DATA SHEET

/ MOS INTEGRATED CIRCUIT μPD44164082A, 44164092A, 44164182A, 44164362A

18M-BIT DDRII SRAM 2-WORD BURST OPERATION

Description

The μ PD44164082A is a 2,097,152-word by 8-bit, the μ PD44164092A is a 2,097,152-word by 9-bit, the μ PD44164182A is a 1,048,576-word by 18-bit and the μ PD44164362A is a 524,288-word by 36-bit synchronous double data rate static RAM fabricated with advanced CMOS technology using full CMOS six-transistor memory cell.

The μPD44164082A, μPD44164092A, μPD44164182A and μPD44164362A integrate unique synchronous peripheral circuitry and a burst counter. All input registers controlled by an input clock pair (K and K#) are latched on the positive edge of K and K#.

These products are suitable for application which require synchronous operation, high speed, low voltage, high density and wide bit configuration.

These products are packaged in 165-pin PLASTIC BGA.

Features

- 1.8 ± 0.1 V power supply
- 165-pin PLASTIC BGA package (13 x 15)
- HSTL interface
- PLL circuitry for wide output data valid window and future frequency scaling
- Pipelined double data rate operation
- Common data input/output bus
- Two-tick burst for low DDR transaction size
- Two input clocks (K and K#) for precise DDR timing at clock rising edges only
- Two output clocks (C and C#) for precise flight time and clock skew matching-clock and data delivered together to receiving device
- Internally self-timed write control
- Clock-stop capability. Normal operation is restored in 1,024 cycles after clock is resumed.
- User programmable impedance output
- <R> Fast clock cycle time : 3.3 ns (300 MHz), 3.7 ns (270 MHz), 4.0 ns (250 MHz), 5.0 ns (200 MHz)
 - Simple control logic for easy depth expansion
 - JTAG boundary scan

<R>

• Operating ambient temperature: Commercial T_A = 0 to +70°C (-E33, -E37, -E40, -E50)

Industrial $T_A = -40 \text{ to } +85^{\circ}\text{C}$ (-E37Y, -E40Y, -E50Y)

The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version. Not all products and/or types are available in every country. Please check with an NEC Electronics sales representative for availability and additional information.

Document No. M17767EJ3V0DS00 (3rd edition) Date Published February 2007 NS CP(N) Printed in Japan

The mark <R> shows major revised points.

© NEC Electronics Corporation 2006

The revised points can be easily searched by copying an "<R>" in the PDF file and specifying it in the "Find what:" field.

<R>

<R>

Ordering Information

(1) Operating Ambient Temperature $T_A = 0$ to +70°C

Part number	Cycle	Clock	Organization	Package	Operating
	Time	Frequency	(word x bit)		Ambient
	ns	MHz			Temperature
PD44164082AF5-E33-EQ2/	3.3	300	2M x 8-bit	165-pin PLASTIC	Commercial
μPD44164082AF5-E40-EQ2	4.0	250		BGA (13 x 15)	$(T_A = 0 \text{ to } +70^{\circ}\text{C})$
μPD44164082AF5-E50-EQ2	5.0	200			
μPD44164092AF5-E33-EQ2	3.3	300	2M x 9-bit		
μPD44164092AF5-E40-EQ2	4.0	250			
µPD44164092AF5-E50-EQ2	5.0	200			
μPD44164182AF5-E33-EQ2	3.3	300	1M x 18-bit		
μPD44164182AF5-E37-EQ2	3.7	270			
μPD44164182AF5-E40-EQ2	4.0	250			
μPD44164182AF5-E50-EQ2	5.0	200			
μPD44164362AF5-E33-EQ2	3.3	300	512K x 36-bit		
μPD44164362AF5-E40-EQ2	4.0	250			
μPD44164362AF5-E50-EQ2	5.0	200			
μPD44164082AF5-E33-EQ2-A	3.3	300	2M x 8-bit	165-pin PLASTIC	
μPD44164082AF5-E40-EQ2-A	4.0	250		BGA (13 x 15)	
μPD44164082AF5-E50-EQ2-A	5.0	200			
μPD44164092AF5-E33-EQ2-A	3.3	300	2M x 9-bit	Lead-free	
μPD44164092AF5-E40-EQ2-A	4.0	250			
μPD44164092AF5-E50-EQ2-A	5.0	200			
μPD44164182AF5-E33-EQ2-A	3.3	300	1M x 18-bit		
μPD44164182AF5-E37-EQ2-A	3.7	270			
μPD44164182AF5-E40-EQ2-A	4.0	250			
μPD44164182AF5-E50-EQ2-A	5.0	200			
μPD44164362AF5-E33-EQ2-A	3.3	300	512K x 36-bit		
μPD44164362AF5-E40-EQ2-A	4.0	250			
μPD44164362AF5-E50-EQ2-A	5.0	200]		

Remarks 1. QDR Consortium standard package size is 13 x 15 and 15 x 17.

The footprint is commonly used.

2. Products with -A at the end of the part number are lead-free products.

Data Sheet M17767EJ3V0DS

$_{<\!R>}$ (2) Operating Ambient Temperature T_A = -40 to +85°C

Part number	Cycle	Clock	Organization	Package	Operating
	Time	Frequency	(word x bit)		Ambient
	ns	MHz			Temperature
µPD44164082AF5-E37Y-EQ2	3.7	270	2M x 8-bit	165-pin PLASTIC	Industrial
μPD44164082AF5-E40Y-EQ2	4.0	250		BGA (13 x 15)	(T _A = -40 to +85°C)
μPD44164082AF5-E50Y-EQ2	5.0	200			
μPD44164092AF5-E37Y-EQ2	3.7	270	2M x 9-bit		
μPD44164092AF5-E40Y-EQ2	4.0	250			
μPD44164092AF5-E50Y-EQ2	5.0	200			
μPD44164182AF5-E37Y-EQ2	3.7	270	1M x 18-bit		
μPD44164182AF5-E40Y-EQ2	4.0	250			
μPD44164182AF5-E50Y-EQ2	5.0	200			
μPD44164082AF5-E37Y-EQ2-A	3.7	270	2M x 8-bit	165-pin PLASTIC	
μPD44164082AF5-E40Y-EQ2-A	4.0	250		BGA (13 x 15)	
μPD44164082AF5-E50Y-EQ2-A	5.0	200			
μPD44164092AF5-E37Y-EQ2-A	3.7	270	2M x 9-bit	Lead-free	
μPD44164092AF5-E40Y-EQ2-A	4.0	250			
μPD44164092AF5-E50Y-EQ2-A	5.0	200			
μPD44164182AF5-E37Y-EQ2-A	3.7	270	1M x 18-bit		
μPD44164182AF5-E40Y-EQ2-A	4.0	250			
μPD44164182AF5-E50Y-EQ2-A	5.0	200			

Remarks 1. QDR Consortium standard package size is 13 x 15 and 15 x 17.

The footprint is commonly used.

2. Products with -A at the end of the part number are lead-free products.

Pin Configurations

165-pin PLASTIC BGA (13 x 15) (Top View) [μΡD44164082A] 2M x 8-bit

	1	2	3	4	5	6	7	8	9	10	11
Α	CQ#	Vss	A	R, W#	NW1#	K#	NC	LD#	Α	Vss	CQ
в	NC	NC	NC	Α	NC	к	NW0#	Α	NC	NC	DQ3
с	NC	NC	NC	Vss	Α	Α	Α	Vss	NC	NC	NC
D	NC	NC	NC	Vss	Vss	Vss	Vss	Vss	NC	NC	NC
Е	NC	NC	DQ4	VDDQ	Vss	Vss	Vss	VDDQ	NC	NC	DQ2
F	NC	NC	NC	VDDQ	VDD	Vss	VDD	VDDQ	NC	NC	NC
G	NC	NC	DQ5	VDDQ	VDD	Vss	VDD	VDDQ	NC	NC	NC
н	DLL#	VREF	VDDQ	VDDQ	VDD	Vss	VDD	VDDQ	VDDQ	VREF	ZQ
J	NC	NC	NC	VDDQ	VDD	Vss	VDD	VDDQ	NC	DQ1	NC
к	NC	NC	NC	VDDQ	VDD	Vss	VDD	VDDQ	NC	NC	NC
L	NC	DQ6	NC	VDDQ	Vss	Vss	Vss	VDDQ	NC	NC	DQ0
м	NC	NC	NC	Vss	Vss	Vss	Vss	Vss	NC	NC	NC
Ν	NC	NC	NC	Vss	Α	Α	Α	Vss	NC	NC	NC
Ρ	NC	NC	DQ7	Α	Α	С	Α	А	NC	NC	NC
R	TDO	тск	А	Α	А	C#	Α	Α	А	TMS	TDI

А	: Address inputs	TMS	: IEEE 1149.1 Test input
DQ0 to DQ7	: Data inputs / outputs	TDI	: IEEE 1149.1 Test input
LD#	: Synchronous load	TCK	: IEEE 1149.1 Clock input
R, W#	: Read Write input	TDO	: IEEE 1149.1 Test output
NW0#, NW1#	: Nibble Write data select	VREF	: HSTL input reference input
K, K#	: Input clock	Vdd	: Power Supply
C, C#	: Output clock	VddQ	: Power Supply
CQ, CQ#	: Echo clock	Vss	: Ground
ZQ	: Output impedance matching	NC	: No connection
DLL#	: DLL/PLL disable		

Remarks 1. ** indicates active LOW signal.

- 2. Refer to Package Drawing for the index mark.
- **3.** 2A, 7A and 10A are expansion addresses: 10A for 36Mb, 2A for 72Mb and 7A for 144Mb. 2A and 10A of this product can also be used as NC.

165-pin PLASTIC BGA (13 x 15) (Top View) [μPD44164092A] 2M x 9-bit

_	1	2	3	4	5	6	7	8	9	10	11
Α	CQ#	Vss	A	R, W#	NC	K#	NC	LD#	A	Vss	CQ
в	NC	NC	NC	Α	NC	к	BW0#	Α	NC	NC	DQ4
с	NC	NC	NC	Vss	Α	Α	Α	Vss	NC	NC	NC
D	NC	NC	NC	Vss	Vss	Vss	Vss	Vss	NC	NC	NC
Е	NC	NC	DQ5	VDDQ	Vss	Vss	Vss	VDDQ	NC	NC	DQ3
F	NC	NC	NC	VDDQ	VDD	Vss	VDD	VDDQ	NC	NC	NC
G	NC	NC	DQ6	VDDQ	VDD	Vss	VDD	VDDQ	NC	NC	NC
н	DLL#	VREF	VDDQ	VDDQ	VDD	Vss	VDD	VDDQ	VDDQ	VREF	ZQ
J	NC	NC	NC	VDDQ	VDD	Vss	VDD	VDDQ	NC	DQ2	NC
к	NC	NC	NC	VDDQ	VDD	Vss	VDD	VDDQ	NC	NC	NC
L	NC	DQ7	NC	VDDQ	Vss	Vss	Vss	VDDQ	NC	NC	DQ1
М	NC	NC	NC	Vss	Vss	Vss	Vss	Vss	NC	NC	NC
Ν	NC	NC	NC	Vss	Α	Α	Α	Vss	NC	NC	NC
Ρ	NC	NC	DQ8	Α	Α	С	Α	Α	NC	NC	DQ0
R	TDO	тск	Α	Α	Α	C#	Α	Α	Α	TMS	TDI

А	: Address inputs	TMS	: IEEE 1149.1 Test input
DQ0 to DQ8	: Data inputs / outputs	TDI	: IEEE 1149.1 Test input
LD#	: Synchronous load	TCK	: IEEE 1149.1 Clock input
R, W#	: Read Write input	TDO	: IEEE 1149.1 Test output
BW0#	: Byte Write data select	VREF	: HSTL input reference input
K, K#	: Input clock	Vdd	: Power Supply
C, C#	: Output clock	VddQ	: Power Supply
CQ, CQ#	: Echo clock	Vss	: Ground
ZQ	: Output impedance matching	NC	: No connection
DLL#	: DLL/PLL disable		

Remarks 1. ** indicates active LOW signal.

- 2. Refer to Package Drawing for the index mark.
- 3. 2A, 7A and 10A are expansion addresses: 10A for 36Mb, 2A for 72Mb and 7A for 144Mb.

2A and 10A of this product can also be used as NC.

165-pin PLASTIC BGA (13 x 15) (Top View) [μPD44164182A] 1M x 18-bit

	1	2	3	4	5	6	7	8	9	10	11
Α	CQ#	Vss	Α	R, W#	BW1#	K#	NC	LD#	Α	Vss	CQ
в	NC	DQ9	NC	Α	NC	к	BW0#	Α	NC	NC	DQ8
с	NC	NC	NC	Vss	Α	A0	Α	Vss	NC	DQ7	NC
D	NC	NC	DQ10	Vss	Vss	Vss	Vss	Vss	NC	NC	NC
Е	NC	NC	DQ11	VDDQ	Vss	Vss	Vss	VDDQ	NC	NC	DQ6
F	NC	DQ12	NC	VDDQ	VDD	Vss	VDD	VDDQ	NC	NC	DQ5
G	NC	NC	DQ13	VDDQ	VDD	Vss	VDD	VDDQ	NC	NC	NC
н	DLL#	VREF	VDDQ	VDDQ	VDD	Vss	VDD	VDDQ	VDDQ	VREF	ZQ
J	NC	NC	NC	VDDQ	VDD	Vss	VDD	VDDQ	NC	DQ4	NC
к	NC	NC	DQ14	VDDQ	VDD	Vss	VDD	VDDQ	NC	NC	DQ3
L	NC	DQ15	NC	VDDQ	Vss	Vss	Vss	VDDQ	NC	NC	DQ2
м	NC	NC	NC	Vss	Vss	Vss	Vss	Vss	NC	DQ1	NC
Ν	NC	NC	DQ16	Vss	Α	Α	Α	Vss	NC	NC	NC
Ρ	NC	NC	DQ17	A	Α	С	Α	A	NC	NC	DQ0
R	TDO	тск	А	Α	А	C#	Α	Α	Α	TMS	TDI

A0, A	: Address inputs	TMS	: IEEE 1149.1 Test input
DQ0 to DQ17	: Data inputs / outputs	TDI	: IEEE 1149.1 Test input
LD#	: Synchronous load	TCK	: IEEE 1149.1 Clock input
R, W#	: Read Write input	TDO	: IEEE 1149.1 Test output
BW0#, BW1#	: Byte Write data select	Vref	: HSTL input reference input
K, K#	: Input clock	Vdd	: Power Supply
C, C#	: Output clock	VddQ	: Power Supply
CQ, CQ#	: Echo clock	Vss	: Ground
ZQ	: Output impedance matching	NC	: No connection
DLL#	: DLL/PLL disable		

Remarks 1. ** indicates active LOW signal.

- 2. Refer to Package Drawing for the index mark.
- 3. 2A, 7A and 10A are expansion addresses: 10A for 36Mb, 2A for 72Mb and 7A for 144Mb.2A and 10A of this product can also be used as NC.

165-pin PLASTIC BGA (13 x 15) (Top View) [μPD44164362A] 512K x 36-bit

	1	2	3	4	5	6	7	8	9	10	11
Α	CQ#	Vss	NC	R, W#	BW2#	K#	BW1#	LD#	Α	Vss	CQ
в	NC	DQ27	DQ18	A	BW3#	к	BW0#	A	NC	NC	DQ8
с	NC	NC	DQ28	Vss	Α	A0	Α	Vss	NC	DQ17	DQ7
D	NC	DQ29	DQ19	Vss	Vss	Vss	Vss	Vss	NC	NC	DQ16
Е	NC	NC	DQ20	VDDQ	Vss	Vss	Vss	VDDQ	NC	DQ15	DQ6
F	NC	DQ30	DQ21	VDDQ	VDD	Vss	VDD	VDDQ	NC	NC	DQ5
G	NC	DQ31	DQ22	VDDQ	VDD	Vss	VDD	VDDQ	NC	NC	DQ14
н	DLL#	VREF	VDDQ	VDDQ	VDD	Vss	VDD	VDDQ	VDDQ	VREF	ZQ
J	NC	NC	DQ32	VDDQ	VDD	Vss	VDD	VDDQ	NC	DQ13	DQ4
к	NC	NC	DQ23	VDDQ	VDD	Vss	VDD	VDDQ	NC	DQ12	DQ3
L	NC	DQ33	DQ24	VDDQ	Vss	Vss	Vss	VDDQ	NC	NC	DQ2
м	NC	NC	DQ34	Vss	Vss	Vss	Vss	Vss	NC	DQ11	DQ1
N	NC	DQ35	DQ25	Vss	Α	Α	Α	Vss	NC	NC	DQ10
Ρ	NC	NC	DQ26	A	Α	С	Α	A	NC	DQ9	DQ0
R	TDO	тск	Α	Α	А	C#	Α	Α	Α	TMS	TDI

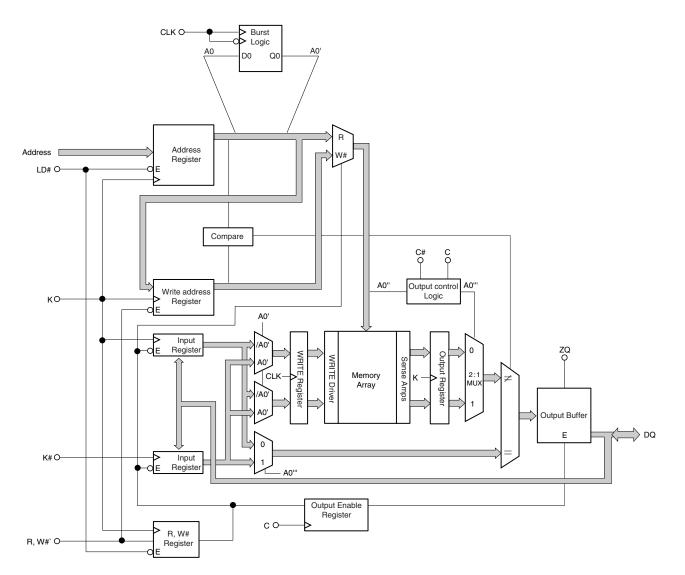
A0, A	: Address inputs	TMS	: IEEE 1149.1 Test input
DQ0 to DQ35	: Data inputs / outputs	TDI	: IEEE 1149.1 Test input
LD#	: Synchronous load	TCK	: IEEE 1149.1 Clock input
R, W#	: Read Write input	TDO	: IEEE 1149.1 Test output
BW0# to BW3#	: Byte Write data select	VREF	: HSTL input reference input
K, K#	: Input clock	Vdd	: Power Supply
C, C#	: Output clock	VddQ	: Power Supply
CQ, CQ#	: Echo clock	Vss	: Ground
ZQ	: Output impedance matching	NC	: No connection
DLL#	: DLL/PLL disable		

Remarks 1. ** indicates active LOW signal.

- 2. Refer to Package Drawing for the index mark.
- **3.** 2A, 3A and 10A are expansion addresses: 3A for 36Mb, 10A for 72Mb and 2A for 144Mb. 2A and 10A of this product can also be used as NC.

(1/2)

Pin Identification

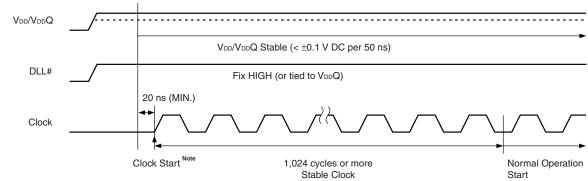

Symbol	Description
A0 A	Synchronous Address Inputs: These inputs are registered and must meet the setup and hold times around the rising edge of K. All transactions operate on a burst of two words (one clock period of bus activity). A0 is used as the lowest order address bit permitting a random starting address within the burst operation on x18 and x36 devices. These inputs are ignored when device is deselected, i.e., NOP (LD# = HIGH).
DQ0 to DQxx	Synchronous Data IOs: Input data must meet setup and hold times around the rising edges of K and K#. Output data is synchronized to the respective C and C# data clocks or to K and K# if C and C# are tied to HIGH. x8 device uses DQ0 to DQ7. x9 device uses DQ0 to DQ8. x18 device uses DQ0 to DQ17. x36 device uses DQ0 to DQ35.
LD#	Synchronous Load: This input is brought LOW when a bus cycle sequence is to be defined. This definition includes address and read/write direction. All transactions operate on a burst of 2 data (one clock period of bus activity).
R, W#	Synchronous Read/Write Input: When LD# is LOW, this input designates the access type (READ when R, W# is HIGH, WRITE when R, W# is LOW) for the loaded address. R, W# must meet the setup and hold times around the rising edge of K.
BWx# NWx#	Synchronous Byte Writes (Nibble Writes on x8): When LOW these inputs cause their respective byte or nibble to be registered and written during WRITE cycles. These signals must meet setup and hold times around the rising edges of K and K# for each of the two rising edges comprising the WRITE cycle. See Pin Configurations for signal to data relationships. x8 device uses NW0#, NW1#. x9 device uses BW0#. x18 device uses BW0#, BW1#. x36 device uses BW0# to BW3#. See Byte Write Operation for relation between BWx#, NWx# and Dxx.
K, K#	Input Clock: This input clock pair registers address and control inputs on the rising edge of K, and registers data on the rising edge of K and the rising edge of K#. K# is ideally 180 degrees out of phase with K. All synchronous inputs must meet setup and hold times around the clock rising edges.
C, C#	Output Clock: This clock pair provides a user controlled means of tuning device output data. The rising edge of C# is used as the output timing reference for first output data. The rising edge of C is used as the output reference for second output data. Ideally, C# is 180 degrees out of phase with C. When use of K and K# as the reference instead of C and C#, then fixed C and C# to HIGH. Operation cannot be guaranteed unless C and C# are fixed to HIGH (i.e. toggle of C and C#).

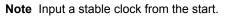
(2/2)

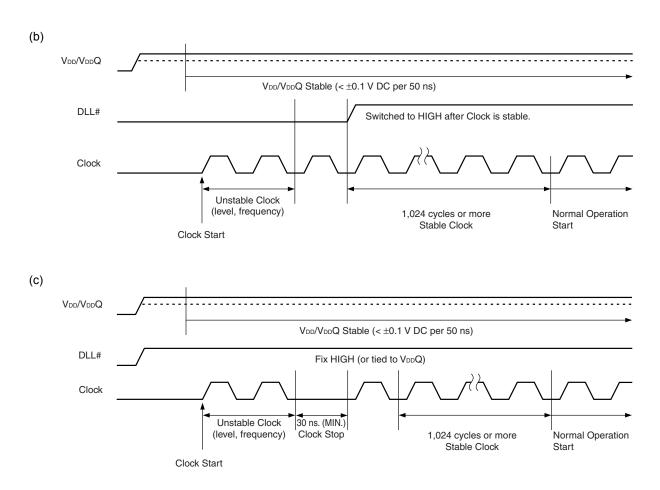
	Symbol	Description
	CQ, CQ#	Synchronous Echo Clock Outputs. The rising edges of these outputs are tightly matched to the synchronous data outputs and can be used as a data valid indication. These signals run freely and do not stop when DQ tristates. If C and C# are stopped (if K and K# are stopped in the single clock mode), CQ and CQ# will also stop.
<r></r>	ZQ	Output Impedance Matching Input: This input is used to tune the device outputs to the system data bus impedance. DQ, CQ and CQ# output impedance are set to 0.2 x RQ, where RQ is a resistor from this bump to ground. The output impedance can be minimized by directly connect ZQ to VDDQ. This pin cannot be connected directly to GND or left unconnected. The output impedance is adjusted every 1,024 cycles upon power-up to account for drifts in supply voltage and temperature. After replacement for a resistor, the new output impedance is reset by implementing power-on sequence.
<r></r>	DLL#	DLL/PLL Disable: When debugging the system or board, the operation can be performed at a clock frequency slower than TKHKH (MAX.) without the DLL/PLL circuit being used, if DLL# = LOW. The AC/DC characteristics cannot be guaranteed. For normal operation, DLL# must be HIGH and it can be connected to V _{DD} Q through a 10 k Ω or less resistor.
	TMS TDI	IEEE 1149.1 Test Inputs: 1.8 V I/O level. These balls may be left Not Connected if the JTAG function is not used in the circuit.
	тск	IEEE 1149.1 Clock Input: 1.8 V I/O level. This pin must be tied to Vss if the JTAG function is not used in the circuit.
	TDO	IEEE 1149.1 Test Output: 1.8 V I/O level.
	Vref	HSTL Input Reference Voltage: Nominally VDDQ/2. Provides a reference voltage for the input buffers.
	Vdd	Power Supply: 1.8 V nominal. See Recommended DC Operating Conditions and DC Characteristics for range.
	VddQ	Power Supply: Isolated Output Buffer Supply. Nominally 1.5 V. 1.8 V is also permissible. See Recommended DC Operating Conditions and DC Characteristics for range.
	Vss	Power Supply: Ground
<r></r>	NC	No Connect: These signals are not connected internally.

Block Diagram

NEC

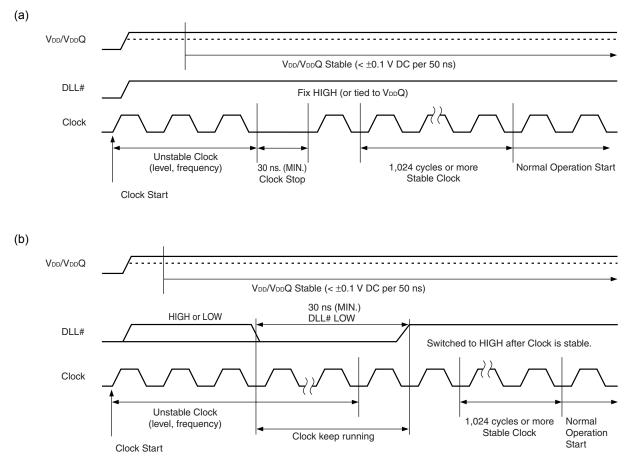

Power-on Sequence


The following two timing charts show the recommended power-on sequence, i.e., when starting the clock after VDD/VDDQ stable and when starting the clock before VDD/VDDQ stable.


1. Clock starts after VDD/VDDQ stable

The clock is supplied from a controller.

(a)



2. Clock starts before VDD/VDDQ stable

The clock is supplied from a clock generator.

Burst Sequence

Linear Burst Sequence Table

[μPD44164182A, μPD44164362A]

	A0	A0
External Address	0	1
1st Internal Burst Address	1	0

Truth Table

Operation	LD#	R, W#	CLK	D	DQ				
WRITE cycle	L	L	$L\toH$	Data	Data in				
Load address, input write data on two				Ī	Input data		D(A2)		
consecutive K and K# rising edge					Input clock	K(t+1) ↑	K#(t+1) ↑		
READ cycle	L	Н	$L\toH$	Data	ta out				
Load address, read data on two				Ī	Output data	Q(A1)	Q(A2)		
consecutive C and C# rising edge					Output clock	C#(t+1) ↑	C(t+2) ↑		
NOP (No operation)	Н	х	$L\toH$	High-Z					
Clock stop	Х	х	Stopped	Previous state					

Remarks 1. H : HIGH, L : LOW, \times : don't care, \uparrow : rising edge.

- 2. Data inputs are registered at K and K# rising edges. Data outputs are delivered at C and C# rising edges except if C and C# are HIGH then Data outputs are delivered at K and K# rising edges.
- All control inputs in the truth table must meet setup/hold times around the rising edge (LOW to HIGH) of K. All control inputs are registered during the rising edge of K.
- 4. This device contains circuitry that ensure the outputs to be in high impedance during power-up.
- 5. Refer to state diagram and timing diagrams for clarification.
- **6.** A1 refers to the address input during a WRITE or READ cycle. A2 refers to the next internal burst address in accordance with the linear burst sequence.
- **7.** It is recommended that K = K# = C = C# when clock is stopped. This is not essential but permits most rapid restart by overcoming transmission line charging symmetrically.

Byte Write Operation

[*µ*PD44164082A]

Operation	К	K#	NW0#	NW1#
Write DQ0 to DQ7	$L\toH$	-	0	0
	_	$L\toH$	0	0
Write DQ0 to DQ3	$L\toH$	Ι	0	1
	_	$L\toH$	0	1
Write DQ4 to DQ7	$L\toH$	-	1	0
	_	$L\toH$	1	0
Write nothing	$L\toH$	Ι	1	1
	_	$L\toH$	1	1

Remarks 1. H : HIGH, L : LOW, \rightarrow : rising edge.

 Assumes a WRITE cycle was initiated. NW0# and NW1# can be altered for any portion of the BURST WRITE operation provided that the setup and hold requirements are satisfied.

[*µ*PD44164092A]

Operation	К	K#	BW0#
Write DQ0 to DQ8	$L\toH$	-	0
	Ι	$L\toH$	0
Write nothing	$L\toH$	_	1
	_	$L\toH$	1

Remarks 1. H : HIGH, L : LOW, \rightarrow : rising edge.

<R>

<R>

2. Assumes a WRITE cycle was initiated. BW0# can be altered for any portion of the BURST WRITE operation provided that the setup and hold requirements are satisfied.

[*µ*PD44164182A]

Operation	К	K#	BW0#	BW1#
Write DQ0 to DQ17	$L\toH$	_	0	0
	Ι	$L\toH$	0	0
Write DQ0 to DQ8	$L\toH$	_	0	1
	Ι	$L\toH$	0	1
Write DQ9 to DQ17	$L\toH$	-	1	0
	Ι	$L\toH$	1	0
Write nothing	$L\toH$	_	1	1
	_	$L\toH$	1	1

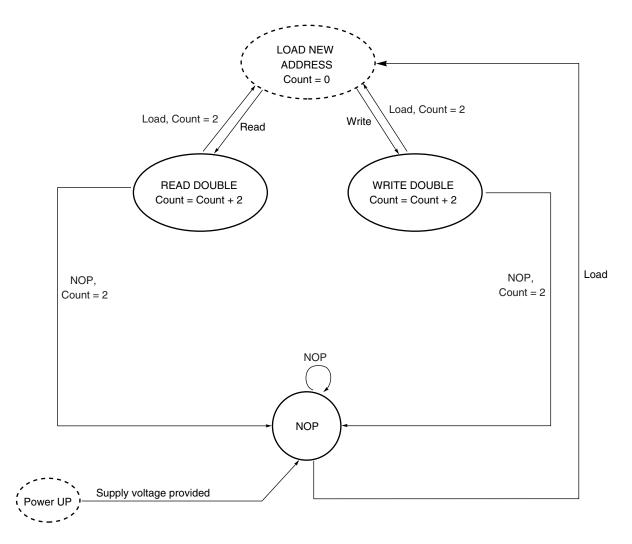
Remarks 1. H : HIGH, L : LOW, \rightarrow : rising edge.

<R>

2. Assumes a WRITE cycle was initiated. BW0# and BW1# can be altered for any portion of the BURST WRITE operation provided that the setup and hold requirements are satisfied.

[µPD44164362A]

Operation	К	K#	BW0#	BW1#	BW2#	BW3#
Write DQ0 to DQ35	$L\toH$	-	0	0	0	0
	Ι	$L\toH$	0	0	0	0
Write DQ0 to DQ8	$L\toH$	Ι	0	1	1	1
	-	$L\toH$	0	1	1	1
Write DQ9 to DQ17	$L\toH$	-	1	0	1	1
	Ι	$L\toH$	1	0	1	1
Write DQ18 to DQ26	$L\toH$	Ι	1	1	0	1
	-	$L\toH$	1	1	0	1
Write DQ27 to DQ35	$L\toH$	-	1	1	1	0
	Ι	$L\toH$	1	1	1	0
Write nothing	$L\toH$	-	1	1	1	1
	_	$L\toH$	1	1	1	1


 $\textbf{Remarks 1.} \hspace{0.1in} \text{H}: \text{HIGH}, \text{L}: \text{LOW}, \rightarrow : \text{rising edge}.$

<R>

2. Assumes a WRITE cycle was initiated. BW0# to BW3# can be altered for any portion of the BURST WRITE operation provided that the setup and hold requirements are satisfied.

NEC

Bus Cycle State Diagram

- **Remarks 1.** A0 is internally advanced in accordance with the burst order table. Bus cycle is terminated after burst count = 2.
 - 2. State machine control timing sequence is controlled by K.

Electrical Specifications

Absolute Maximum Ratings

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Supply voltage	Vdd		-0.5		+2.5	V
Output supply voltage	VddQ		-0.5		Vdd	V
Input voltage	Vin		-0.5		VDD + 0.5 (2.5 V MAX.)	V
Input / Output voltage	Vi/o		-0.5		VDDQ + 0.5 (2.5 V MAX.)	V
Operating ambient temperature	Та	Commercial	0		+70	°C
		Industrial	-40		+85	
Storage temperature	Tstg		-55		+125	°C

Caution Exposing the device to stress above those listed in Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational section of this specification. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability.

Recommended DC Operating Conditions

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit	Note
Supply voltage	Vdd		1.7		1.9	V	
Output supply voltage	VddQ		1.4		Vdd	V	1
Input HIGH voltage	VIH (DC)		Vref + 0.1		VDDQ + 0.3	V	1, 2
Input LOW voltage	VIL (DC)		-0.3		Vref – 0.1	V	1, 2
Clock input voltage	VIN		-0.3		VDDQ + 0.3	V	1, 2
Reference voltage	Vref		0.68		0.95	V	

Notes 1. During normal operation, VDDQ must not exceed VDD.

2. Power-up: VIH \leq VDDQ + 0.3 V and VDD \leq 1.7 V and VDDQ \leq 1.4 V for t \leq 200 ms

Recommended AC Operating Conditions

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit	Note
Input HIGH voltage	VIH (AC)		Vref + 0.2		-	V	1
Input LOW voltage	VIL (AC)		_		Vref – 0.2	V	1

Note 1. Overshoot: VIH (AC) \leq VDD + 0.7 V (2.5 V MAX.) for t \leq TKHKH/2

Undershoot: VIL $_{(AC)} \geq -$ 0.5 V for $t \leq TKHKH/2$

Control input signals may not have pulse widths less than TKHKL (MIN.) or operate at cycle rates less than TKHKH (MIN.).

<R> DC Characteristics (VDD = 1.8 ± 0.1 V)

Parameter	Symbol		Test condition		MIN.	TYP.		MAX.		Unit	Note
							x8, x9	x18	x36		
Input leakage current	Iц				-2	-		+2		μA	
I/O leakage current	Ilo			_	-2	_		+2		μA	
Operating supply	Idd	Note1	Commercial	-E33			480	520	610	mA	
current			(T _A = 0 to +70°C)	-E37			_	490	-		
(Read cycle/				-E40			440	470	540		
Write cycle)				-E50			400	420	470		
			Industrial	-E37Y			470	510	-		
			(T _A = -40 to +85°C)	-E40Y			460	490	_	0 mA	
				-E50Y			420	440	_		
Standby supply	ISB1	Note1	Commercial	-E33			300	300	300	mA	
current			(T _A = 0 to +70°C)	-E37			-	290	_		
(NOP)				-E40			280	280	280		
				-E50			260	260	260		
			Industrial	-E37Y			310	310	-		
			(T _A = -40 to +85°C)	-E40Y			300	300	-		
				-E50Y			280	280	-		
Output HIGH voltage	VOH(Low)	Іон ≤ 0.	1 mA	-	VddQ - 0.2	-		VddQ	•	V	4, 5
	Vон	Note2			VDDQ/2-0.12	-	Vd	0Q/2+0	.12	V	4, 5
Output LOW voltage	VOL(Low)	$IOL \leq 0.1$	mA		Vss	_		0.2		V	4, 5
	Vol	Note3			VDDQ/2-0.12	_	VD	0Q/2+0	.12	V	4, 5

Notes 1. $V_{IN} \leq V_{IL} \text{ or } V_{IN} \geq V_{IH}$, $I_{I/O} = 0 \text{ mA}$, Cycle = MAX.

- 2. Outputs are impedance-controlled. $| I_{OH} | = (V_{DD}Q/2)/(RQ/5) \pm 15 \%$ for values of 175 $\Omega \le RQ \le 350 \Omega$.
- 3. Outputs are impedance-controlled. IoL = (VDDQ/2)/(RQ/5) ±15 % for values of 175 $\Omega \le RQ \le 350 \Omega$.
- **4.** AC load current is higher than the shown DC values.
- 5. HSTL outputs meet JEDEC HSTL Class I and standards.

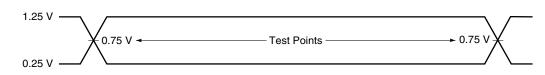
Capacitance (TA = 25°C, f = 1MHz)

Parameter	Symbol	Test conditions	MIN.	TYP.	MAX.	Unit
Input capacitance (Address, Control)	CIN	VIN = 0 V		4	5	pF
Input / Output capacitance	Ci/o	VI/O = 0 V		6	7	pF
(DQ, CQ, CQ#)						
Clock Input capacitance	Cclk	Vclk = 0 V		5	6	pF

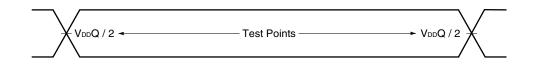
Remark These parameters are periodically sampled and not 100% tested.

Thermal Resistance

Parameter	Symbol	Test conditions	MIN.	TYP.	MAX.	Unit
Thermal resistance	hetaj-a			25.1		°C/W
(junction – ambient)						
Thermal resistance	heta j-c			2.8		°C/W
(junction – case)						

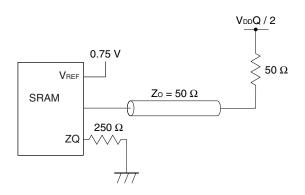

Remark These parameters are simulated under the condition of air flow velocity = 1 m/s.

NEC


AC Characteristics (VDD = 1.8 ± 0.1 V)

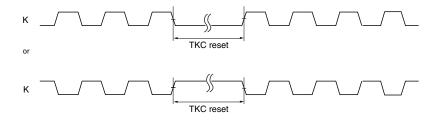
AC Test Conditions (V_{DD} = $1.8 \pm 0.1 \text{ V}$, V_{DD}Q = 1.4 V to V_{DD})

Input waveform (Rise / Fall time \leq 0.3 ns)



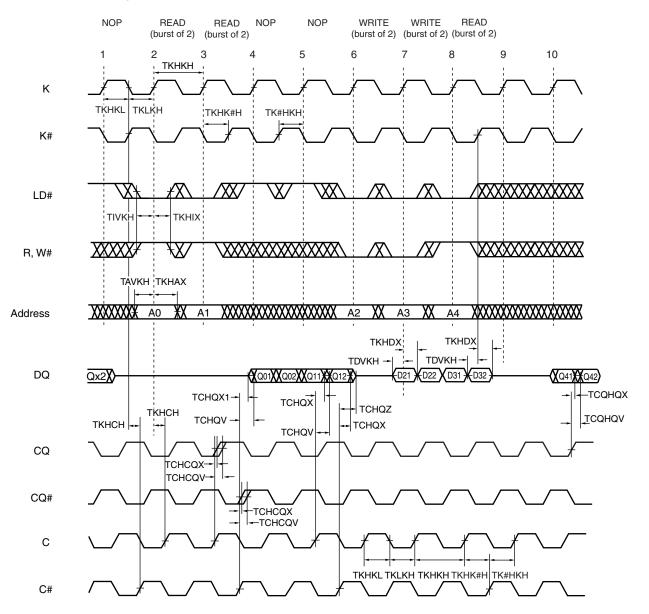
Output waveform

Output load condition


Figure 1. External load at test

<R> Read and Write Cycle

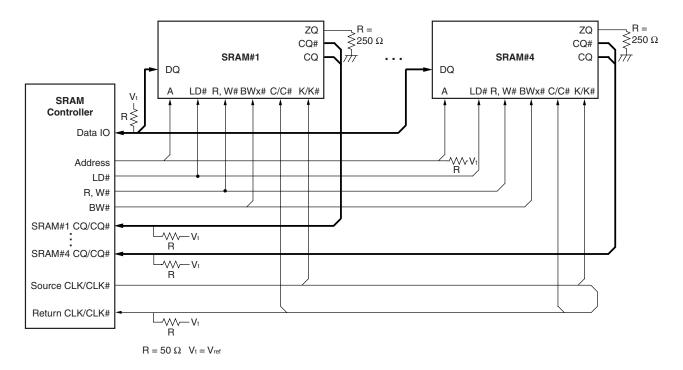
Parameter		Symbol		33		-E37Y	-E40,		-E50,		Unit	Note
			``	MHz)	`	MHz)	(250	,	(200	,		
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.		
Clock												
Average Clock cycle ti	me (K, K#, C, C#)	ТКНКН	3.3	8.4	3.7	8.4	4.0	8.4	5.0	8.4	ns	1
Clock phase jitter (K, k	<#, C, C#)	TKC var	-	0.2	-	0.2	-	0.2	-	0.2	ns	2
Clock HIGH time (K, K	(#, C, C#)	TKHKL	1.32	-	1.5	-	1.6	-	2.0	-	ns	
Clock LOW time (K, K	#, C, C#)	TKLKH	1.32	-	1.5	-	1.6	-	2.0	-	ns	
Clock HIGH to Clock#	HIGH	ТКНК#Н	1.49	-	1.7	-	1.8	-	2.2	-	ns	
(K→K#, C→C#)												
Clock# HIGH to Clock	HIGH	TK#HKH	1.49	-	1.7	-	1.8	-	2.2	-	ns	
(K#→K, C#→C)												
Clock to data clock	270 to 300 MHz	ТКНСН	0	1.45	-	-	-	-	-	-	ns	
(K→C, K#→C#)	250 to 270 MHz		0	1.65	0	1.65	-	-	-	-	-	
	200 to 250 MHz		0	1.8	0	1.8	0	1.8	-	_	-	
	167 to 200 MHz		0	2.3	0	2.3	0	2.3	0	2.3		
	133 to 167 MHz		0	2.8	0	2.8	0	2.8	0	2.8		
	< 133 MHz		0	3.55	0	3.55	0	3.55	0	3.55		
DLL/PLL lock time (K,	C)	TKC lock	1,024	-	1,024	-	1,024	-	1,024	-	Cycle	3
K static to DLL/PLL re-	set	TKC reset	30	-	30	-	30	-	30	-	ns	4
Output Times												
C, C# HIGH to output	valid	TCHQV	-	0.45	-	0.45	-	0.45	-	0.45	ns	
C, C# HIGH to output	hold	TCHQX	- 0.45	-	-0.45	-	- 0.45	-	- 0.45	-	ns	
C, C# HIGH to echo cl	ock valid	TCHCQV	-	0.45	-	0.45	_	0.45	-	0.45	ns	
C, C# HIGH to echo cl	ock hold	TCHCQX	- 0.45	-	-0.45	-	- 0.45	-	- 0.45	-	ns	
CQ, CQ# HIGH to out	put valid	TCQHQV	-	0.27	-	0.3	-	0.3	-	0.35	ns	5
CQ, CQ# HIGH to out	put hold	TCQHQX	- 0.27	-	-0.3	-	- 0.3	-	- 0.35	-	ns	5
C HIGH to output High	n-Z	TCHQZ	١	0.45	-	0.45	-	0.45	-	0.45	ns	
C HIGH to output Low	-Z	TCHQX1	- 0.45	-	-0.45	-	- 0.45	-	- 0.45	-	ns	
Setup Times												
Address valid to K risin	ng edge	TAVKH	0.4	-	0.5	-	0.5	-	0.6	-	ns	6
Synchronous load input	ut (LD#),	TIVKH	0.4	-	0.5	_	0.5	-	0.6	-	ns	6
read write input (R, W	#) valid to											
K rising edge												
Data inputs and write	data select	TDVKH	0.3	-	0.35	_	0.35	-	0.4	-	ns	6
inputs (BWx#, NWx#) valid to												
K, K# rising edge												
Hold Times												
K rising edge to address hold		TKHAX	0.4	-	0.5	_	0.5	-	0.6	-	ns	6
K rising edge to		TKHIX	0.4	-	0.5	-	0.5	-	0.6	-	ns	6
synchronous load input (LD#),												
read write input (R, W#) hold												
K, K# rising edge to da	ata inputs and	TKHDX	0.3	-	0.35	_	0.35	-	0.4	-	ns	6
K, K# rising edge to data inputs and write data select inputs (BWx#, NWx#)												
white uata select input												


- <R> Notes 1. When debugging the system or board, these products can operate at a clock frequency slower than TKHKH (MAX.) without the DLL/PLL circuit being used, if DLL# = LOW. Read latency (RL) is changed to 1.5 clock in this operation. The AC/DC characteristics cannot be guaranteed, however.
 - Clock phase jitter is the variance from clock rising edge to the next expected clock rising edge. TKC var (MAX.) indicates a peak-to-peak value.
 - VDD slew rate must be less than 0.1 V DC per 50 ns for DLL/PLL lock retention.
 DLL/PLL lock time begins once VDD and input clock are stable.
 It is recommended that the device is kept NOP (LD# = HIGH) during these cycles.
 - **4.** K input is monitored for this operation. See below for the timing.

- Echo clock is very tightly controlled to data valid / data hold. By design, there is a ± 0.1 ns variation from echo clock to data. The data sheet parameters reflect tester guardbands and test setup variations.
- **6.** This is a synchronous device. All addresses, data and control lines must meet the specified setup and hold times for all latching clock edges.

Remarks 1. This parameter is sampled.

- Test conditions as specified with the output loading as shown in AC Test Conditions unless otherwise noted.
- 3. Control input signals may not be operated with pulse widths less than TKHKL (MIN.).
- 4. If C, C# are tied HIGH, K, K# become the references for C, C# timing parameters.
- **5.** VDDQ is 1.5 V DC.


Read and Write Timing

Remarks 1. Q01 refers to output from address A0.

Q02 refers to output from the next internal burst address following A0, etc.

- Outputs are disabled (high impedance) 2.5 clocks after the last READ (LD# = LOW, R, W# = HIGH) is input in the sequences of [READ]-[NOP].
- **3.** The second NOP cycle at the cycle "5" is not necessary for correct device operation; however, at high clock frequencies it may be required to prevent bus contention.

Application Example

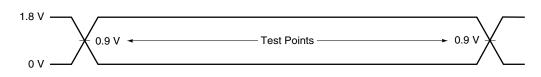
Remark AC specifications are defined at the condition of SRAM outputs, CQ, CQ# and DQ with termination.

JTAG Specification

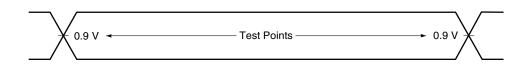
These products support a limited set of JTAG functions as in IEEE standard 1149.1.

Test Access Port (TAP) Pins

Pin name	Pin assignments	Description
тск	2R	Test Clock Input. All input are captured on the rising edge of TCK and all outputs propagate from the falling edge of TCK.
TMS	10R	Test Mode Select. This is the command input for the TAP controller state machine.
TDI	11R	Test Data Input. This is the input side of the serial registers placed between TDI and TDO. The register placed between TDI and TDO is determined by the state of the TAP controller state machine and the instruction that is currently loaded in the TAP instruction.
TDO	1R	Test Data Output. This is the output side of the serial registers placed between TDI and TDO. Output changes in response to the falling edge of TCK.

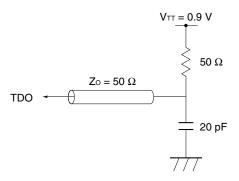

Remark The device does not have TRST (TAP reset). The Test-Logic Reset state is entered while TMS is held HIGH for five rising edges of TCK. The TAP controller state is also reset on the SRAM POWER-UP.

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
JTAG Input leakage current	lu	$0~V \leq V_{\text{IN}} \leq V_{\text{DD}}$	-5.0	-	+5.0	μA
JTAG I/O leakage current	Ilo	$0 \ V \leq V_{\text{IN}} \leq V_{\text{DD}}Q,$	-5.0	-	+5.0	μA
		Outputs disabled				
JTAG input HIGH voltage	Vін		1.3	-	VDD+0.3	V
JTAG input LOW voltage	VIL		-0.3	-	+0.5	V
JTAG output HIGH voltage	Voh1	Іонс = 100 дА	1.6	-	-	V
	Voh2	Іонт = 2 m A	1.4	-	-	V
JTAG output LOW voltage	Vol1	IOLC = 100 μA	-	-	0.2	V
	Vol2	IOLT = 2 mA	-	-	0.4	V


JTAG DC Characteristics (V_{DD} = 1.8 ± 0.1 V, unless otherwise noted)

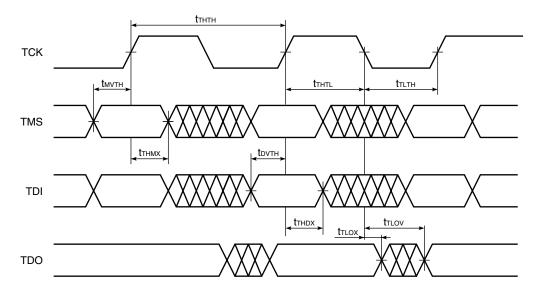
JTAG AC Test Conditions

Input waveform (Rise / Fall time ≤ 1 ns)



Output waveform

Output load



<R> JTAG AC Characteristics

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Clock						
Clock cycle time	tтнтн		50	_	_	ns
Clock frequency	fтғ		_	_	20	MHz
Clock HIGH time	tтнт∟		20	-	-	ns
Clock LOW time	tтьтн		20	-	_	ns
Output time						
TCK LOW to TDO unknown	t tlox		0	-	-	ns
TCK LOW to TDO valid	t tlov		-	-	10	ns
Setup time						
TMS setup time	tмvтн		5	_	_	ns
TDI valid to TCK HIGH	tovтн		5	-	-	ns
Capture setup time	tcs		5	-	_	ns
Hold time						
TMS hold time	tтнмх		5	-	-	ns
TCK HIGH to TDI invalid	t thdx		5	-	-	ns
Capture hold time	tсн		5	_	_	ns

JTAG Timing Diagram

Scan Register Definition (1)

Register name	Description
Instruction register	The instruction register holds the instructions that are executed by the TAP controller when it is moved into the run-test/idle or the various data register state. The register can be loaded when it is placed between the TDI and TDO pins. The instruction register is automatically preloaded with the IDCODE instruction at power-up whenever the controller is placed in test-logic-reset state.
Bypass register	The bypass register is a single bit register that can be placed between TDI and TDO. It allows serial test data to be passed through the RAMs TAP to another device in the scan chain with as little delay as possible.
ID register	The ID Register is a 32 bit register that is loaded with a device and vendor specific 32 bit code when the controller is put in capture-DR state with the IDCODE command loaded in the instruction register. The register is then placed between the TDI and TDO pins when the controller is moved into shift-DR state.
Boundary register	The boundary register, under the control of the TAP controller, is loaded with the contents of the RAMs I/O ring when the controller is in capture-DR state and then is placed between the TDI and TDO pins when the controller is moved to shift-DR state. Several TAP instructions can be used to activate the boundary register. The Scan Exit Order tables describe which device bump connects to each boundary register location. The first column defines the bit's position in the boundary register. The second column is the name of the input or I/O at the bump and the third column is the bump number.

Scan Register Definition (2)

Register name	Bit size	Unit
Instruction register	3	bit
Bypass register	1	bit
ID register	32	bit
Boundary register	107	bit

ID Register Definition

Part number	Organization	ID [31:28] vendor revision no.	ID [27:12] part no.	ID [11:1] vendor ID no.	ID [0] fix bit
μPD44164082A	2M x 8	XXXX	0000 0000 0001 0010	00000010000	1
μPD44164092A	2M x 9	XXXX	0000 0000 0101 0011	00000010000	1
μPD44164182A	1M x 18	XXXX	0000 0000 0001 0011	00000010000	1
μPD44164362A	512K x 36	XXXX	0000 0000 0001 0100	00000010000	1

SCAN Exit Order

Bit		Bump			
no.	x8	x9	x18	x36	ID
1		С	#		6R
2		C	2		6P
3		ŀ	4		6N
4		ŀ	4		7P
5		ŀ	4		7N
6		ŀ	4		7R
7		ŀ	4		8R
8		ŀ	4		8P
9		ŀ	4		9R
10	NC	DQ0	DQ0	DQ0	11P
11	NC	NC	NC	DQ9	10P
12	NC	NC	NC	NC	10N
13	NC	NC	NC	NC	9P
14	NC	NC	DQ1	DQ11	10M
15	NC	NC	NC	DQ10	11N
16	NC	NC	NC	NC	9M
17	NC	NC	NC	NC	9N
18	DQ0	DQ1	DQ2	DQ2	11L
19	NC	NC	NC	DQ1	11M
20	NC	NC	NC	NC	9L
21	NC	NC	NC	NC	10L
22	NC	NC	DQ3	DQ3	11K
23	NC	NC	NC	DQ12	10K
24	NC	NC	NC	NC	9J
25	NC	NC	NC	NC	9K
26	DQ1	DQ2	DQ4	DQ13	10J
27	NC	NC	NC	DQ4	11J
28		Z	Q	i	11H
29	NC	NC	NC	NC	10G
30	NC	NC	NC	NC	9G
31	NC	NC	DQ5	DQ5	11F
32	NC	NC	NC	DQ14	11G
33	NC	NC	NC	NC	9F
34	NC	NC	NC	NC	10F
35	DQ2	DQ3	DQ6	DQ6	11E
36	NC	NC	NC	DQ15	10E

BittUNESummer of the set of the							
37NCNCNCNCNC10D38NCNCNCDQ7DQ1710C39NCNCDQ7DQ1611D40NCNCNCNCDQ1611D41NCNCNCNCNC9D42NCNCNCNCNC9D43DQ3DQ4DQ8DQ811B44NCNCNCDQ711C45NCNCNCNC10B46NCNCNCNC10B47 ξ_{XX} NCNCNC10B48 ξ_{XX} NCNCNC10B47 ξ_{XX} NCNCNC10B48 ξ_{XX} NCNCNC10B47 ξ_{XX} NCNCNC10B48 ξ_{XX} NCNCNC10B50 ξ_{XX} NCNCNC8851 ξ_{XX} NCNCNC8853NW0#BW0#BW0#BW0#7B56 ξ_{XX} NCNCBW1#7A57 ξ_{XX} ξ_{XX} ξ_{XX} ξ_{XX} 58NCNCNCBW1#BW2#5A69NW1#NCBW1#BW2#5A61 ξ_{XX} NCNCNCNC62 ξ_{XX} ξ_{XX} <td< td=""><td>Bit</td><td></td><td>Signal</td><td>name</td><td></td><td>Bump</td></td<>	Bit		Signal	name		Bump	
NC NC NC NC NC 9E 38 NC NC NC DQ7 DQ17 10C 40 NC NC NC DQ16 11D 41 NC NC NC NC NC 9C 42 NC NC NC NC NC 9D 43 DQ3 DQ4 DQ8 DQ8 11B 44 NC NC NC DQ7 11C 45 NC NC NC DQ7 11C 45 NC NC NC DQ7 11C 45 NC NC NC NC 10B 47 $- \le \cup $ NC NC NC 10B 46 NC NC NC NC 10B 50 $- _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _$	no.	x8	x9	x18	x36	ID	
39 NC NC DQ7 DQ17 10C 40 NC NC NC DQ16 11D 41 NC NC NC NC 9C 42 NC NC NC NC 9D 43 DQ3 DQ4 DQ8 DQ3 11B 44 NC NC NC DQ7 11C 45 NC NC NC DQ3 11B 44 NC NC NC DQ7 11C 45 NC NC NC NC 10B 46 NC NC NC NC 10B 47 ξ_{CU} NC NC NC 10B 48 ξ_{CU} NC NC NC 10B 51 ξ_{CU} ξ_{CU} ξ_{CU} 11A 48 ξ_{CU} ξ_{CU} ξ_{CU} 11A 52 A A <td>37</td> <td>NC</td> <td>NC</td> <td>NC</td> <td>NC</td> <td>10D</td>	37	NC	NC	NC	NC	10D	
40NCNCNCNCDQ1611D41NCNCNCNCNC9C42NCNCNCNC9D43DQ3DQ4DQ8DQ811B44NCNCNCDQ711C45NCNCNCNC0Q711C45NCNCNCNC10B46NCNCNCNC10B47 $$	38	NC	NC	NC	NC	9E	
41NCNCNCNCNC9C42NCNCNCNCNCNC9D43DQ3DQ4DQ8DQ811B44NCNCNCDQ711C45NCNCNCNC0P46NCNCNCNC10B47 $- C \cup U = U = U = U = U$ 11A48 $- U = U = U = U = U = U$ 11A49 $- U = U = U = U = U = U$ 11A49 $- U = U = U = U = U = U$ 8B51 $- U = U = U = U = U = U = U$ 8B51 $- U = U = U = U = U = U = U = U = U = U $	39	NC	NC	DQ7	DQ17	10C	
42NCNCNCNC9D43DQ3DQ4DQ8DQ811B44NCNCNCDQ711C45NCNCNCNC9B46NCNCNCNC10B47 \checkmark \leftarrow NCNC10B47 \leftarrow \leftarrow NCNC10B47 \leftarrow \leftarrow NCNCNC10B47 \leftarrow \leftarrow NCNCNC10B48 \leftarrow \leftarrow \leftarrow 11A4850 \leftarrow \leftarrow NCNCNC51 \leftarrow \leftarrow \leftarrow 7C52AAA0A06C53 \leftarrow \leftarrow NCNCBW1#7A55NW0#BW0#BW0#BW0#7B7B56 \leftarrow \leftarrow K6A7B57 \leftarrow KBW1#7A7A58NCNCNCBW3#5B59NW1#NCBW1#BW2#5A60 \leftarrow \leftarrow \leftarrow 4A61 \leftarrow \leftarrow 4A63AAANC64 \leftarrow \leftarrow IA65 \leftarrow \leftarrow 1A66NCNCNCNC67NCNCNC1C68NCNCNCNC69NCNCNC </td <td>40</td> <td>NC</td> <td>NC</td> <td>NC</td> <td>DQ16</td> <td>11D</td>	40	NC	NC	NC	DQ16	11D	
43 DQ3 DQ4 DQ8 DQ8 DQ3 11B 44 NC NC NC DQ7 11C 45 NC NC NC NC 9B 46 NC NC NC NC 10B 47 $\angle Q$ NC NC NC 10B 48 $\angle Q$ $\angle Q$ NC 10A 49 $\angle Q$ $\angle Q$ 11A 48 $\angle Q$ A 9A 9A 50 $\angle A$ A 9A 6A 51 $\angle A$ A A0 6C 53 $\angle A$ A A0 AO 54 NC NC NC BW0# BW0# 55 NW0# BW0# BW0# BW0# 7B 56 $\angle X$ K 6A 7B 57 A NC NC BW0# 5B 58 NC NC NC BW1# 5A 59 NW1# NC	41	NC	NC	NC	NC	9C	
44NCNCNCDQ711C45NCNCNCNCNC9B46NCNCNCNC10B47 $X = C \cup U = U$ 11A48 $X = U \cup U = U$ 11A49 $X = U \cup U$ 9A50 $X = U \cup U$ 9A51 $X = U \cup U$ 7C52AAA0A053 $X = U \cup U$ 7C54NCNCNCBW1#55NW0#BW0#BW0#BW0#56 $- K \cup U$ 6A57 $- K \cup U$ 6A58NCNCNC59NW1#NCBW1#60 $- K , V = W$ 4A61 $- K , V = W$ 4A63AAANC64 $- U \cup U = V = U = W$ 1H65 $- C \cup W = U = W = W$ 1A66NCNCNCNC67NCNCNC1C68NCNCNCNC69NCNCNCNC69NCNCNCNC69NCNCNCNC69NCNCNCNC69NCNCNCNC69NCNCNCNC69NCNCNCNC69NCNCNCNC69NCNCNC69NC <td< td=""><td>42</td><td>NC</td><td>NC</td><td>NC</td><td>NC</td><td>9D</td></td<>	42	NC	NC	NC	NC	9D	
45NCNCNCNCNC10B46NCNCNCNC10B4711A4811A499A508B517C52AAA0A06C53NCNC54NCNCNCBW0#BW0#7B55NW0#BW0#BW0#BW0#7B566A576A6B576A58NCNCNCBW1#BW2#5A605C624A614A63AAANC3A641A651C64NCNCNCNCNC1C68NCNCNCNC1C69NCNCNCNC1C69NCNCNCNC1D69NCNCNCNCNC	43	DQ3	DQ4	DQ8	DQ8	11B	
46 NC NC NC NC 10B 47 $\angle CQ$ 11A 48 $\angle -U$ Interna 49 $\angle J$ 9A 50 $\angle J$ 8B 51 $\angle J$ 7C 52 A A A0 6C 53 $\angle LD$ 88 7C 54 NC NC NC 80 55 NW0# BW0# BW0# 7B 56 $\angle K$ 6B 7B 6A 58 NC NC NC BW3# 5B 59 NW1# NC BW1# 5A 5A 60 $\angle K$ BW1# 5A 5A 61 $\angle K$ BW1# 5A 5A 62 $\angle K$ 4A 5A 5A 63 A A A A 64 $\angle L$ $\angle K$ 5C 5C 63 A A A A 64 $\angle L$	44	NC	NC	NC	DQ7	11C	
47 CQ 11A 48 $- CQ$ Interna 49 A 9A 50 A A 9A 51 A $A0$ $A0$ 52 A A $A0$ $A0$ 53 $LD#$ $BW0#$ $BW0#$ $BW0#$ $BW0#$ 54 NC NC NC $BW1#$ $7A$ 55 $NW0#$ $BW0#$ $BW0#$ $BW0#$ $7B$ 56 $-ED=$ $6A$ $7B$ $6A$ 57 NC NC NC $BW3#$ $5B$ 58 NC NC NC $BW3#$ $5B$ 59 $NW1#$ NC $BW1#$ $BW2#$ $5A$ 60 $-E, V=$ 4A $4A$ $5C$ $6A$ 61 $-E, V=$ 4A $4A$ A A 62 $-A$ A A A A 63 A A A A A </td <td>45</td> <td>NC</td> <td>NC</td> <td>NC</td> <td>NC</td> <td>9B</td>	45	NC	NC	NC	NC	9B	
48 $$ International structure 49 $$ 9A 50 $$ 8B 51 $$ 8B 51 $$ 7C 52 A A AO AO 6C 53 $$ $$ 8A 8A 54 NC NC NC BW0# BW0# 7B 56 $$ $$ 6A 7B 7B 7B 56 $$ $$ 6B 7B 7B 7B 56 $$ $$ $$ 7B 7B 57 $$ $$ $$ 6B 7B 58 NC NC NC BW1# $$ $$ 59 NW1# NC BW1# $$ $$ $$ 60 $$ $$ $$ $$ $$ $$ $$ $$ $$ 61 $$ $$ $$ $$ $$ $$ $$ </td <td>46</td> <td>NC</td> <td>NC</td> <td>NC</td> <td>NC</td> <td>10B</td>	46	NC	NC	NC	NC	10B	
49 $ A$ 9A 50 $ A = A $ $ R = A $ 51 $ A $ $ R = A $ 51 $ A $ $ A $ $ R = A $ 52 A A A0 A0 6C 53 $ L D = U $ $ R = A $ 54 NC NC NC BW0# BW0# BW0# R = A 55 NW0# BW0# BW0# BW0# BW0# BW0# R = A A 56 $F K = K $ 6A A B B A A 57 $K = K $	47		С	Q		11A	
50 $ A $ 88 51 $$	48		-	-		Internal	
51 \overrightarrow{A} \overrightarrow{A} $\overrightarrow{A0}$ $\overrightarrow{A0}$ $\overrightarrow{A0}$ 52 \overrightarrow{A} $\overrightarrow{A0}$ $\overrightarrow{A0}$ $\overrightarrow{A0}$ $\overrightarrow{A0}$ 53 $\overrightarrow{LD#}$ $\overrightarrow{R0}$ $\overrightarrow{R0}$ $\overrightarrow{R0}$ $\overrightarrow{R0}$ 54 \overrightarrow{NC} \overrightarrow{NC} \overrightarrow{NC} $\overrightarrow{R0}$ $\overrightarrow{R0}$ $\overrightarrow{R0}$ 55 $\overrightarrow{NW0#}$ $\overrightarrow{BW0#}$ $\overrightarrow{BW0#}$ $\overrightarrow{BW0#}$ $\overrightarrow{R0}$ $\overrightarrow{R1}$ 56 \overrightarrow{K} \overrightarrow{K} $\overrightarrow{R0}$ $\overrightarrow{R0}$ $\overrightarrow{R0}$ $\overrightarrow{R1}$ 57 \overrightarrow{K} \overrightarrow{K} $\overrightarrow{R0}$ $\overrightarrow{R0}$ $\overrightarrow{S0}$ $\overrightarrow{S0}$ 58 \overrightarrow{NC} \overrightarrow{NC} \overrightarrow{NC} \overrightarrow{NC} $\overrightarrow{S0}$ $\overrightarrow{S0}$ 59 $\overrightarrow{NU1#}$ \overrightarrow{NC} \overrightarrow{NC} $\overrightarrow{S0}$	49			4		9A	
52 A A A0 A0 6C 53 $\angle \Box$ $\angle \Box$ 8A 54 NC NC NC BW0# 7A 55 NW0# BW0# BW0# BW0# 7B 56 $\angle K$ 6B 7B 56 $\angle K$ 6B 57 $\angle K$ 6B 58 NC NC BW1# 5B 59 NW1# NC BW1# 5A 60 $\angle R$, $\forall \#$ 4A 61 $\angle R$, $\forall \#$ 4A 61 $\angle R$, $\forall \#$ 4B 63 A A A SA 64 $\angle D \bot$ $\angle H$ 1H 65 $\angle C \blacksquare$ $\angle H$ 1H 65 $\angle C \blacksquare$ 1A 1A 64 $\angle D \bot$ 1A 1A 65 $\angle C \blacksquare$ 1A 3B 66 NC NC DQ1 2B 67 NC NC NC 1C <t< td=""><td>50</td><td></td><td></td><td>4</td><td></td><td>8B</td></t<>	50			4		8B	
53 $\square \square $	51			4		7C	
54 NC NC NC BW01# BW01# F 55 NW00# BW00# BW00# BW00# BW00# 7B 56 $-7B$ $-7B$ $-7B$ $-7B$ 56 $-7B$ $-7B$ $-6B$ 57 $-7E$ $-6B$ 58 NC NC NC BW3# $-5B$ 59 NW1# NC BW1# $BW2#$ $-5A$ 60 $-7E, W#$ $-4A$ $-6A$ $-5C$ 62 $-7E, W#$ $-4A$ $-5C$ 62 $-7E, W#$ $-4A$ $-4A$ 63 A A A A 64 $-2E, W#$ $-1H$ $-1H$ 65 $-CQ#$ $-1A$ $-1A$ 66 NC NC $DQ9$ $DQ27$ $2B$ 67 NC NC NC $1C$ $-1E$ 68 NC NC NC	52	А	А	A0	A0	6C	
55 NW0# BW0# BW0# BW0# BW0# 7B 56 $$	53		L	D#		8A	
56 K 68 57 K 6A 58 NC NC NC BW3# 5B 59 NW1# NC BW1# BW2# 5A 60 R, W 4A 5C 5C 61 R, W 4A 5C 62 A A AB 63 A A A 3A 64 $DLLt$ 1H 1A 65 CQ 1A 3A 64 DLL 1H 3B 66 NC NC DQ9 DQ27 2B 67 NC NC NC 1C 3B 68 NC NC NC NC 1C 69 NC NC NC NC 1B 70 NC NC DQ10 DQ19 3D	54	NC	NC	NC	BW1#	7A	
57 $K \#$ 6A 58 NC NC NC BW3# 5B 59 NW1# NC BW1# BW2# 5A 60 $- R, W #$ 4A 61 $- R, W #$ 4A 61 $- R, W #$ 4B 62 $- A$ 5C 62 $- A$ 4B 63 A A A 64 $- D \sqcup H$ 1H 65 $- C \lor W$ 1A 66 NC NC DQ9 DQ27 2B 67 NC NC NC 1C 68 NC NC NC 1C 69 NC NC NC NC 1B 70 NC NC DQ10 DQ19 3D	55	NW0#	BW0#	BW0#	BW0#	7B	
58 NC NC NC BW3# 5B 59 NW1# NC BW1# BW2# 5A 60 $-R, \forall \#$ 4A 61 $-R, \forall \#$ 4A 61 $$	56		ł	<		6B	
59 NW1# NC BW1# BW2# 5A 60 $-R, \forall \#$ 4A 61 $-A$ 5C 62 $-A$ 4B 63 A A A 64 $-D \perp \#$ 1H 65 $-C \lor \#$ 1A 66 NC NC DQ9 DQ27 67 NC NC NC 1C 68 NC NC NC 1C 69 NC NC NC 1B 70 NC NC DQ10 DQ19	57		ĸ	#		6A	
60 R, W# $4A$ 61 A A $5C$ 62 A $4B$ 63 A A A 64 $DLL#$ 1H 65 $CQ#$ 1A 66 NC NC DQ9 DQ27 2B 67 NC NC NC DQ18 3B 68 NC NC NC NC 1C 69 NC NC NC NC 1B 70 NC NC DQ10 DQ19 3D	58	NC	NC	NC	BW3#	5B	
61 \rightarrow \rightarrow $5C$ 62 \rightarrow \rightarrow $4B$ 63 A A A NC $3A$ 64 \rightarrow $DLL#$ 1H 65 $-CQ#$ 1A 66 NC NC $DQ9$ $DQ27$ $2B$ 67 NC NC NC $DQ18$ $3B$ 68 NC NC NC NC $1C$ 69 NC NC NC NC $1B$ 70 NC NC $DQ10$ $DQ19$ $3D$	59	NW1#	NC	BW1#	BW2#	5A	
62 $+$ $+$ 48 63 A A A AC $3A$ 64 $ 1H$ 65 $ 1A$ 66 NC NC $DQ9$ $DQ27$ $2B$ 67 NC NC NC $DQ18$ $3B$ 68 NC NC NC NC $1C$ 69 NC NC NC NC $1B$ 70 NC NC $DQ10$ $DQ19$ $3D$	60		R,	W#		4A	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	61			4		5C	
64 DLL# 1H 65 CQ# 1A 66 NC NC DQ9 DQ27 2B 67 NC NC NC DQ18 3B 68 NC NC NC NC 1C 69 NC NC NC NC 1B 70 NC NC DQ10 DQ19 3D	62		/	4		4B	
65 CQ# 1A 66 NC NC DQ9 DQ27 2B 67 NC NC NC DQ18 3B 68 NC NC NC NC 1C 69 NC NC NC NC 1B 70 NC NC DQ10 DQ19 3D	63	А	А	А	NC	3A	
66 NC NC DQ9 DQ27 2B 67 NC NC NC DQ18 3B 68 NC NC NC NC 1C 69 NC NC NC NC 1B 70 NC NC DQ10 DQ19 3D	64		DL	L#		1H	
67 NC NC NC DQ18 3B 68 NC NC NC NC 1C 69 NC NC NC NC 1B 70 NC NC DQ10 DQ19 3D	65		C	Q#	-	1A	
68 NC NC NC 1C 69 NC NC NC NC 1B 70 NC NC DQ10 DQ19 3D	66	NC	NC	DQ9	DQ27	2B	
69 NC NC NC NC 1B 70 NC NC DQ10 DQ19 3D	67	NC	NC	NC	DQ18	3B	
70 NC NC DQ10 DQ19 3D	68	NC	NC	NC	NC	1C	
	69	NC	NC	NC	NC	1B	
71 NC NC NC DQ28 3C	70	NC	NC	DQ10	DQ19	3D	
	71	NC	NC	NC	DQ28	3C	
72 NC NC NC NC 1D	72	NC	NC	NC	NC	1D	

Bit		Signal	name		Bump
no.	x8	x9	x18	x36	ID
73	NC	NC	NC	NC	2C
74	DQ4	DQ5	DQ11	DQ20	3E
75	NC	NC	NC	DQ29	2D
76	NC	NC	NC	NC	2E
77	NC	NC	NC	NC	1E
78	NC	NC	DQ12	DQ30	2F
79	NC	NC	NC	DQ21	3F
80	NC	NC	NC	NC	1G
81	NC	NC	NC	NC	1F
82	DQ5	DQ6	DQ13	DQ22	3G
83	NC	NC	NC	DQ31	2G
84	NC	NC	NC	NC	1J
85	NC	NC	NC	NC	2J
86	NC	NC	DQ14	DQ23	ЗK
87	NC	NC	NC	DQ32	3J
88	NC	NC	NC	NC	2K
89	NC	NC	NC	NC	1K
90	DQ6	DQ7	DQ15	DQ33	2L
91	NC	NC	NC	DQ24	3L
92	NC	NC	NC	NC	1M
93	NC	NC	NC	NC	1L
94	NC	NC	DQ16	DQ25	3N
95	NC	NC	NC	DQ34	ЗM
96	NC	NC	NC	NC	1N
97	NC	NC	NC	NC	2M
98	DQ7	DQ8	DQ17	DQ26	3P
99	NC	NC	NC	DQ35	2N
100	NC	NC	NC	NC	2P
101	NC	1P			
102		3R			
103		4R			
104		4P			
105		5P			
106		ļ	A		5N
107		ŀ	4		5R

JTAG Instructions

Instructions	Description
EXTEST	The EXTEST instruction allows circuitry external to the component package to be tested. Boundary- scan register cells at output pins are used to apply test vectors, while those at input pins capture test results. Typically, the first test vector to be applied using the EXTEST instruction will be shifted into the boundary scan register using the PRELOAD instruction. Thus, during the update-IR state of EXTEST, the output drive is turned on and the PRELOAD data is driven onto the output pins.
IDCODE	The IDCODE instruction causes the ID ROM to be loaded into the ID register when the controller is in capture-DR mode and places the ID register between the TDI and TDO pins in shift-DR mode. The IDCODE instruction is the default instruction loaded in at power up and any time the controller is placed in the test-logic-reset state.
BYPASS	When the BYPASS instruction is loaded in the instruction register, the bypass register is placed between TDI and TDO. This occurs when the TAP controller is moved to the shift-DR state. This allows the board level scan path to be shortened to facilitate testing of other devices in the scan path.
SAMPLE / PRELOAD	SAMPLE / PRELOAD is a Standard 1149.1 mandatory public instruction. When the SAMPLE / PRELOAD instruction is loaded in the instruction register, moving the TAP controller into the capture-DR state loads the data in the RAMs input and DQ pins into the boundary scan register. Because the RAM clock(s) are independent from the TAP clock (TCK) it is possible for the TAP to attempt to capture the I/O ring contents while the input buffers are in transition (i.e., in a metastable state). Although allowing the TAP to sample metastable input will not harm the device, repeatable results cannot be expected. RAM input signals must be stabilized for long enough to meet the TAPs input data capture setup plus hold time (tcs plus tch). The RAMs clock inputs need not be paused for any other TAP operation except capturing the I/O ring contents into the boundary scan register. Moving the controller to shift-DR state then places the boundary scan register between the TDI and TDO pins.
SAMPLE-Z	If the SAMPLE-Z instruction is loaded in the instruction register, all RAM DQ pins are forced to an inactive drive state (high impedance) and the boundary register is connected between TDI and TDO when the TAP controller is moved to the shift-DR state.

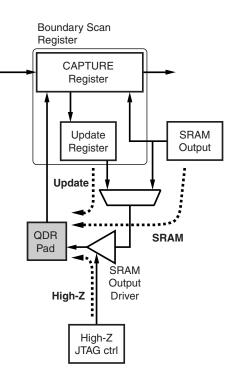
JTAG Instruction Coding

IR2	IR1	IR0	Instruction	Note
0	0	0	EXTEST	
0	0	1	IDCODE	
0	1	0	SAMPLE-Z	1
0	1	1	RESERVED	2
1	0	0	SAMPLE / PRELOAD	
1	0	1	RESERVED	2
1	1	0	RESERVED	2
1	1	1	BYPASS	

Notes 1. TRISTATE all DQ pins and CAPTURE the pad values into a SERIAL SCAN LATCH.

2. Do not use this instruction code because the vendor uses it to evaluate this product.

Output Pin States of CQ, CQ# and DQ

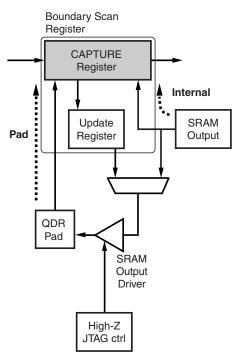

Instructions	Control-Register Status	Output Pin Status	
		CQ, CQ#	DQ
EXTEST	0	Update	High-Z
	1	Update	Update
IDCODE	0	SRAM	SRAM
	1	SRAM	SRAM
SAMPLE-Z	0	High-Z	High-Z
	1	High-Z	High-Z
SAMPLE	0	SRAM	SRAM
	1	SRAM	SRAM
BYPASS	0	SRAM	SRAM
	1	SRAM	SRAM

Remark The output pin statuses during each instruction vary according to the Control-Register status (value of Boundary Scan Register, bit no. 48).

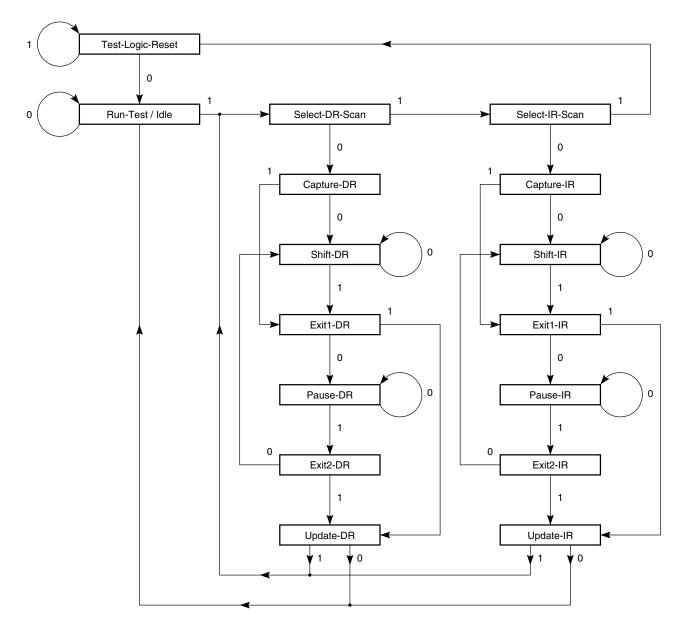
There are three statuses:

- Update : Contents of the "Update Register" are output to the output pin (QDR Pad).
- SRAM : Contents of the SRAM internal output "SRAM Output" are output to the output pin (QDR Pad).
- High-Z : The output pin (QDR Pad) becomes high impedance by controlling of the "High-Z JTAG ctrl".

The Control-Register status is set during Update-DR at the EXTEST or SAMPLE instruction.

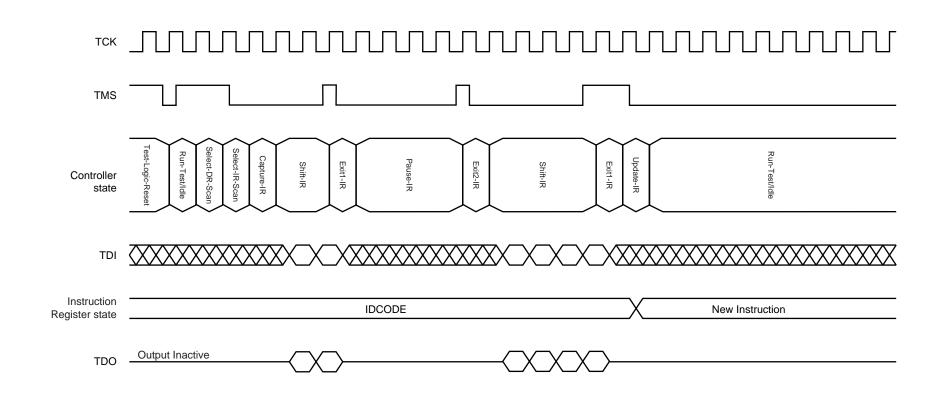

Boundary Scan Register Status of Output Pins CQ, CQ# and DQ

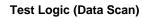
Instructions	SRAM Status	Boundary Scan Register Status		Note
		CQ, CQ#	DQ	
EXTEST	READ (Low-Z)	Pad	Pad	
	NOP (High-Z)	Pad	Pad	
IDCODE	READ (Low-Z)	_	_	No definition
	NOP (High-Z)	_	_	
SAMPLE-Z	READ (Low-Z)	Pad	Pad	
	NOP (High-Z)	Pad	Pad	
SAMPLE	READ (Low-Z)	Internal	Internal	
	NOP (High-Z)	Internal	Pad	
BYPASS	READ (Low-Z)	_	_	No definition
	NOP (High-Z)	_	_	

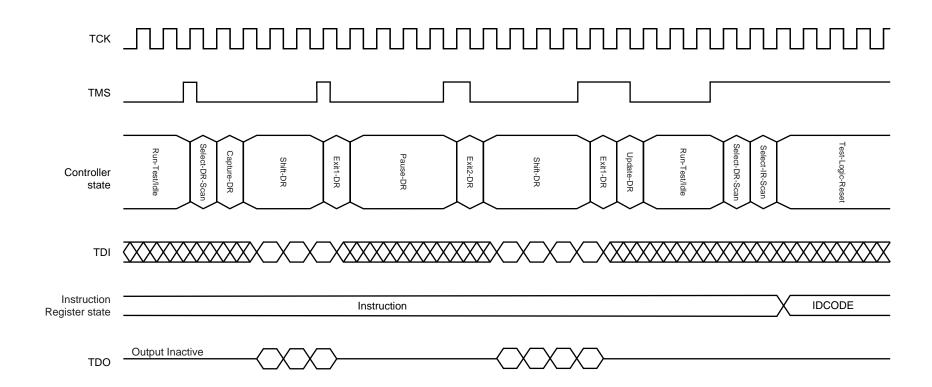

Remark The Boundary Scan Register statuses during execution each instruction vary according to the instruction code and SRAM operation mode.

There are two statuses:

- Pad : Contents of the output pin (QDR Pad) are captured in the "CAPTURE Register" in the Boundary Scan Register.
- Internal : Contents of the SRAM internal output "SRAM Output" are captured in the "CAPTURE Register" in the Boundary Scan Register.

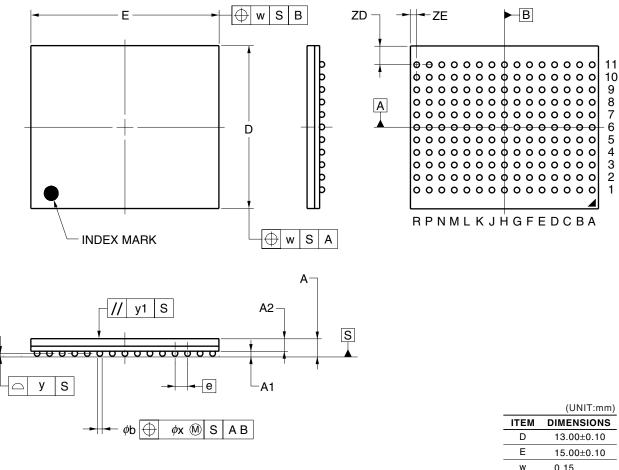

TAP Controller State Diagram




Disabling the Test Access Port

It is possible to use this device without utilizing the TAP. To disable the TAP Controller without interfering with normal operation of the device, TCK must be tied to Vss to preclude mid level inputs. TDI and TMS may be left open but fix them to V_{DD} via a resistor of about 1 k Ω when the TAP controller is not used. TDO should be left unconnected also when the TAP controller is not used.

Test Logic Operation (Instruction Scan)



Package Drawing

165-PIN PLASTIC BGA (13x15)

	(01111.11111)	
ITEM	DIMENSIONS	
D	13.00±0.10	
E	15.00±0.10	
w	0.15	
е	1.00	
А	1.40±0.11	
A1	0.40±0.05	
A2	1.00	
b	0.50±0.05	
х	0.08	
У	0.10	
y1	0.20	
ZD	1.50	
ZE	0.50	
	P165F5-100-EQ2	

Recommended Soldering Condition

Please consult with our sales offices for soldering conditions of these products.

Types of Surface Mount Devices

μPD44164082AF5-EQ2 :	165-pin PLASTIC BGA (13 x 15)
μPD44164092AF5-EQ2 :	165-pin PLASTIC BGA (13 x 15)
μPD44164182AF5-EQ2 :	165-pin PLASTIC BGA (13 x 15)
μPD44164362AF5-EQ2 :	165-pin PLASTIC BGA (13 x 15)
μPD44164082AF5-EQ2-A :	165-pin PLASTIC BGA (13 x 15)
μPD44164092AF5-EQ2-A :	165-pin PLASTIC BGA (13 x 15)
μPD44164182AF5-EQ2-A :	165-pin PLASTIC BGA (13 x 15)
μPD44164362AF5-EQ2-A :	165-pin PLASTIC BGA (13 x 15)

Revision History

Edition/	Pa	ige	Type of	Location	Description
Date	This	Previous	revision		(Previous edition \rightarrow This edition)
	edition	edition			
3rd edition/	Throughout	Throughout	Addition	—	-E37 (Commercial)
Feb. 2007					-E37Y, -E40Y, -E50Y (Industrial)
	p.9	pp.7,8	Modification	Pin Identification ZQ, DLL#, NC	Text has been modified.
	pp.14, 15	p.13	Addition	Byte Write Operation	Remark 2 has been added.
	p.21	p.19	Modification	Read and Write Cycle	Note 1 has been modified.
			Addition		Note 4 has been added.
	p.26	p.24	Modification	JTAG AC Characteristics	JTAG AC Characteristics have been modified.

[MEMO]

NOTES FOR CMOS DEVICES -----

1 VOLTAGE APPLICATION WAVEFORM AT INPUT PIN

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between V_{IL} (MAX) and V_{IH} (MIN) due to noise, etc., the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between V_{IL} (MAX) and V_{IH} (MIN).

(2) HANDLING OF UNUSED INPUT PINS

Unconnected CMOS device inputs can be cause of malfunction. If an input pin is unconnected, it is possible that an internal input level may be generated due to noise, etc., causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using pull-up or pull-down circuitry. Each unused pin should be connected to V_{DD} or GND via a resistor if there is a possibility that it will be an output pin. All handling related to unused pins must be judged separately for each device and according to related specifications governing the device.

③ PRECAUTION AGAINST ESD

A strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it when it has occurred. Environmental control must be adequate. When it is dry, a humidifier should be used. It is recommended to avoid using insulators that easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors should be grounded. The operator should be grounded using a wrist strap. Semiconductor devices must have hands. Similar precautions need to be taken for PW boards with mounted semiconductor devices.

④ STATUS BEFORE INITIALIZATION

Power-on does not necessarily define the initial status of a MOS device. Immediately after the power source is turned ON, devices with reset functions have not yet been initialized. Hence, power-on does not guarantee output pin levels, I/O settings or contents of registers. A device is not initialized until the reset signal is received. A reset operation must be executed immediately after power-on for devices with reset functions.

5 POWER ON/OFF SEQUENCE

In the case of a device that uses different power supplies for the internal operation and external interface, as a rule, switch on the external power supply after switching on the internal power supply. When switching the power supply off, as a rule, switch off the external power supply and then the internal power supply. Use of the reverse power on/off sequences may result in the application of an overvoltage to the internal elements of the device, causing malfunction and degradation of internal elements due to the passage of an abnormal current.

The correct power on/off sequence must be judged separately for each device and according to related specifications governing the device.

(6) INPUT OF SIGNAL DURING POWER OFF STATE

Do not input signals or an I/O pull-up power supply while the device is not powered. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Input of signals during the power off state must be judged separately for each device and according to related specifications governing the device.

- The information in this document is current as of February, 2007. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC Electronics data sheets or data books, etc., for the most up-to-date specifications of NEC Electronics products. Not all products and/or types are available in every country. Please check with an NEC Electronics sales representative for availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may appear in this document.
- NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from the use of NEC Electronics products listed in this document or any other liability arising from the use of such products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Electronics or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of a customer's equipment shall be done under the full responsibility of the customer. NEC Electronics assumes no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and information.
- While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics products, customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize risks of damage to property or injury (including death) to persons arising from defects in NEC Electronics products, customers must incorporate sufficient safety measures in their design, such as redundancy, fire-containment and anti-failure features.
- NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and "Specific".

The "Specific" quality grade applies only to NEC Electronics products developed based on a customerdesignated "quality assurance program" for a specific application. The recommended applications of an NEC Electronics product depend on its quality grade, as indicated below. Customers must check the quality grade of each NEC Electronics product before using it in a particular application.

- "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots.
- "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support).
- "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications not intended by NEC Electronics, they must contact an NEC Electronics sales representative in advance to determine NEC Electronics' willingness to support a given application.

(Note)

- (1) "NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its majority-owned subsidiaries.
- (2) "NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as defined above).