

QUICKSWITCH® PRODUCTS HIGH-PERFORMANCE CMOS ANALOG FOUR-CHANNEL SPDT MUX/DEMUX

IDTQS4A205

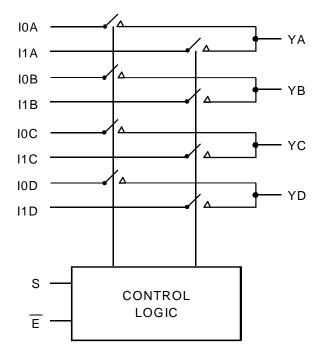
FEATURES:

- Low On-resistance: rDS(on) = 5Ω
- Fast Transition Time: t_{Tran} = 6ns
- Wide bandwidth: 830MHz (–3dB point)
- Crosstalk: -115dB @ 50KHz, -100dB @ 5MHz, -66dB @ 30MHz
- Off-isolation: –90dB @ 50KHz, –60dB @ 5MHz, –50dB @ 30MHz
- Single 5V supply
- Can be used as a multiplexer or demultiplexer
- TTL compatible control inputs
- Ultra-low quiescent current: 3μA

APPLICATIONS

- High-speed video signal switching/routing
- HDTV-quality video signal routing
- Audio signal switching/routing
- Data acquisition
- ATE systems
- Telecomm routing
- Switch between multiple video sources
- Token Ring transceivers
- High-speed networking

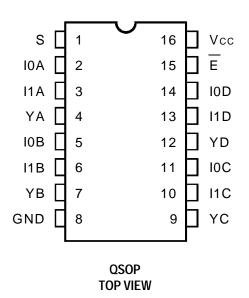
DESCRIPTION:


The QS4A205 is a high-performance CMOS analog Four-Channel SPDT multiplexer/demultiplexer with individual enables. The low Onresistance of the QS4A205 allows inputs to be connected to outputs with low insertion loss and high bandwidth. TTL-compatible control circuitry with "Break-Before-Make" feature prevents contention.

The QS4A205 with 830MHz bandwidth makes it ideal for high-performance video signal switching, audio signal switching, and telecommrouting applications. High performance and low power dissipation makes this device ideal for battery operated and remote instrumentation applications.

The QS4A205 is offered in the QSOP package and has several advantages over conventional packages such as PDIP and SOIC including:

- Reduced signal delays due to denser component packaging on circuit boards
- Reduced system noise due to less pin inductance resulting in lower ground bounce


FUNCTIONAL BLOCK DIAGRAM

INDUSTRIAL TEMPERATURE RANGE

AUGUST 2000

PIN CONFIGURATION

ABSOLUTE MAXIMUM RATINGS (1)

Symbol	Description	Max.	Unit	
VTERM (2)	Supply Voltage to Ground	- 0.5 to 7	V	
VTERM (2)	DC Switch Voltage Vs	ch Voltage Vs – 0.5 to 7		
	Analog Input Voltage	- 0.5 to 7	V	
VTERM (2)	DC Input Voltage VIN	– 0.5 to 7	V	
VAC	AC Input Voltage (for a pulse width ≤ 20ns)	- 3	V	
Vout	DC Output Current	120	mA	
Рмах	Maximum Power Dissipation (Ta = 85°C)	0.7	W	
Tstg	Storage Temperature	-65 to 150	°C	

NOTES:

- Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
- 2. Vcc terminals.
- 3. All terminals except Vcc.

CAPACITANCE (TA = $+25^{\circ}$ C, f = 1MHz, Vin = 0V, Vout = 0V)

Symbol	Parameter ⁽¹⁾	Conditions	Тур.	Max.	Unit
CMUX (OFF)	MUX Off	$\overline{E} = V_{CC}$, $V_{IN} = V_{OUT} = 0V$	5.6	_	pF
	Capacitance				
CDEMUX (OFF)	DEMUX Off	$\overline{E} = V_{CC}$, $V_{IN} = V_{OUT} = 0V$	7.4	_	pF
	Capacitance				
CMUX (ON)	MUX On	$\overline{E} = 0V$, $V_{IN} = V_{OUT} = 0V$	12	_	pF
	Capacitance				
CDEMUX (ON)	DEMUX On	$\overline{E} = 0V$, $VIN = VOUT = 0V$	15	_	pF
	Capacitance				

NOTE:

1. As applicable to the device type.

PIN DESCRIPTION

Pin Names	I/O	Description	
IxA	I/O	Demux Port A	
IxB	I/O	Demux Port B	
IxC	I/O	Demux Port C	
IxD	I/O	Demux Port D	
Ē	1	Enable Input	
S	l	Select Input	
YA-YD	I/O	Mux Port A-D	

FUNCTION TABLE (1)

Enable	Select		MUX/DE			
Ē	S	YA	YB	YC	YD	Function
Н	Χ	High-Z	High-Z	High-Z	High-Z	Disable
L	Ш	IOA	I0B	I0C	IOD	Select 0
L	Н	I1A	I1B	I1C	I1D	Select 1

NOTE:

1. H = HIGH Voltage Level

L = LOW Voltage Level

X = Don't Care

Z = High-Impedence

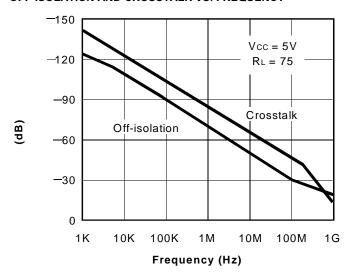
DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified:

Industrial: TA = -40°C to +85°C, Vcc = $5V \pm 5\%$

Symbol	Parameter	Test Conditions	Min.	Typ. ⁽¹⁾	Max.	Unit
Analog Swi	tch					
VIN	Analog Signal Range ⁽²⁾		-0.5	1	Vcc-1	V
rds(on)	Drain-Source On-Resistance ^(2,3)	VCC = Min., VIN =0V, ION = 30mA	_	5	7	Ω
		Vcc = Min., VIN = 2.4V, ION = 15mA	_	13	17	Ω
IC(OFF)	Channel Off Leakage Current	In = Vcc or 0V, Yn = 0V or Vcc, \overline{E} = Vcc	_	2	_	nA
IC(ON)	Channel On Leakage Current	In = Yn = 0V, Each channel is turned on sequentially	_	2	_	nA
Digital Conti	rol		•	•		
ViH	Input HIGH Voltage	Guaranteed Logic HIGH for Control Pins	2	_	_	V
VIL	Input LOW Voltage	Guaranteed Logic LOW for Control Pins	_	_	0.8	V
Dynamic Ch	aracteristics	·				•
ttrans	Switching Time of MUX S to Y	RL = 1KΩ, CL = 100pF	0.5	_	6.6	ns
ton(EN)	Enable Turn-On Time, \overline{E} to Y	$RL = 1K\Omega$, $CL = 100pF$	0.5	_	6	ns
toff(EN)	Enable Turn-Off Time, \overline{E} to Y	$R_L = 1K\Omega$, $C_L = 100pF$	0.5	_	6	ns
tpd	Group Delay (2, 4)	$RL = 1K\Omega$, $CL = 100pF$	_	_	250	ps
f3dB	-3dB Bandwidth	VIN = $1Vp-p$, $RL = 75\Omega$	_	830	_	MHz
	Off-Isolation	VIN = $1Vp-p$, $RL = 75\Omega$, $f = 5MHz$	_	-60	_	dB
XTALK	Crosstalk	VIN = $1Vp-p$, $RL = 75\Omega$, $f = 5MHz$	_	-100	_	dB
Qcı	Charge Injection	·	_	1.5	_	рС

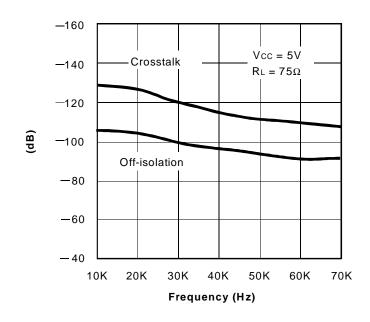
NOTES:

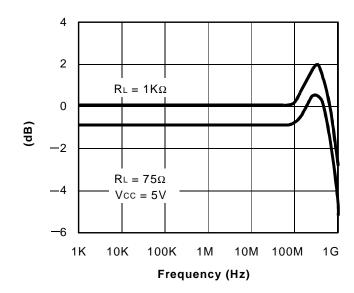

- 1. Typical values are at Vcc = 5V and TA = 25°C.
- 2. Guaranteed by design, not subject to production test.
- 3. Measured by voltage drop between I and Y pins at indicated current through the switch. On-resistance is determined by the lower of the voltages on the two (I, Y) pins.
- 4. The bus switch contributes no group delay other than the RC Delay of the On-Resistance of the switch and the load capacitance. Propagation Delay of the bus switch, when used in a system, is determined by the driving circuit on the driving side of the switch and its interaction with the load on the driven side.

POWER SUPPLY CHARACTERISTICS

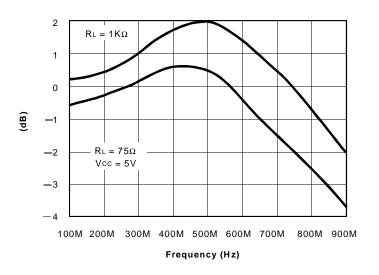

Symbol	Parameter	Test Conditions	Max.	Unit
Icco	Quiescent Power	Vcc = Max., Vin = GND or Vcc, f = 0	3	μΑ

TYPICAL CHARACTERISTICS

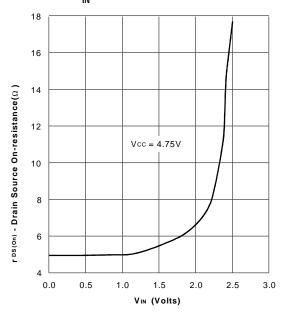

OFF-ISOLATION AND CROSSTALK VS. FREQUENCY


OFF-ISOLATION AND CROSSTALK VS. FREQUENCY

OFF-ISOLATION AND CROSSTALK VS. FREQUENCY

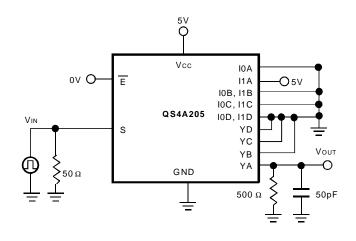


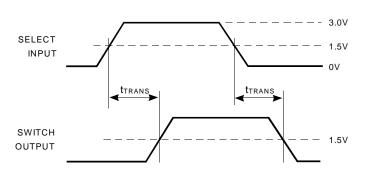
INSERTION LOSS VS. FREQUENCY



TYPICAL CHARACTERISTICS (CONTINUED)

INSERTION LOSS VS. FREQUENCY

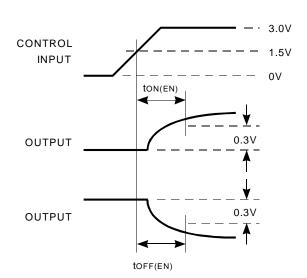

ON-RESISTANCE VS. V_{IN}

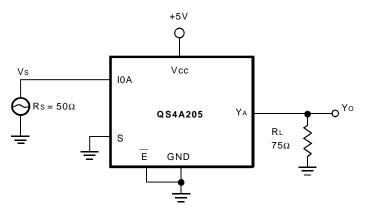


Ron LINK

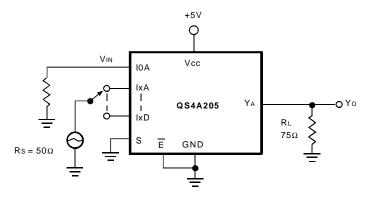
TEST CIRCUITS

TRANSITION TIME




TEST CIRCUITS (CONTINUED)

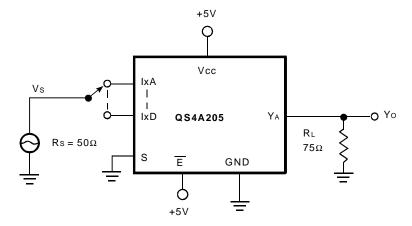
ENABLE SWITCHING TIME



INSERTION LOSS

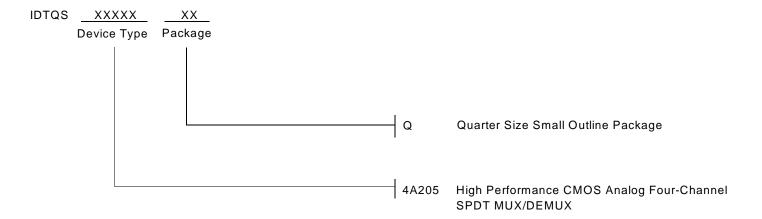
CROSSTALK

NOTE:


1. Insertion Loss = 20 log | Vo/Vs|

NOTE:

1. Crosstalk = 20 log | Vo/Vs|


TEST CIRCUITS (CONTINUED)

OFF-ISOLATION

NOTE:
1. Off-Isolation = 20 log | Vo/Vs|

ORDERING INFORMATION

CORPORATE HEADQUARTERS
2975 Stender Wav

2975 Stender Way Santa Clara, CA 95054 for SALES:

800-345-7015 or 408-727-6116 fax: 408-492-8674 www.idt.com*

*To search for sales office near you, please click the sales button found on our home page or dial the 800# above and press 2.

The IDT logo, QuickSwitch, and SynchroSwitch are registered trademarks of Integrated Device Technology, Inc.