$

Figure 23. Test Circuit 6. Break-Before-Make Delay, topen

Preliminary Technical Data
 ADG1208/ADG1209

Figure 24. Test Circuit 7. Enable Delay, toN (EN), toff (EN)

Figure 25. Test Circuit 8. Charge Injection

OFF ISOLATION - 2OLOG $\mathrm{V}_{\text {OUT }} / V_{\text {IN }}$
Figure 26. Test Circuit 9. OFF Isolation

Figure 27. Test Circuit 10. Channel-to-Channel Crosstalk

OUTLINE DIMENSIONS

Figure 28. 16-Lead Thin Shrink Small Outline Package [TSSOP] (RU-16)

Figure 29. 16-Lead Lead Frame Chip Scale Package [LFCSP]
$4 \mathrm{~mm} \times 4 \mathrm{~mm}$ (CP-16)
Dimensions shown in inches and (millimeters)

Model	Temperature Range	Description	Package Option
ADG1208YRU	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Thin Shrink Small Outline Package (TSSOP)	RU-16
ADG1209YRU	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Thin Shrink Small Outline Package (TSSOP)	RU-16
ADG1209YCP	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Thin Shrink Small Outline Package (TSSOP)	CP-16
ADG1209YCP	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Thin Shrink Small Outline Package (TSSOP)	CP-16

Preliminary Technical Data \quad ADG1208/ADG1209

NOTES

NOTES

[^0]: ${ }^{1}$ Temperature ranges are as follows: B Version: $-40^{\circ} \mathrm{C}$ to $+125^{\circ}$.

