

RHRG7570, RHRG7580, RHRG7590, RHRG75100

January 2002

75A, 700V - 1000V Hyperfast Diode

Features

- Hyperfast with Soft Recovery
 Operating Temperature+175°C
- Avalanche Energy Rated
- Planar Construction

Applications

- Switching Power Supplies
- Power Switching Circuits
- General Purpose

Description

RHRG7570, RHRG7580, RHRG7590 and RHRG75100 (TA49068) are hyperfast diodes with soft recovery characteristics ($t_{\rm RR}$ < 85ns). They have half the recovery time of ultrafast diodes and are silicon nitride passivated ionimplanted epitaxial planar construction.

These devices are intended for use as freewheeling/clamping diodes and rectifiers in a variety of switching power supplies and other power switching applications. Their low stored charge and hyperfast soft recovery minimize ringing and electrical noise in many power switching circuits reducing power loss in the switching transistors.

These devices are supplied in the 2 lead JEDEC style TO-247 plastic package.

Due to space limitations, the brand on the RHRG75100 is abbreviated to HRG75100.

To order this part use the full part number, i.e. RHRG75100.

Package JEDEC STYLE TO-247 TOP VIEW ANODE CATHODE (BOTTOM SIDE METAL) CATHODE

Symbol

Absolute Maximum Ratings (T_C = +25°C), Unless Otherwise Specified

	RHRG7570	RHRG7580	RHRG7590	RHRG75100	UNITS	
Peak Repetitive Reverse VoltageV _{RRM}	700	800	900	1000	V	
Working Peak Reverse VoltageV _{RWM}	700	800	900	1000	V	
DC Blocking VoltageV _R	700	800	900	1000	V	
Average Rectified Forward Currentl _{F(AV)} $(T_C = +52^{\circ}C)$	75	75	75	75	Α	
Repetitive Peak Surge CurrentI _{FSM} (Square Wave, 20kHz)	150	150	150	150	Α	
Nonrepetitive Peak Surge Currentl _{FSM} (Halfwave, 1 phase, 60Hz)	750	750	750	750	Α	
Maximum Power DissipationP _D	190	190	190	190	W	
Avalanche Energy (L = 40mH) (See Figures 10 and 11)E _{AVL}	50	50	50	50	mj	
Operating and Storage Temperature T_{STG} , T_{J}	-65 to +175	-65 to +175	-65 to +175	-65 to +175	°C	

Specifications RHRG7570, RHRG7580, RHRG7590, RHRG75100

Electrical Specifications $T_C = +25^{\circ}C$, Unless Otherwise Specified

		RHRG7570		RHRG7580			RHRG7590			RHRG75100				
SYMBOL	TEST CONDITION	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
V _F	$I_F = 75A, T_C = +25^{\circ}C$	-	-	3.0	-	-	3.0	-	-	3.0	-	-	3.0	V
	$I_F = 75A, T_C = +150^{\circ}C$	-	-	2.5	-	-	2.5	-	-	2.5	-	-	2.5	V
I _R	$V_R = 700V, T_C = +25^{\circ}C$	-	-	50	-	-	-	-	-	-	-	-	-	μΑ
	$V_R = 800V, T_C = +25^{\circ}C$	-	-	-	-	-	50	-	-	-	-	-	-	μΑ
	$V_R = 900V, T_C = +25^{\circ}C$							-	-	50				μΑ
	$V_R = 1000V, T_C = +25^{\circ}C$	-	-	-	-	-	-	-	-	-	-	-	50	μΑ
I _R	$V_R = 700V, T_C = +150^{\circ}C$	-	-	2.0	-	-	-	-	-	-	-	-	-	mA
	$V_R = 800V, T_C = +150^{\circ}C$	-	-	-	-	-	2.0	-	-	-	-	-	-	mA
	$V_R = 900V, T_C = +150^{\circ}C$							-	-	2.0				mA
	V _R = 1000V, T _C = +150°C	-	-	-	-	-	-	-	-	-	-	-	2.0	mA
t _{RR}	$I_F = 1A$, $dI_F/dt = 100A/\mu s$	-	-	85	-	-	85	-	-	85	-	-	85	ns
	I _F = 75A, dI _F /dt = 100A/ μs	-	-	100	-	-	100	-	-	100	-	-	100	ns
t _A	$I_F = 75A$, $dI_F/dt = 100A/$ µs	-	55	-	-	55	-	-	55	-	-	55	-	ns
t _B	$I_F = 75A$, $dI_F/dt = 100A/$ µs	-	40	-	-	40	-	-	40	-	-	40	-	ns
Q _{RR}	$I_F = 75A$, $dI_F/dt = 100A/$ µs	-	240	-	-	240	-	-	240	-	-	240	-	nC
СЈ	$V_R = 10V, I_F = 0A$	-	220	-	-	220	-		220		-	220	-	pF
$R_{\theta JC}$		-	-	0.8	-	-	0.8			0.8	-	-	0.8	°C/W

DEFINITIONS

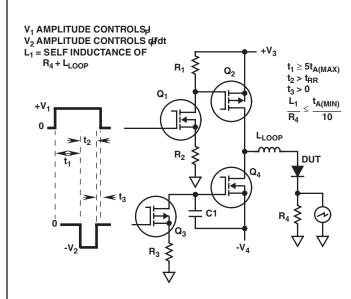
 V_F = Instantaneous Forward Voltage (pw = 300 μ s, D = 2%)

 I_R = Instantaneous Reverse Current

 t_{RR} = Reverse Recovery Time (Figure 2), Summation of t_{A} + t_{B}

 t_A = Time to Reach Peak Reverse Current (See Figure 2).

 t_B = Time from Peak I_{RM} to Projected Zero Crossing of I_{RM} Based on a Straight Line from Peak I_{RM} Through 25% of I_{RM} (See Figure 2)


Q_{RR} = Reverse Recovery Charge

C_J = Junction Capacitance

 $R_{\theta JC}$ = Thermal Resistance Junction to Case

pw = Pulse Width

D = Duty Cycle

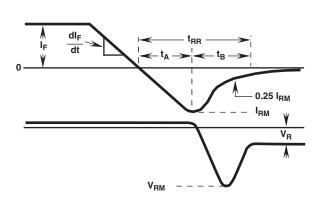
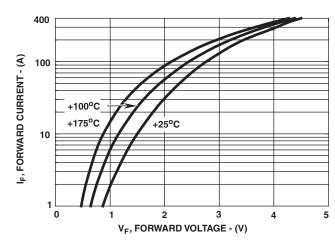



FIGURE 1. t_{RR} TEST CIRCUIT

FIGURE 2. t_{RR} WAVEFORMS AND DEFINITIONS

RHRG7570, RHRG7580, RHRG7590, RHRG75100

Typical Performance Curves

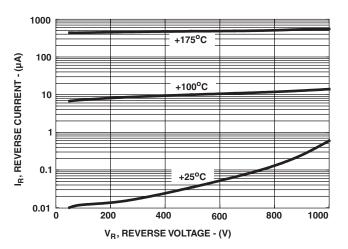
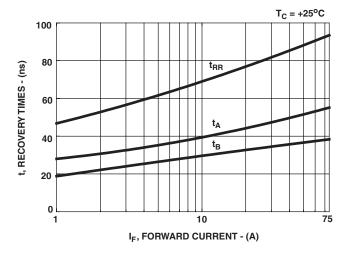



FIGURE 3. TYPICAL FORWARD CURRENT vs. FORWARD VOLTAGE DROP

FIGURE 4. TYPICAL REVERSE CURRENT vs. REVERSE VOLTAGE

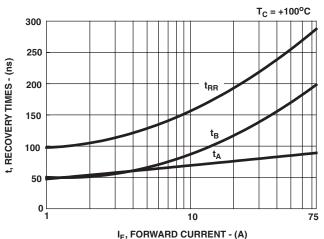
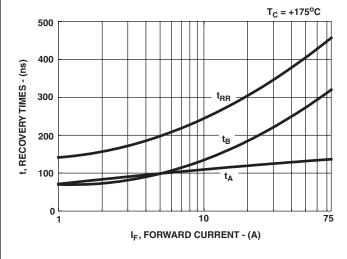



FIGURE 5. TYPICAL t_{RR} , t_{A} AND t_{B} CURVES vs. FORWARD CURRENT AT +25°C

FIGURE 6. TYPICAL t_{RR} , t_{A} AND t_{B} CURVES vs. FORWARD CURRENT AT +100°C



FIGURE 7. TYPICAL t_{RR} , t_{A} AND t_{B} CURVES vs. FORWARD CURRENT AT +175°C

FIGURE 8. CURRENT DERATING CURVE FOR ALL TYPES

Typical Performance Curves (Continued)

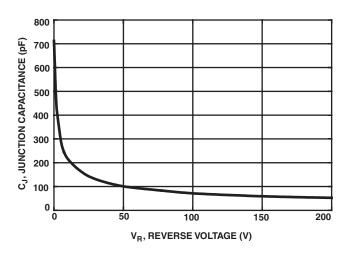
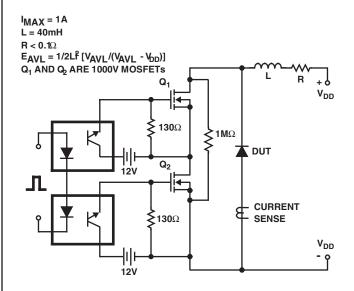



FIGURE 9. TYPICAL JUNCTION CAPACITANCE vs. REVERSE VOLTAGE

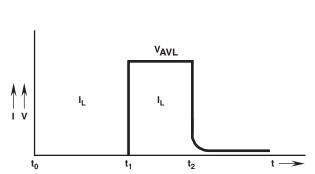


FIGURE 10. AVALANCHE ENERGY TEST CIRCUIT

FIGURE 11. AVALANCHE CURRENT AND VOLTAGE WAVEFORMS

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

SMART START™ VCX^{TM} FAST ® OPTOLOGIC™ STAR*POWER™ FASTr™ Bottomless™ OPTOPLANAR™ Stealth™ CoolFET™ FRFET™ PACMAN™ SuperSOT™-3 CROSSVOLT™ GlobalOptoisolator™ POP™ SuperSOT™-6 DenseTrench™ GTO™ Power247™ $HiSeC^{TM}$ SuperSOT™-8 $Power Trench^{\, @}$ DOME™ SyncFET™ EcoSPARK™ ISOPLANAR™ QFET™ TinyLogic™ E²CMOSTM LittleFET™ OS^{TM}

EnSigna™ MicroFET™ QT Optoelectronics™ TruTranslation™
FACT™ MicroPak™ Quiet Series™ UHC™
FACT Quiet Series™ MICROWIRE™ SILENT SWITCHER® UltraFET®

STAR*POWER is used under license

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS. NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition						
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.						
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.						
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.						
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.						

Rev. H4