
INTEGRATED CIRCUITS

Product specification Supersedes data of 1997 May 15 IC24 Data Handbook

1998 Apr 30

74LV163

FEATURES

- Optimized for low voltage applications: 1.0 to 3.6 V
- Accepts TTL input levels between V_{CC} = 2.7 V and V_{CC} = 3.6 V
- Typical V_{OLP} (output ground bounce) < 0.8 V at V_{CC} = 3.3 V, $T_{amb} = 25^{\circ}C$
- Typical V_{OHV} (output V_{OH} undershoot) > 2 V at V_{CC} = 3.3 V, $T_{amb} = 25^{\circ}C$
- Synchronous counting and loading
- Two count enable inputs for n-bit cascading
- Positive-edge triggered clock
- Synchronous reset
- Output capability: standard
- I_{CC} category: MSI

DESCRIPTION

The 74LV163 is a low-voltage Si-gate CMOS device and is pin and function compatible with 74HC/HCT163.

The 74LV163 is a synchronous presettable binary counter which features an internal look-head carry and can be used for high-speed counting. Synchronous operation is provided by having all flip-flops

clocked simultaneously on the positive-going edge of the clock (CP). The outputs (Q_0 to Q_3) of the counters may be preset to a HIGH or LOW level. A LOW level at the parallel enable input (PE) disables the counting action and causes the data at the data inputs (D_0 to D_3) to be loaded into the counter on the positive-going edge of the clock (providing that the set-up and hold time requirements for PE are met). Preset takes place regardless of the levels at count enable inputs (CEP and CET). A low level at the master reset input (MR) sets all four outputs of the flip-flops (Q_0 to Q_3) to LOW level after the next positive-going transition on the clock (CP) input (provided that the set-up and hold time requirements for MR are met).

This action occurs regardless of the levels at \overline{PE} , CET and CEP inputs. This synchronous reset feature enables the designer to modify the maximum count with only one external NAND gate. The look ahead carry simplifies serial cascading of the counters. Both count enable inputs (CEP and CET) must be HIGH to count. The CET input is fed forward to enable the terminal count output (TC). The TC output thus enabled will produce a HIGH output pulse of a duration approximately equal to a HIGH level output of Q₀. This pulse can be used to enable the next cascading stage. The maximum clock frequency for the cascaded counters is determined by the CP to TC propagation delay and CEP to CP set-up time, according to the following formula:

$$f_{max} = \frac{1}{tp_{(max)} (CP \text{ to } TC) + t_{su}(CEP \text{ to } CP)}$$

QUICK REFERENCE DATA

GND = 0 V; $T_{amb} = 25^{\circ}C$; $t_r = t_f \le 2.5$ ns

SYMBOL	PARAMETER	CONDITIONS	TYPICAL	UNIT
t _{PHL} /t _{PLH}	Propagation delay CP to Q _n CP to TC CET to TC	C _L = 15 pF; V _{CC} = 3.3 V	15 18 9	ns
f _{max}	Maximum clock frequency		77	MHz
CI	Input capacitance		3.5	pF
C _{PD}	Power dissipation capacitance per gate	$V_I = GND$ to V_{CC}^1	25	pF

NOTES:

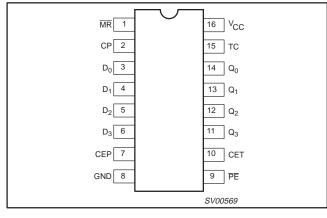
1. C_{PD} is used to determine the dynamic power dissipation (P_D in μ W)

 $P_D = C_{PD} \times V_{CC}^2 \times f_i + \sum (C_L \times V_{CC}^2 \times f_o)$ where:

 f_i = input frequency in MHz; C_L = output load capacitance in pF;

 $f_o =$ output frequency in MHz; $V_{CC} =$ supply voltage in V;

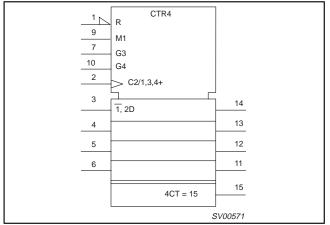
 $\sum (C_L \times V_{CC}^2 \times f_0) =$ sum of the outputs.

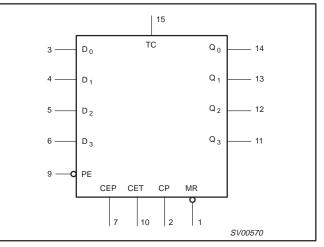

ORDERING INFORMATION

PACKAGES	TEMPERATURE RANGE	OUTSIDE NORTH AMERICA	NORTH AMERICA	PKG. DWG. #
16-Pin Plastic DIL	–40°C to +125°C	74LV163 N	74LV163 N	SOT38-4
16-Pin Plastic SO	–40°C to +125°C	74LV163 D	74LV163 D	SOT109-1
16-Pin Plastic SSOP Type II	–40°C to +125°C	74LV163 DB	74LV163 DB	SOT338-1
16-Pin Plastic TSSOP Type I	–40°C to +125°C	74LV163 PW	74LV163PW DH	SOT403-1

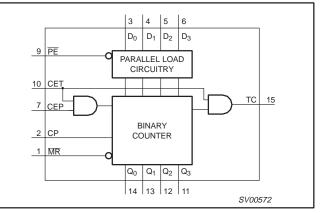
Product specification

74LV163


PIN CONFIGURATION


PIN DESCRIPTION

PIN NUMBER	SYMBOL	FUNCTION
1	MR	Asynchronous master reset (active LOW)
2	СР	Clock input (LOW-to-HIGH, edge-triggered)
3, 4, 5, 6	D_0 to D_3	Data inputs
7	CEP	Count enable inputs
8	GND	Ground (0 V)
9	PE	Parallel enable input (active LOW)
10	CET	Count enable carry input
14, 13, 12, 11	Q_0 to Q_3	Flip-flop outputs
15	тс	Terminal count output
16	V _{CC}	Positive supply voltage


LOGIC SYMBOL (IEEE/IEC)

LOGIC SYMBOL

FUNCTIONAL DIAGRAM

74LV163

FUNCTION TABLE

				OUTPUTS				
OPERATING MODES	MR	СР	CEP	CET	PE	D _n	Q _n	тс
Reset (clear)	Ι	\uparrow	Х	Х	Х	Х	L	L
Developing	h	\uparrow	Х	Х	I	I	L	L
Parallel load	h	\uparrow	х	х	I	h	н	*
Count	h	↑	h	h	h	Х	Count	*
Lold (do pothing)	h	Х	I	Х	h	Х	q _n	*
Hold (do nothing)	h	Х	Х	I	h	Х	q _n	L

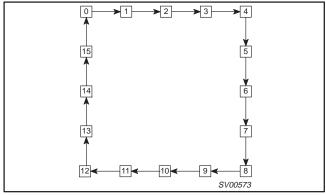
NOTES:

The TC output is HIGH when CET is HIGH and the counter is at terminal count (HHHH) =

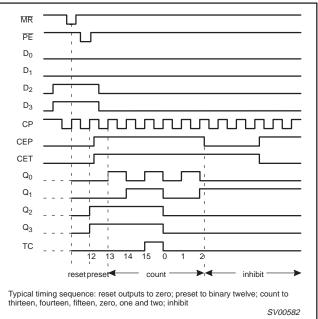
Н HIGH voltage level =

HIGH voltage level one set-up time prior to the LOW-to-HIGH clock transition h =

LOW voltage level = L

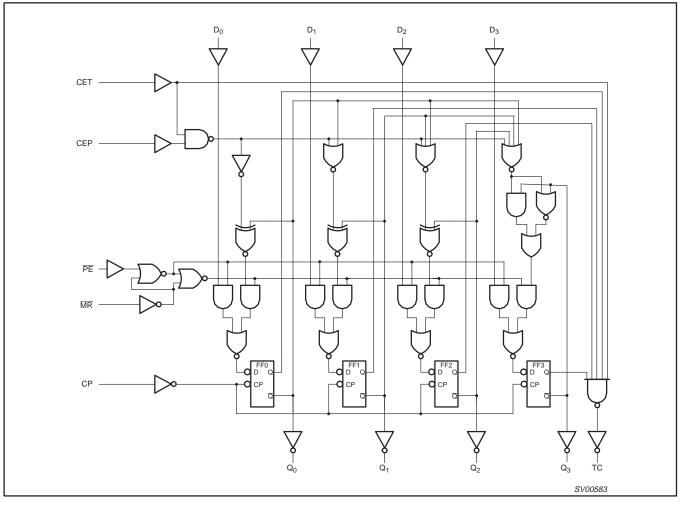

LOW voltage level level one set-up time prior to the LOW-to-HIGH clock transition =

q X = lower case letters indicate the state of the referenced output one set-up time prior to the LOW-to-HIGH clock transition


don't care =

LOW-to-HIGH clock transition ↑ =

STATE DIAGRAM


TYPICAL TIMING SEQUENCE

74LV163

Product specification

LOGIC DIAGRAM

74LV163

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNIT
V _{CC}	DC supply voltage	See Note 1	1.0	3.3	3.6	V
VI	Input voltage		0	-	V _{CC}	V
Vo	Output voltage		0	-	V _{CC}	V
T _{amb}	Operating ambient temperature range in free air	See DC and AC characteristics	-40 -40		+85 +125	°C
t _r , t _f	Input rise and fall times	$V_{CC} = 1.0V \text{ to } 2.0V$ $V_{CC} = 2.0V \text{ to } 2.7V$ $V_{CC} = 2.7V \text{ to } 3.6V$			500 200 100	ns/V

NOTE:

1. The LV is guaranteed to function down to V_{CC} = 1.0V (input levels GND or V_{CC}); DC characteristics are guaranteed from V_{CC} = 1.2V to V_{CC} = 3.6V.

ABSOLUTE MAXIMUM RATINGS^{1, 2}

In accordance with the Absolute Maximum Rating System (IEC 134). Voltages are referenced to GND (ground = 0 V).

SYMBOL	PARAMETER	CONDITIONS	RATING	UNIT
V _{CC}	DC supply voltage		-0.5 to +4.6	V
$\pm I_{IK}$	DC input diode current	$V_{I} < -0.5$ or $V_{I} > V_{CC} + 0.5V$	20	mA
$\pm I_{OK}$	DC output diode current	V_{O} < –0.5 or V_{O} > V_{CC} + 0.5V	50	mA
$\pm I_{O}$	DC output source or sink current – standard outputs	$-0.5V < V_O < V_{CC} + 0.5V$	25	mA
$^{\pm I_{GND},}_{\pm I_{CC}}$	DC V _{CC} or GND current for types with – standard outputs		50	mA
T _{stg}	Storage temperature range		-65 to +150	°C
P _{TOT}	Power dissipation per package – plastic DIL – plastic mini-pack (SO) – plastic shrink mini-pack (SSOP and TSSOP)	for temperature range: -40 to +125°C above +70°C derate linearly with 12 mW/K above +70°C derate linearly with 8 mW/K above +60°C derate linearly with 5.5 mW/K	750 500 400	mW

NOTES:

 Stresses beyond those listed may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

2. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

74LV163

DC ELECTRICAL CHARACTERISTICS

Over recommended operating conditions. Voltages are referenced to GND (ground = 0 V).

					LIMITS				
SYMBOL	PARAMETER	TEST CONDITIONS	-4	0°C to +8	5°C	-40°C to	o +125°C	UNIT	
			MIN	TYP ¹	MAX	MIN	MAX	1	
		V _{CC} = 1.2 V	0.9			0.9			
VIH	HIGH level Input voltage	V _{CC} = 2.0 V	1.4			1.4		V	
	1 on ago	$V_{CC} = 2.7 \text{ to } 3.6 \text{ V}$	2.0			2.0		1	
		V _{CC} = 1.2 V			0.3		0.3		
VIL	LOW level Input voltage	V _{CC} = 2.0 V			0.6		0.6	V	
	voltago	V _{CC} = 2.7 to 3.6 V			0.8		0.8	1	
		$V_{CC} = 1.2 \text{ V}; \text{ V}_{I} = \text{V}_{IH} \text{ or } \text{V}_{IL;} - \text{I}_{O} = 100 \mu \text{A}$		1.2					
N	HIGH level output	$V_{CC} = 2.0 \text{ V}; \text{ V}_{I} = \text{V}_{IH} \text{ or } \text{V}_{IL;} - \text{I}_{O} = 100 \mu \text{A}$	1.8	2.0		1.8			
V _{OH}	voltage; all outputs	$V_{CC} = 2.7 \text{ V}; \text{ V}_{I} = \text{V}_{IH} \text{ or } \text{V}_{IL;} - \text{I}_{O} = 100 \mu \text{A}$	2.5	2.7		2.5		1 ~	
		$V_{CC} = 3.0 \text{ V}; \text{ V}_{I} = \text{V}_{IH} \text{ or } \text{V}_{IL;} - \text{I}_{O} = 100 \mu \text{A}$	2.8	3.0		2.8			
V _{OH}	HIGH level output voltage; STANDARD outputs	$V_{CC} = 3.0 \text{ V}; \text{ V}_{I} = \text{V}_{IH} \text{ or } \text{V}_{IL}; -\text{I}_{O} = 6\text{mA}$	2.40	2.82		2.20		V	
		$V_{CC} = 1.2 \text{ V}; \text{ V}_{I} = \text{V}_{IH} \text{ or } \text{V}_{IL}; \text{ I}_{O} = 100 \mu \text{A}$		0					
V	LOW level output	V_{CC} = 2.0 V; V_{I} = V_{IH} or V_{IL} ; I_{O} = 100 μ A		0	0.2		0.2	- ~	
V _{OL}	voltage; all outputs	V_{CC} = 2.7 V; V_{I} = V_{IH} or V_{IL} ; I_{O} = 100 μ A		0	0.2		0.2		
		$V_{CC} = 3.0 \text{ V}; \text{ V}_{I} = V_{IH} \text{ or } \text{V}_{IL}; \text{ I}_{O} = 100 \mu \text{A}$		0	0.2		0.2	1	
V _{OL}	LOW level output voltage; STANDARD outputs	$V_{CC} = 3.0 \text{ V}; \text{ V}_{I} = \text{V}_{IH} \text{ or } \text{V}_{IL}; \text{ I}_{O} = 6\text{mA}$		0.25	0.40		0.50	v	
I _I	Input leakage current	V_{CC} = 3.6 V; V_{I} = V_{CC} or GND			1.0		1.0	μA	
I _{CC}	Quiescent supply current; MSI	V_{CC} = 3.6 V; V_I = V_{CC} or GND; I_O = 0			20.0		160	μA	
ΔI_{CC}	Additional quiescent supply current per input	V_{CC} = 2.7 V to 3.6 V; V_{I} = V_{CC} – 0.6 V			500		850	μΑ	

NOTE:

1. All typical values are measured at $T_{amb} = 25^{\circ}C$.

74LV163

Product specification

AC CHARACTERISTICS

 $\text{GND}=\text{0V};\, t_{\text{f}}=t_{\text{f}}\leq 2.5\text{ns};\, \text{C}_{\text{L}}=\text{50pF};\, \text{R}_{\text{L}}=1\text{K}\Omega$

			CONDITION			LIMITS			
SYMBOL	PARAMETER	WAVEFORM	CONDITION		40 to +85 °	°C	-40 to	+125 °C	UNIT
			V _{CC} (V)	MIN	TYP ¹	MAX	MIN	MAX	
			1.2		95				
t _{PHL} /t _{PLH}	Propagation delay	Figures 1	2.0		32	61		75	ns
'PHL/'PLH	CP to Q _n	Figures i	2.7		24	45		55	115
			3.0 to 3.6		18 ²	36		44	
			1.2		115				
	Propagation delay		2.0		39	75		90	
t _{PHL} /t _{PLH}	CP to TC	Figures 1	2.7		29	55		66	ns
			3.0 to 3.6		22 ²	44		53	
			1.2		55				
	Propagation delay		2.0		19	36		44	
t _{PHL/t_{PLH} CET to TC}	Figures 2	2.7		14	26		33	ns	
			3.0 to 3.6		10 ²	21		26	
		+ +	2.0	34	10		41		
t	tw HIGH or LOW	Figures 1	2.7	25	8		30		ns
^{tw} HIGH or LOW		3.0 to 3.6	20	6 ²		24		115	
		+	1.2	20	25		24		
	Set-up time		2.0	22	9		26		ns
t _{su}	MR, D _n to CP	Figures 3, 4	2.7	16	6		19		
			3.0 to 3.6	13	5 ²		15		
		+ +	1.2		30	<u> </u>			
	Set-up time		2.0	22	10		26		
t _{su}	PE to CP	Figures 3	2.7	16	8		19		ns
			3.0 to 3.6	13	6 ²	<u> </u>	15		
			1.2		30				
	Set-up time		2.0	22	10		26		
t _{su}	CEP, CET to CP	Figures 5	2.7	16	8		19		ns
			3.0 to 3.6	13	6 ²		15		
			1.2		-35				
t.	Hold time	Figures 3, 4, 5	2.0	0	-12		0		ne
t _h	D _n , <u>PE</u> , CEP, CET, MR to CP	1 igures 3, 4, 5	2.7	0	-9		0		ns
			3.0 to 3.6	0	-7		0		
			2.0	14	40		12		
f _{max}	f _{max} Maximum clock pulse frequency	Figures 1	2.7	19	58		16		MHz
			3.0 to 3.6	24	70		20		

NOTES:

1. Unless otherwise stated, all typical values are measured at $T_{amb} = 25^{\circ}C$ 2. Typical values are measured at $V_{CC} = 3.3 \text{ V}$.

74LV163

AC WAVEFORMS

 V_M = 1.5 V at $V_{CC} \ge 2.7$ V; V_M = 0.5 \times V_{CC} at $V_{CC} < 2.7$ V; V_{OL} and V_{OH} are the typical output voltage drop that occur with the output load.

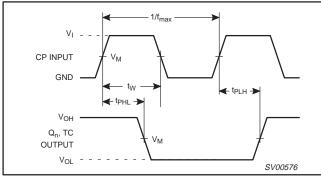


Figure 1. Clock (CP) to outputs (Q_n, TC) propagation delays, the clock pulse width and the maximum clock frequency.

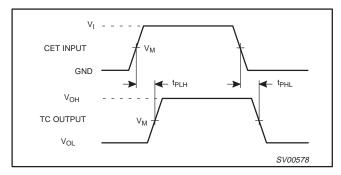


Figure 2. Input (CET) to output (TC) propagation delays and output transition times.

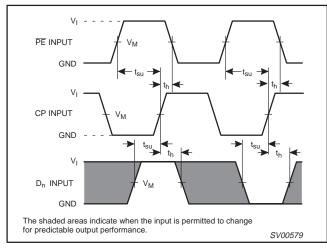


Figure 3. Set-up and hold times for input (D_n) and parallel enable input (PE).

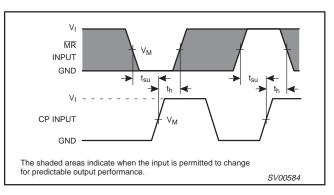


Figure 4. MR set-up and hold times.

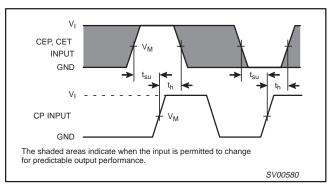


Figure 5. CEP and CET set-up and hold times.

TEST CIRCUIT

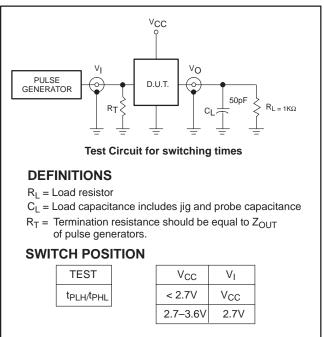
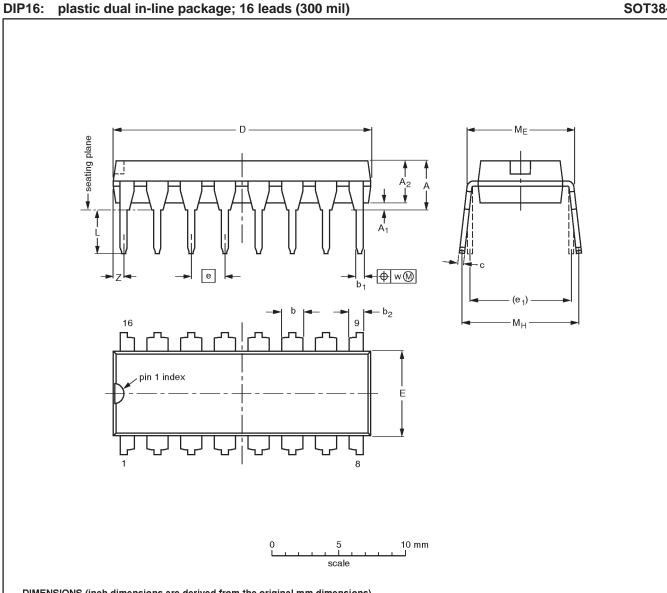



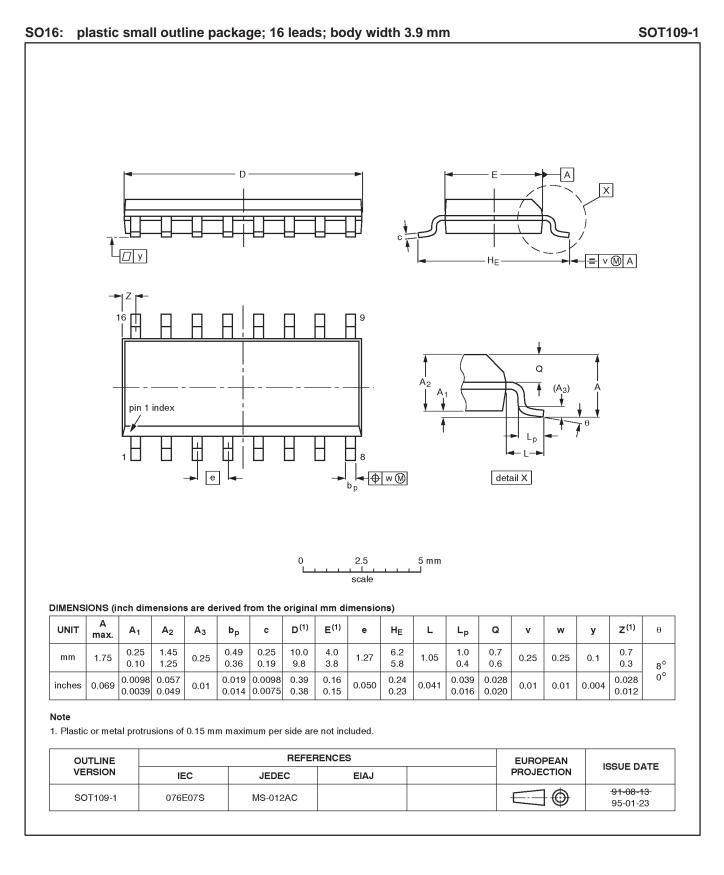
Figure 6. Load circuitry for switching times.

SV00901

74LV163

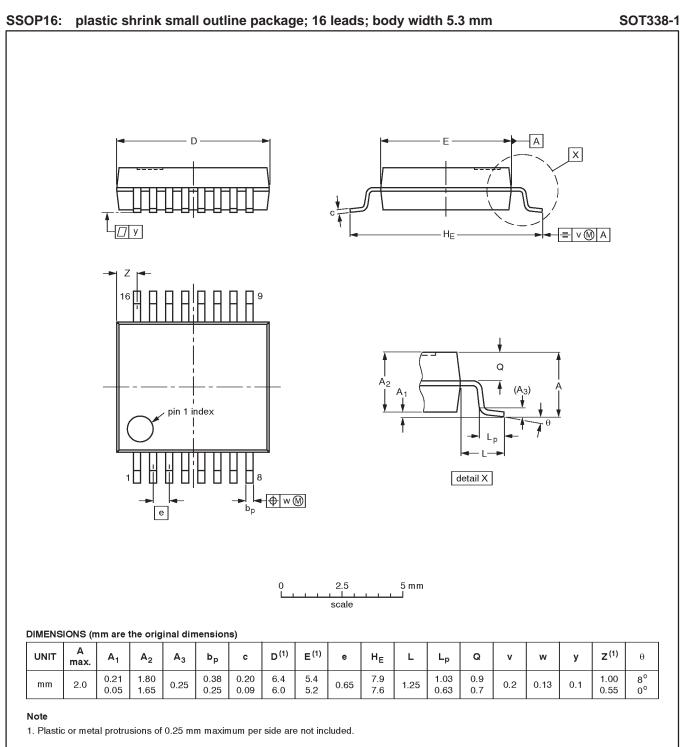
SOT38-4

DIMENSIONS (inch dimensions are derived from the original mm dimensions)


UNIT	A max.	A ₁ min.	A ₂ max.	b	b ₁	b ₂	с	D ⁽¹⁾	Е ⁽¹⁾	e	e ₁	L	M _E	M _H	w	Z ⁽¹⁾ max.
mm	4.2	0.51	3.2	1.73 1.30	0.53 0.38	1.25 0.85	0.36 0.23	19.50 18.55	6.48 6.20	2.54	7.62	3.60 3.05	8.25 7.80	10.0 8.3	0.254	0.76
inches	0.17	0.020	0.13	0.068 0.051	0.021 0.015	0.049 0.033	0.014 0.009	0.77 0.73	0.26 0.24	0.10	0.30	0.14 0.12	0.32 0.31	0.39 0.33	0.01	0.030

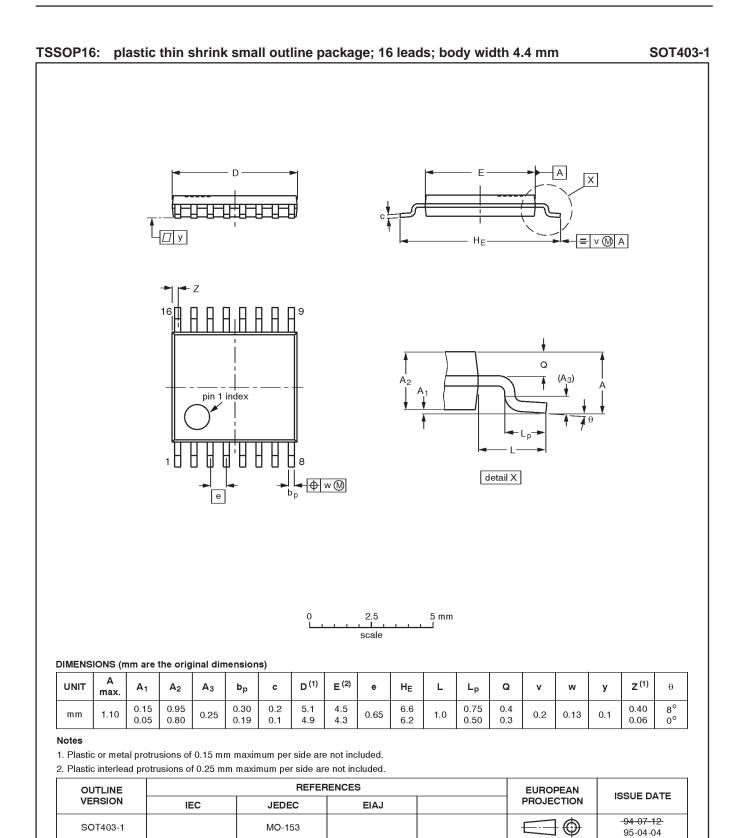
Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.


OUTLINE	REFERENCES		REFERENCES					
VERSION	IEC	JEDEC	EIAJ		PROJECTION	ISSUE DATE		
SOT38-4						-92-11-17 95-01-14		

74LV163

74LV163


OUTLINE		EUROPEAN	ISSUE DATE				
VERSION	IEC	IEC JEDEC EIAJ			PROJECTION	ISSUE DATE	
SOT338-1		MO-150AC			\bigcirc	-94-01-14 95-02-04	

1998 Apr 30

12

74LV163

Product specification

74LV163

DEFINITIONS							
Data Sheet Identification	Product Status	Definition					
Objective Specification	Formative or in Design	This data sheet contains the design target or goal specifications for product development. Specifications may change in any manner without notice.					
Preliminary Specification	Preproduction Product	This data sheet contains preliminary data, and supplementary data will be published at a later date. Philips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.					
Product Specification	Full Production	This data sheet contains Final Specifications. Philips Semiconductors reserves the right to make changes at any time without notice, in order to improve design and supply the best possible product.					

Philips Semiconductors and Philips Electronics North America Corporation reserve the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified. Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

LIFE SUPPORT APPLICATIONS

Philips Semiconductors and Philips Electronics North America Corporation Products are not designed for use in life support appliances, devices, or systems where malfunction of a Philips Semiconductors and Philips Electronics North America Corporation Product can reasonably be expected to result in a personal injury. Philips Semiconductors and Philips Electronics North America Corporation customers using or selling Philips Semiconductors and Philips Electronics North America Corporation customers using or selling Philips Semiconductors and Philips Electronics North America Corporation so at their own risk and agree to fully indemnify Philips Semiconductors and Philips Electronics North America Corporation for any damages resulting from such improper use or sale.

Philips Semiconductors 811 East Arques Avenue P.O. Box 3409 Sunnyvale, California 94088–3409 Telephone 800-234-7381 © Copyright Philips Electronics North America Corporation 1998 All rights reserved. Printed in U.S.A.

print code

Document order number:

Date of release: 05-96 9397-750-04429

Let's make things better.

PHILIPS