

4-Mbit (256K x 16) Static RAM

Features

· Very high speed: 45 ns

Wide voltage range: 2.20V–3.60V
Pin-compatible with CY62147DV30

· Ultra-low standby power

- Typical standby current: 1μA

- Maximum standby current: 7μA (Industrial)

Ultra-low active power

- Typical active current: 2 mA @ f = 1 MHz

• Easy memory expansion with CE and OE features

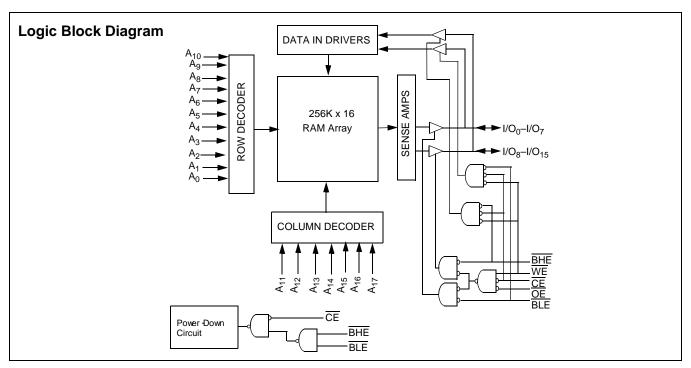
· Automatic power-down when deselected

· CMOS for optimum speed/power

Offered in Pb-free 48-ball VFBGA and 44-pin TSOPII packages

• Byte power-down feature

Functional Description[1]

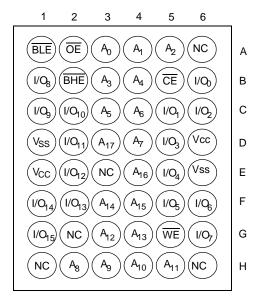

The CY62147EV30 is a high-performance CMOS static RAM organized as 256K words by 16 bits. This device features advanced circuit design to provide ultra-low active current. This is ideal for providing More Battery Life[™] (MoBL[®]) in portable applications such as cellular telephones. The device

also has an automatic power-down feature that significantly reduces power consumption when addresses are not toggling. The device can also be put into standby mode reducing power consumption by more than 99% when deselected (CE HIGH or both BLE and BHE are HIGH). The input/output pins (I/O0 through I/O15) are placed in a high-impedance state when: deselected (CE HIGH), outputs are disabled ($\overline{\text{OE}}$ HIGH), both Byte High Enable and Byte Low Enable are disabled ($\overline{\text{BHE}}$, BLE HIGH), or during a write operation ($\overline{\text{CE}}$ LOW and $\overline{\text{WE}}$ LOW).

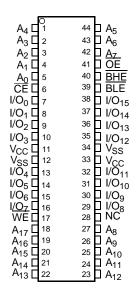
 $\overline{\text{To}}$ write to the device, take Chip Enable $(\overline{\text{CE}})$ and Write Enable $(\overline{\text{WE}})$ inputs LOW. If Byte Low Enable $(\overline{\text{BLE}})$ is LOW, then data from I/O pins (I/O $_0$ through I/O $_7$), is written into the location specified on the address pins (A $_0$ through A $_1$ 7). If Byte High Enable $(\overline{\text{BHE}})$ is LOW, then data from I/O pins (I/O $_8$ through I/O $_1$ 5) is written into the location specified on the address pins (A $_0$ through A $_1$ 7).

To read from the device, take Chip Enable $(\overline{\text{CE}})$ and Output Enable $(\overline{\text{OE}})$ LOW while forcing the Write Enable $(\overline{\text{WE}})$ HIGH. If Byte Low Enable $(\overline{\text{BLE}})$ is LOW, then data from the memory location specified by the address pins will appear on I/O_0 to I/O_7 . If Byte High Enable $(\overline{\text{BHE}})$ is LOW, then data from memory will appear on I/O_8 to I/O_{15} . See the truth table at the back of this data sheet for a complete description of read and write modes.

The CY62147EV30 is available in 48-ball VFBGA and 44-pin TSOPII packages.


Note:

1. For best practice recommendations, please refer to the Cypress application note "System Design Guidelines" on http://www.cypress.com.



Pin Configuration^[2, 3]

48-ball VFBGA Pinout Top View

44-pin TSOP II Pinout Top View

Product Portfolio

					Power Dissipation			n		
				Speed	Operating I _{CC} (mA)					
Product	V	_{CC} Range (V)	(ns)	f = 1	f = 1MHz f = f _{max}		Standby I _{SB2} (μA)		
	Min.	Typ. ^[4]	Max.		Typ. ^[4]	Max.	Typ. ^[4]	Max.	Typ. ^[4]	Max.
CY62147EV30-45LL	2.2	3.0	3.6	45 ns	2	2.5	15	20	1	7
CY62147EV30-55LL ^[5]	2.2	3.0	3.6	55 ns	2	3	15	25	1	20

Notes:

- NC pins are not connected on the die.
- 3. Pins H1, G2, and H6 in the BGA package are address expansion pins for 8 Mb, 16 Mb and 32 Mb, respectively.
- 4. Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at $V_{CC} = V_{CC(typ.)}$, $T_A = 25^\circ$.
- 5. Automotive product information is Preliminary.

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.) Storage Temperature-65°C to + 150°C Ambient Temperature with Power Applied–55°C to + 125°C Supply Voltage to Ground Potential-0.3V to + 3.9V (V_{CCMAX} + 0.3V) DC Voltage Applied to Outputs in High-Z State^[6, 7]......-0.3V to 3.9V (V_{CCMAX} + 0.3V) DC Input Voltage $^{[6, 7]}$ -0.3V to 3.9V (V_{CCMAX} + 0.3V)

Output Current into Outputs (LOW)	20 mA
Static Discharge Voltage(per MIL-STD-883, Method 3015)	>2001V
Latch-up Current	>200 mA

Operating Range

Device	Range	Ambient Temperature	V cc ^[8]	Speed
CY62147EV30	Industrial	–40°C to +85°C	2.2V	45 ns
	Automotive	-40°C to +125°C	to 3.6V	55 ns

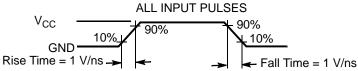
Electrical Characteristics (Over the Operating Range)

					45 ns			55 ns		
Parameter	Description	Test Conditions	Mi	n.	Typ. ^[4]	Max.	Min.	Typ. ^[4]	Max.	Unit
V _{OH}	Output HIGH	$I_{OH} = -0.1 \text{ mA} V_{CC} = 2.20 \text{V}$	2.	0			2.0			V
	Voltage	$I_{OH} = -1.0 \text{ mA}$ $V_{CC} = 2.20 \text{V}$	2.	4			2.4			V
V _{OL}	Output LOW	$I_{OL} = 0.1 \text{ mA}$ $V_{CC} = 2.20 \text{V}$				0.4			0.4	V
	Voltage	$I_{OL} = 2.1 \text{ mA}$ $V_{CC} = 2.70 \text{V}$				0.4			0.4	V
V _{IH}	Input HIGH	V _{CC} = 2.2V to 2.7V	1.	8		V _{CC} + 0.3	1.8		$V_{CC} + 0.3$	V
	Voltage	V _{CC} = 2.7V to 3.6V	2.	2		V _{CC} + 0.3	2.2		$V_{CC} + 0.3$	V
V _{IL}	Input LOW	$V_{CC} = 2.2V \text{ to } 2.7V$	-0	.3		0.6	-0.3		0.6	V
	Voltage	V _{CC} = 2.7V to 3.6V		.3		0.8	-0.3		0.8	V
I _{IX}	Input Leakage Current	$GND \leq V_{I} \leq V_{CC}$		1		+1	-4		+4	μΑ
I _{OZ}	Output Leakage Current	GND \leq V _O \leq V _{CC} , Output Disal	bled -	1		+1	-4		+4	μΑ
I _{CC}		$f = f_{MAX} = 1/t_{RC} V_{CC} = V_{CCmax}$	х		15	20		15	25	mΑ
	Supply Current	f = 1 MHz I _{OUT} = 0 mA CMOS levels			2	2.5		2	3	
I _{SB1}	Automatic CE Power-down Current — CMOS Inputs	$\overline{\text{CE}} \ge \text{V}_{\text{CC}} - 0.2\text{V}$ $\text{V}_{\text{IN}} \ge \text{V}_{\text{CC}} - 0.2\text{V}$, $\text{V}_{\text{IN}} \le 0.2\text{V}$ $\text{f} = \text{f}_{\text{MAX}}$ (Address and Data O f = 0 (OE, BHE, BLE and WE $\text{V}_{\text{CC}} = 3.60\text{V}$	nly), E),		1	7		1	20	μА
I _{SB2}	Automatic CE Power-down Current — CMOS Inputs	$\overline{\text{CE}} \ge V_{\text{CC}} - 0.2V$ $V_{\text{IN}} \ge V_{\text{CC}} - 0.2V$ or $V_{\text{IN}} \le 0.2$ $f = 0$, $V_{\text{CC}} = 3.60V$	V,		1	7		1	20	μА

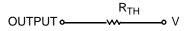
Capacitance (For All Packages)[9]

Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$T_A = 25^{\circ}C$, $f = 1$ MHz,	10	pF
C _{OUT}	Output Capacitance	$V_{CC} = V_{CC(typ)}$	10	pF


- 6. V_{IL(min.)} = -2.0V for pulse durations less than 20 ns.
 7. V_{IH(max)} = V_{CC} + 0.75V for pulse durations less than 20 ns.
 8. Full device AC operation assumes a minimum of 100 μs ramp time from 0 to V_{CC}(min) and 200 μs wait time after V_{CC} stabilization.
- 9. Tested initially and after any design or process changes that may affect these parameters.

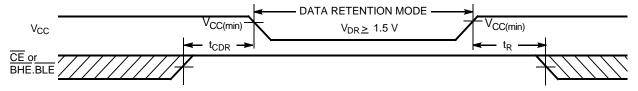


Thermal Resistance^[9]


Parameter	Description	Test Conditions	VFBGA Package	TSOP II Package	Unit
Θ_{JA}		Still Air, soldered on a 3 x 4.5 inch, two-layer printed circuit board	75	77	°C/W
Θ _{JC}	Thermal Resistance (Junction to Case)		10	13	°C/W

AC Test Loads and Waveforms

Equivalent to: THEVENIN EQUIVALENT



Parameters	2.50V	3.0V	Unit
R1	16667	1103	Ω
R2	15385	1554	Ω
R _{TH}	8000	645	Ω
V _{TH}	1.20	1.75	V

Data Retention Characteristics (Over the Operating Range)

Parameter	Description	Conditions		Min.	Typ. ^[4]	Max.	Unit
V_{DR}	V _{CC} for Data Retention			1.5			V
I _{CCDR}	Data Retention Current	$\frac{V_{CC}=1.5V}{CE \ge V_{CC}-0.2V,}$	Ind'l		0.8	7	μΑ
		$ \begin{aligned} & \text{CE} \geq \text{V}_{\text{CC}} - 0.2\text{V}, \\ & \text{V}_{\text{IN}} \geq \text{V}_{\text{CC}} - 0.2\text{V} \text{ or } \text{V}_{\text{IN}} \leq 0.2\text{V} \end{aligned} $	Auto			12	
t _{CDR} ^[9]	Chip Deselect to Data Retention Time			0			ns
t _R ^[10]	Operation Recovery Time			t _{RC}			ns

Data Retention Waveform^[11]

^{10.} Full device operation requires linear V_{CC} ramp from V_{DR} to V_{CC(min.)} ≥ 100 μs or stable at V_{CC(min.)} ≥ 100 μs.

11. BHE. BLE is the AND of both BHE and BLE. Chip can be deselected by either disabling the chip enable signals or by disabling both BHE and BLE.

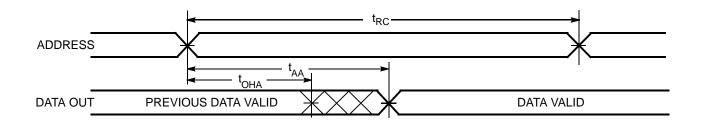
Switching Characteristics (Over the Operating Range) [12]

		45	ns	55	ns	
Parameter	Description	Min.	Max.	Min.	Max.	Unit
Read Cycle			•			
t _{RC}	Read Cycle Time	45		55		ns
t _{AA}	Address to Data Valid		45		55	ns
t _{OHA}	Data Hold from Address Change	10		10		ns
t _{ACE}	CE LOW to Data Valid		45		55	ns
t _{DOE}	OE LOW to Data Valid		22		25	ns
t _{LZOE}	OE LOW to LOW Z ^[13]	5		5		ns
t _{HZOE}	OE HIGH to High Z ^[13, 14]		18		20	ns
t _{LZCE}	CE LOW to Low Z ^[13]	10		10		ns
t _{HZCE}	CE HIGH to High Z ^[13, 14]		18		20	ns
t _{PU}	CE LOW to Power-Up	0		0		ns
t _{PD}	CE HIGH to Power-Down		45		55	ns
t _{DBE}	BLE/BHE LOW to Data Valid		45		55	ns
t _{LZBE}	BLE/BHE LOW to Low Z ^[13]	10		10		ns
t _{HZBE}	BLE/BHE HIGH to HIGH Z ^[13, 14]		18		20	ns
Write Cycle ^[15]						
t _{WC}	Write Cycle Time	45		55		ns
t _{SCE}	CE LOW to Write End	35		35		ns
t _{AW}	Address Set-up to Write End	35		35		ns
t _{HA}	Address Hold from Write End	0		0		ns
t _{SA}	Address Set-up to Write Start	0		0		ns
t _{PWE}	WE Pulse Width	35		35		ns
t _{BW}	BLE/BHE LOW to Write End	35		35		ns
t _{SD}	Data Set-up to Write End			25		ns
t _{HD}	Data Hold from Write End	0		0		ns
t _{HZWE}	WE LOW to High-Z ^[13, 14]		18		20	ns
t _{LZWE}	WE HIGH to Low-Z ^[13]	10		10		ns

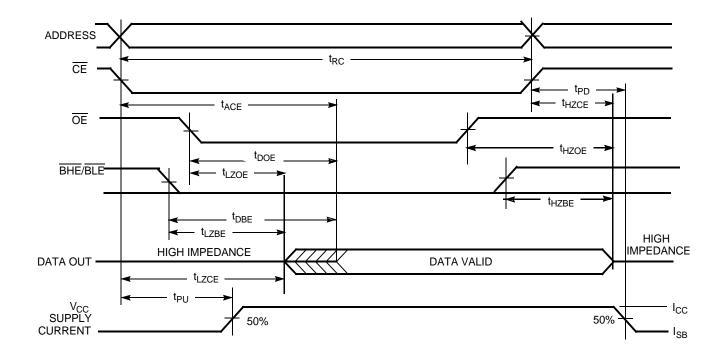
Shaded areas contain preliminary information.

^{12.} Test conditions for all parameters other than tri-state parameters assume signal transition time of 3 ns (1V/ns) or less, timing reference levels of V_{CC(typ)}/2, input pulse levels of 0 to V_{CC(typ.)}, and output loading of the specified I_{OL}/I_{OH} as shown in the "AC Test Loads and Waveforms" section.

13. At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE}, t_{HZBE} is less than t_{LZOE}, and t_{HZWE} is less than t_{LZOE}, and t_{HZWE} for any given device.


^{14.} t_{HZOE}, t_{HZDE}, and t_{HZWE} transitions are measured when the outputs enter a high-impedance state.

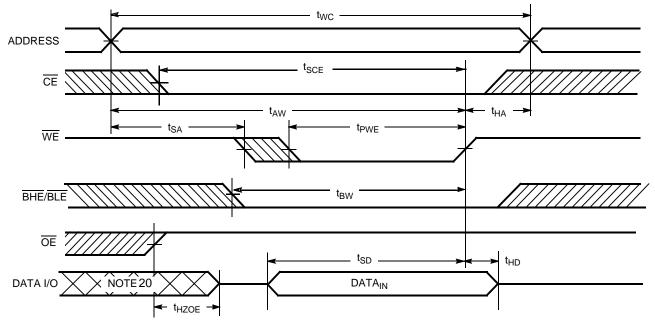
15. The internal Write time of the memory is defined by the overlap of WE, CE = V_{IL}, BHE and/or BLE = V_{IL}. All signals must be ACTIVE to initiate a write and any of these signals can terminate a write by going INACTIVE. The data input set-up and hold timing should be referenced to the edge of the signal that terminates



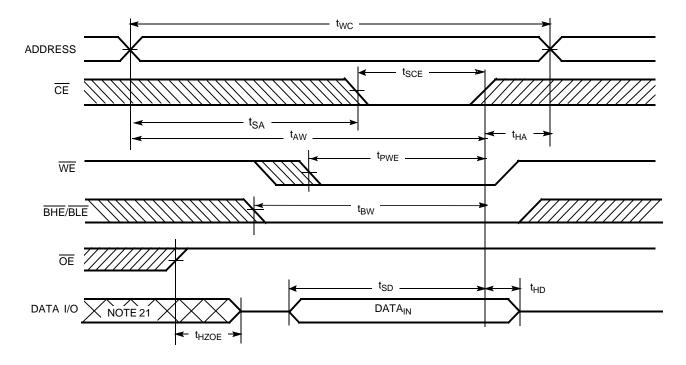
Switching Waveforms

Read Cycle 1 (Address Transition Controlled)^[16,18]

Read Cycle No. 2 (OE Controlled)[17,18]



Notes:
16. The device is continuously selected. OE, CE = V_{IL}, BHE and/or BLE = V_{IL}.
17. WE is HIGH for read cycle.
18. Address valid prior to or coincident with CE and BHE, BLE transition LOW.



Switching Waveforms (continued)

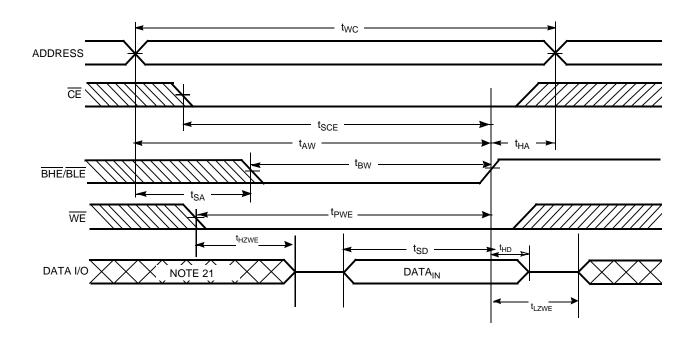
Write Cycle No. 1 ($\overline{\text{WE}}$ Controlled) $^{[15,18,19]}$

Write Cycle No. 2 (CE Controlled) [15,19,20]

19. Data I/O is high impedance if $\overline{\text{OE}} = \text{V}_{\text{IH}}$.

20. If $\overline{\text{CE}}$ goes HIGH simultaneously with $\overline{\text{WE}} = \text{V}_{\text{IH}}$, the output remains in a high-impedance state.

21. During this period, the I/Os are in output state and input signals should not be applied.



Switching Waveforms (continued)

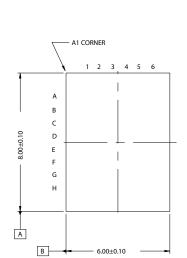
Write Cycle No. 3 (WE Controlled, OE LOW)[20]

Write Cycle No. 4 (BHE/BLE Controlled, OE LOW)[20]

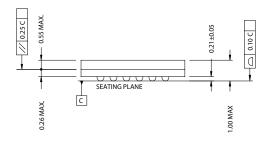
Truth Table

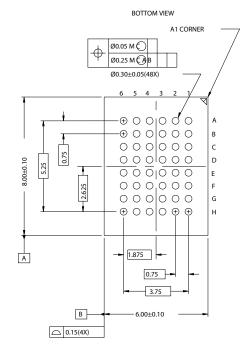
CE	WE	OE	BHE	BLE	I/O's	Mode	Power
Н	Х	Х	Х	Х	High Z	Deselect/Power-down	Standby (I _{SB})
L	Х	Х	Н	Н	High Z	Deselect/Power-down	Standby (I _{SB})
L	Н	L	L	L	Data Out (I/O _O -I/O ₁₅)	Read	Active (I _{CC})
L	Н	L	Н	L	Data Out (I/O _O –I/O ₇); I/O ₈ –I/O ₁₅ in High Z	Read	Active (I _{CC})
L	Н	L	L	Н	Data Out (I/O ₈ -I/O ₁₅); I/O ₀ -I/O ₇ in High Z	Read	Active (I _{CC})
L	Н	Н	L	L	High Z	Output Disabled	Active (I _{CC})
L	Н	Н	Н	L	High Z	Output Disabled	Active (I _{CC})
L	Н	Н	L	Н	High Z	Output Disabled	Active (I _{CC})
L	L	Х	L	L	Data In (I/O _O -I/O ₁₅)	Write	Active (I _{CC})
L	L	Х	Н	L	Data In (I/O _O -I/O ₇); I/O ₈ -I/O ₁₅ in High Z	Write	Active (I _{CC})
L	L	Х	L	Н	Data In (I/O ₈ –I/O ₁₅); I/O ₀ –I/O ₇ in High Z	Write	Active (I _{CC})

Ordering Information


Speed (ns)	Ordering Code	Package Diagram	Package Type	Operating Range
45	CY62147EV30LL-45BVI	51-85150	48-ball Very Fine Pitch Ball Grid Array	Industrial
	CY62147EV30LL-45BVXI	51-85150	48-ball Very Fine Pitch Ball Grid Array (Pb-free)	
	CY62147EV30LL-45ZSXI	51-85087	44-pin Thin Small Outline Package II (Pb-free)	
55	CY62147EV30LL-55BVXE	51-85150	48-ball Very Fine Pitch Ball Grid Array (Pb-free)	Automotive
	CY62147EV30LL-55ZSXE	51-85087	44-pin Thin Small Outline Package II (Pb-free)	

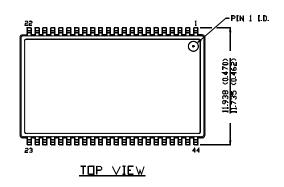
Please contact your local Cypress sales representative for availability of These parts

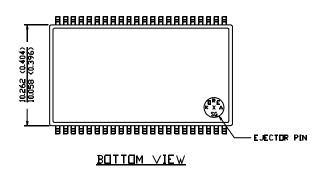


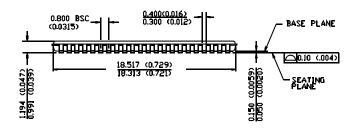

Package Diagrams

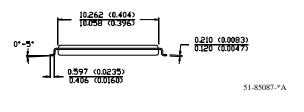
48-ball VFBGA (6 x 8 x 1 mm) (51-85150)

TOP VIEW


51-85150-*D




Package Diagrams (continued)


44-pin TSOP II (51-85087)

D[MENS]ON IN MM ([NCH)

MoBL is a registered trademark, and More Battery Life is a trademark, of Cypress Semiconductor. All product and company names mentioned in this document may be the trademarks of their respective holders.

Document History Page

REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change
**	201861	01/13/04	AJU	New Data Sheet
*A	247009	See ECN	SYT	Changed from Advanced Information to Preliminary Moved Product Portfolio to Page 2 Changed Vcc stabilization time in footnote #8 from 100 μs to 200 μs Removed Footnote #15(t_ZBE) from Previous Revision Changed I_{CCDR} from 2.0 μA to 2.5 μA Changed typo in Data Retention Characteristics(t_R) from 100 μs to t_{RC} ns Changed t_{OHA} from 6 ns to 10 ns for both 35 ns and 45 ns Speed Bin Changed t_{HZOE}, t_{HZBE}, t_{HZWE} from 12 to 15 ns for 35 ns Speed Bin and 15 to 18 ns for 45 ns Speed Bin Changed t_{SCE} and t_{BW} from 25 to 30 ns for 35 ns Speed Bin and 40 to 35 ns for 45 ns Speed Bin Changed t_{HZCE} from 12 to 18 ns for 35 ns Speed Bin and 15 to 22 ns for 45 ns Speed Bin Changed t_{SD} from 15 to 18 ns for 35 ns Speed Bin and 20 to 22 ns for 45 ns Speed Bin Changed t_{DCE} from 15 to 18 ns for 35 ns Speed Bin Changed t_{DCE} from 15 to 18 ns for 35 ns Speed Bin Changed t_{DCE} from 15 to 18 ns for 35 ns Speed Bin Changed Ordering Information to include Pb-Free Packages
*B	414807	See ECN	ZSD	Changed from Preliminary information to Final Changed the address of Cypress Semiconductor Corporation on Page #1 from "3901 North First Street" to "198 Champion Court" Removed 35ns Speed Bin Removed "L" version of CY62147EV30 Changed ball E3 from DNU to NC. Removed redundant foot note on DNU. Changed I_{CC} (Max) value from 2 mA to 2.5 mA and I_{CC} (Typ) value from 1.5 mA to 2 mA at f=1 MHz Changed I_{CC} (Typ) value from 12 mA to 15 mA at f = f_{max} Changed I_{SB1} and I_{SB2} Typ. values from 0.7 μ A to 1 μ A and Max. values from 2.5 μ A to 7 μ A. Changed I_{CCDR} from 2.5 μ A to 7 μ A. Added I_{CCDR} typical value. Changed AC test load capacitance from 50 pF to 30 pF on Page #4. Changed I_{LZCE} from 3 ns to 5 ns Changed I_{LZCE} , I_{LZBE} and I_{LZWE} from 6 ns to 10 ns Changed I_{CDR} from 22 ns to 18 ns Changed I_{CDR} from 22 ns to 25 ns. Updated the package diagram 48-pin VFBGA from *B to *D Updated the ordering information table and replaced the Package Name column with Package Diagram.
*C	464503	See ECN	NXR	Included Automotive Range in product offering Updated the Ordering Information