NPN Silicon RF Transistor

- For highest gain low noise amplifier at 1.8 GHz
- Outstanding $G_{\mathrm{ms}}=20 \mathrm{~dB}$

Noise Figure $F=0.9 \mathrm{~dB}$

- Gold metallization for high reliability

- SIEGET ${ }^{\circledR} 45$ - Line

ESD (Electrostatic discharge) sensitive device, observe handling precaution!

Type	Marking	Pin Configuration					Package	
BFP540F	ATs *	$1=\mathrm{B}$	$2=\mathrm{E}$	$3=\mathrm{C}$	$4=\mathrm{E}$	-	-	TSFP-4

* Pin configuration fixed relative to marking (see package picture)

Maximum Ratings

Parameter	Symbol	Value	Unit
Collector-emitter voltage	$V_{\text {CEO }}$		V
$T_{\text {A }}>0^{\circ} \mathrm{C}$		4.5	
$T_{\text {A }} \leq 0^{\circ} \mathrm{C}$		4	
Collector-emitter voltage	$V_{\text {CES }}$	14	
Collector-base voltage	$V_{\text {CBO }}$	14	
Emitter-base voltage	$V_{\text {EBO }}$	1	
Collector current	${ }^{\prime} \mathrm{C}$	80	mA
Base current	I_{B}	8	
Total power dissipation ${ }^{1)} T_{S} \leq 80^{\circ} \mathrm{C}$	$P_{\text {tot }}$	250	mW
Junction temperature	T_{j}	150	${ }^{\circ} \mathrm{C}$
Ambient temperature	$T_{\text {A }}$	-65 ... 150	
Storage temperature	$T_{\text {stg }}$	-65 ... 150	

[^0]
Thermal Resistance

Parameter	Symbol	Value	Unit
Junction - soldering point ${ }^{1)}$	$R_{\text {thJS }}$	≤ 280	K/W

Electrical Characteristics at $T_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified

| Parameter | Symbol | Values | | | Unit |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| | | min. | typ. | max. | |
| DC Characteristics | $V_{(B R) C E O}$ | 4.5 | 5 | - | V |
| Collector-emitter breakdown voltage
 $I_{\mathrm{C}}=1 \mathrm{~mA}, I_{\mathrm{B}}=0$ | I_{CES} | - | - | 10 | $\mu \mathrm{~A}$ |
| Collector-emitter cutoff current
 $V_{\mathrm{CE}}=14 \mathrm{~V}, V_{\mathrm{BE}}=0$ | I_{CBO} | - | - | 100 | nA |
| Collector-base cutoff current
 $V_{\mathrm{CB}}=5 \mathrm{~V}, I_{\mathrm{E}}=0$ | I_{EBO} | - | - | 10 | $\mu \mathrm{~A}$ |
| Emitter-base cutoff current
 $V_{\mathrm{EB}}=0.5 \mathrm{~V}, I_{\mathrm{C}}=0$ | h_{FE} | 50 | 110 | 185 | - |
| DC current gain
 $I_{\mathrm{C}}=20 \mathrm{~mA}, V_{\mathrm{CE}}=3.5 \mathrm{~V}$, pulse measured | | | | | |

${ }^{1}$ For calculation of $R_{\text {thJA }}$ please refer to Application Note Thermal Resistance

BFP540F

Electrical Characteristics at $T_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified

Parameter	Symbol	Values			Unit
		min.	typ.	max.	
AC Characteristics (verified by random sampling)					
Transition frequency $I_{\mathrm{C}}=50 \mathrm{~mA}, V_{\mathrm{CE}}=4 \mathrm{~V}, f=1 \mathrm{GHz}$	f_{\top}	21	30	-	GHz
Collector-base capacitance $V_{\mathrm{CB}}=2 \mathrm{~V}, f=1 \mathrm{MHz}, V_{\mathrm{BE}}=0$ emitter grounded	$C_{\text {cb }}$	-	0.14	0.24	pF
Collector emitter capacitance $V_{\mathrm{CE}}=2 \mathrm{~V}, f=1 \mathrm{MHz}, V_{\mathrm{BE}}=0$ base grounded	$C_{\text {ce }}$	-	0.3	-	
Emitter-base capacitance $V_{\mathrm{EB}}=0.5 \mathrm{~V}, f=1 \mathrm{MHz}, V_{\mathrm{CB}}=0 \text {, }$ collector grounded	$C_{\text {eb }}$	-	0.6	-	
Noise figure $\begin{aligned} & I_{\mathrm{C}}=5 \mathrm{~mA}, V_{\mathrm{CE}}=2 \mathrm{~V}, f=1.8 \mathrm{GHz}, Z_{\mathrm{S}}=Z_{\mathrm{Sopt}} \\ & I_{\mathrm{C}}=5 \mathrm{~mA}, V_{\mathrm{CE}}=2 \mathrm{~V}, f=3 \mathrm{GHz}, Z_{\mathrm{S}}=Z_{\mathrm{Sopt}} \end{aligned}$	F	-	$\begin{aligned} & 0.9 \\ & 1.3 \end{aligned}$	1.4 -	dB
Power gain, maximum available ${ }^{1)}$ $\begin{aligned} & I_{\mathrm{C}}=20 \mathrm{~mA}, V_{\mathrm{CE}}=2 \mathrm{~V}, Z_{\mathrm{S}}=Z_{\mathrm{Sopt},} Z_{\mathrm{L}}=Z_{\mathrm{Lopt}}, \\ & f=1.8 \mathrm{GHz} \\ & f=3 \mathrm{GHz} \end{aligned}$	$G_{\text {ma }}$	-	$\begin{gathered} 20 \\ 14.5 \end{gathered}$		
Transducer gain $\begin{aligned} & I_{\mathrm{C}}=20 \mathrm{~mA}, V_{\mathrm{CE}}=2 \mathrm{~V}, Z_{\mathrm{S}}=Z_{\mathrm{L}}=50 \Omega, \\ & f=1.8 \mathrm{GHz} \\ & f=3 \mathrm{GHz} \end{aligned}$	$\left\|S_{21 \mathrm{e}}\right\|^{2}$	15.5	$\begin{aligned} & 18 \\ & 13 \end{aligned}$		dB
Third order intercept point at output ${ }^{2}$) $\begin{aligned} & V_{\mathrm{CE}}=2 \mathrm{~V}, I_{\mathrm{C}}=20 \mathrm{~mA}, f=1.8 \mathrm{GHz}, \\ & Z_{\mathrm{S}}=Z_{\mathrm{L}}=50 \Omega \end{aligned}$	$I P_{3}$	-	24.5	-	dBm
1dB Compression point at output $\begin{aligned} & I_{\mathrm{C}}=20 \mathrm{~mA}, V_{\mathrm{CE}}=2 \mathrm{~V}, Z_{\mathrm{S}}=Z_{\mathrm{L}}=50 \Omega, \\ & f=1.8 \mathrm{GHz} \end{aligned}$	$P_{-1 \mathrm{~dB}}$	-	11	-	

${ }^{1} G_{\mathrm{ma}}=\left|S_{21 \mathrm{e}} / S_{12 \mathrm{e}}\right|\left(\mathrm{k}-\left(\mathrm{k}^{2}-1\right)^{1 / 2}\right), G_{\mathrm{ms}}=\left|S_{21 \mathrm{e}} / S_{12 \mathrm{e}}\right|$
${ }^{2}$ IP3 value depends on termination of all intermodulation frequency components.
Termination used for this measurement is 50Ω from 0.1 MHz to 6 GHz

BFP540F

SPICE Parameter (Gummel-Poon Model, Berkley-SPICE 2G. 6 Syntax):

Transitor Chip Data:

$\mathrm{IS}=$	82.84	aA	$\mathrm{BF}=$	107.5	-	$\mathrm{NF}=$	1	-
$\mathrm{VAF}=$	28.383	V	$\mathrm{IKF}=$	0.48731	A	$\mathrm{ISE}=$	11.15	fA
$\mathrm{NE}=$	3.19	-	$\mathrm{BR}=$	5.5	-	$\mathrm{NR}=$	1	-
$\mathrm{VAR}=$	19.705	V	$\mathrm{IKR}=$	0.02	A	$\mathrm{ISC}=$	19.237	aA
$\mathrm{NC}=$	1.172	-	$\mathrm{RB}=$	5.4	Ω	$\mathrm{IRB}=$	0.72983	mA
$\mathrm{RBM}=$	1.3	Ω	$\mathrm{RE}=$	0.31111	-	$\mathrm{RC}=$	4	Ω
$\mathrm{CJE}=$	1.8063	fF	$\mathrm{VJE}=$	0.8051	V	$\mathrm{MJE}=$	0.46576	-
$\mathrm{TF}=$	6.76	ps	$\mathrm{XTF}=$	0.4219	-	$\mathrm{VTF}=$	0.23794	V
$\mathrm{ITF}=$	1	mA	$\mathrm{PTF}=$	0	deg	$\mathrm{CJC}=$	234	fF
$\mathrm{VJC}=$	0.81969	V	$\mathrm{MJC}=$	0.30232	-	$\mathrm{XCJC}=$	0.3	-
$\mathrm{TR}=$	2.324	ns	$\mathrm{CJS}=$	0	fF	$\mathrm{VJS}=$	0.75	V
$\mathrm{MJS}=$	0	-	$\mathrm{XTB}=$	0	-	$\mathrm{EG}=$	1.11	eV
$\mathrm{XTI}=$	3	-	$\mathrm{FC}=$	0.73234		TNOM	300	K

All parameters are ready to use, no scalling is necessary.

Package Equivalent Circuit:

The TSFP-4 package has two emitter leads. To avoid high complexity of the package equivalent circuit, both lead are combined in on electrical connection. R_{LxI} are series resistors for the inductance L_{xl} and K_{xa}-yb are the coupling coefficients between the inductance $L_{x a}$ and $L_{y b}$. The referencepins for the couple ports are $B, E, C, B^{\prime}, E^{\prime}, C^{\prime}$.

For examples and ready to use parameters please contact your local Infineon Technologies distributor or sales office to obtain a Infineon Technologies CD-ROM or see Internet: http//www.infineon.com/silicondiscretes

$L_{\mathrm{BI}}=$	0.42	nH
$L_{\mathrm{BO}}=$	0.22	nH
$L_{\mathrm{EI}}=$	0.26	nH
$L_{\mathrm{EO}}=$	0.28	nH
$L_{\mathrm{CI}}=$	0.35	pH
$L_{\mathrm{CO}}=$	0.22	nH
$C_{\mathrm{BE}}=$	34	fF
$C_{\mathrm{BC}}=$	2	fF
$C_{\mathrm{CE}}=$	33	fF
$K_{\mathrm{BO}-\mathrm{EO}}=0.1$	-	
$K_{\mathrm{BO}-\mathrm{CO}}=0.01$	-	
$K_{\mathrm{EO}}=0.11$	-	
$K_{\mathrm{CI}-\mathrm{EI}}=$	-0.05	-
$K_{\mathrm{BI}-\mathrm{Cl}}=$	-0.08	-
$K_{\mathrm{EI}-\mathrm{Cl}}=$	0.2	-
$R_{\mathrm{LBI}}=$	0.15	Ω
$R_{\mathrm{LEI}}=$	0.11	Ω
$R_{\mathrm{LCI}}=$	0.13	Ω

Valid up to 6 GHz

BFP540F

Total power dissipation $P_{\text {tot }}=f\left(T_{\mathrm{S}}\right)$

Permissible Pulse Load
$P_{\text {totmax }} / P_{\text {totDC }}=f\left(t_{\mathrm{p}}\right)$

Permissible Pulse Load $R_{\text {thJS }}=f\left(t_{\mathrm{p}}\right)$

Collector-base capacitance $C_{\mathrm{Cb}}=f\left(V_{\mathrm{CB}}\right)$ $f=1 \mathrm{MHz}$

BFP540F

Transition frequency $f_{\top}=f\left(I_{\mathrm{C}}\right)$
$f=1 \mathrm{GHz}$
$V_{C E}=$ Parameter in V

Power Gain $G_{\mathrm{ma}}, \mathrm{G}_{\mathrm{ms}}=f(f)$,
$\left|S_{21}\right|^{2}=f(\mathrm{f})$
$V_{C E}=2 \mathrm{~V}, I_{C}=20 \mathrm{~mA}$

Power gain $G_{\mathrm{ma}}, G_{\mathrm{ms}}=f\left(I_{\mathrm{C}}\right)$
$V_{C E}=2 \mathrm{~V}$
$f=$ Parameter in GHz

Power gain $G_{\mathrm{ma}}, G_{\mathrm{ms}}=f\left(V_{\mathrm{CE}}\right)$
$I_{C}=20 \mathrm{~mA}$
$f=$ Parameter in GHz

Package Outline

Foot Print

Marking Layout

Standard Packing
Reel $\varnothing 180 \mathrm{~mm}=3.000$ Pieces/Reel
Reel $\varnothing 330 \mathrm{~mm}=10.000$ Pieces/Reel

Published by Infineon Technologies AG,
St.-Martin-Strasse 53,
81669 München
© Infineon Technologies AG 2005.
All Rights Reserved.

Attention please!

The information herein is given to describe certain components and shall not be considered as a guarantee of characteristics.
Terms of delivery and rights to technical change reserved.
We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.Infineon.com).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.
Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

[^0]: ${ }^{1} T_{S}$ is measured on the collector lead at the soldering point to the pcb

