MOTOROLA SEMICONDUCTOR TECHNICAL DATA

Microwave Pulse Power Transistor 350 Watts Peak NPN 1025–1150 MHz

Designed for 1025-1150 MHz pulse common base amplifiers.

- · Guaranteed Performance at 1090 MHz
 - Output Power = 350 Watts Peak
 - Gain = 8.5 dB Min
- 100% Tested for Load Mismatch at All Phase Angles with 10:1 VSWR
- · Characterized with Mode S Pulse Format
- Silicon Nitride Passivated
- · Gold Metallized, Emitter Ballasted for Long Life
- · Internal Input and Output Matching
- Hermetically Sealed Package

MRF10350H*

AVAILABLE AS

1) JANTX: MRF10350HX 2) JANTXV: MRF10350HXV 3) JANS: MRF10350HS 4) COML+: MRF10350HC

PACKAGE: Case 355E-01

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	V _{CES}	65	Vdc
Collector-Base Voltage	V _{CBO}	65	Vdc
Emitter-Base Voltage	V _{EBO}	3.5	Vdc
Collector Current – Peak (1)	I _C	31	Adc
Device Dissipation at T _C = 25 °C (1 & 2) Derate above 25 °C	P _D	1590 9.1	W/°C
Operating Junction and Storage Temperature Range	T _J , T _{stq}	- 55 to + 200	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case (3)	$R_{\theta JC}$	0.11	°C/W

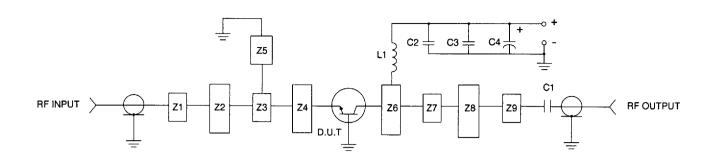
NOTES:

(continued)

- 1. Under pulse RF operating conditions.
- 2. These devices are designed for RF operation. The total device dissipation rating applies only when operated as RF amplifier.
- 3. Thermal Resistance is determined under specified RF operating conditions by infrared measurement techniques. (Worst case θ_{JC} measured using Mode-S pulse train, 128 μs burst 0.5 μs on, 0.5 μs off repeating at 6.4 ms interval.)

*Motorola Preferred Device. **Preferred** devices are Motorola recommended choices for future use and best overall value. Teflon is a registered trademark of du Pont de Nemours & Co., Inc.

ELECTRICAL CHARACTERISTICS (T_A = 25 °C unless otherwise noted)


Characteristic	Symbol	Min	Max	Unit
DFF CHARACTERISTICS				
Collector-Emitter Breakdown Voltage (I _C = 60 mAdc, V _{BE} = 0)	V(BR)CES	65	-	Vdc
Collector-Base Breakdown Voltage (I _C = 60 mAdc, I _E = 0)	V(BR)CBO	65	-	Vdc
Emitter-Base Breakdown Voltage (I _E = 10 mAdc, I _C = 0)	V _{(BR)EBO}	3.5	_	Vdc
Collector Cutoff Current (V _{CB} = 36 Vdc, I _E = 0)	Ісво	-	25	mAdo
				•
ON CHARACTERISTICS				
on on Andrews				

Common-Base Amplifier Power Gain (V _{CC} = 50 Vdc, P _{OUT} = 350 W Peak, f = 1090 MHz)	G _{PB}	8.5	-	dB
Collector Efficiency (V _{CC} = 50 Vdc, P _{OUT} = 350 W Peak, f = 1090 MHz)	η	40	-	%
Load Mismatch (V _{CC} = 50 Vdc, P _{OUT} = 350 W Peak, f = 1090 MHz, VSWR = 10:1 All Phase Angles)	Ψ	No Degra	dation in Out	out Power

ASSURANCE TESTING (Pre/Post Burn-In) Burn-In Test Conditions: $V_{CB} \ge$ 10 Vdc, T_J = 162.5 °C + 12.5 °C

Characteristic	Symbol	Min	Max	Unit
Collector Cutoff Current (V _{CB} = 50 Vdc, I _E = 0)	СВО		25	mAdc
DC Current Gain (I _C = 5.0 Adc, V _{CE} = 5.0 Vdc)	hFE	20	-	_

MOTOROLA MRF10350H/D

C1 – 75 pF 100 mil Chip Capacitor C2 – 39 pF 100 mil Chip Capacitor

C3 – 0.1 μF

C4 - 100 µF, 100 Vdc, Electrolytic

L1 – 3 turns #18 AWG, 1/8" ID, 0.18 Long Z1-Z9 – Microstrip, see details below Board Material – 0.030" Glass Teflon $^{\circledR}$ 2 Oz. Copper, ϵ_{r} = 2.55

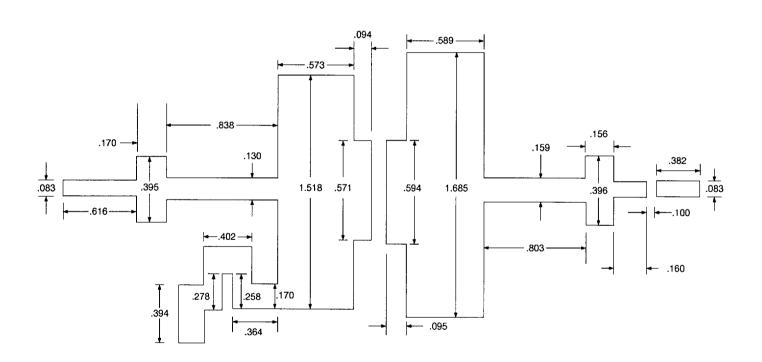


Figure 1. Test Circuit

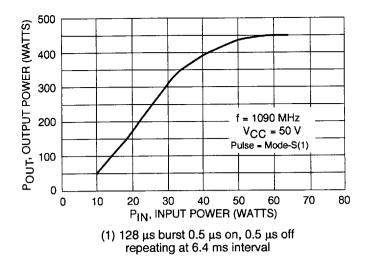
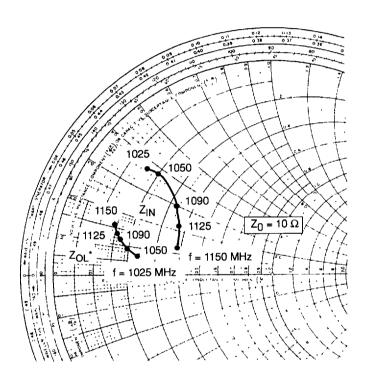



Figure 2. Output Power versus Input Power

 P_{OUT} = 350 W Pk, V_{CC} = 50 V

f MHz	Z _{IN} OHMS	Z _{OL} * (1) OHMS
1025	1.92 + j3.80	2.52 + j0.70
1050	2.44 + j3.92	2.18 + j0.85
1090	3.55 + j302	1.94 + j1.13
1125	4.11 + j2.27	1.80 + j1.22
1150	4.13 + j1.35	1.71 + j1.31

Z_{OL}* is the conjugate of the optimum load impedance into which the device operates at a given output power, voltage and frequency.

Figure 3. Series Equivalent Input/Output Impedances

TABLE 1. SCREENING REQUIREMENTS

SCREEN	METHOD	нх	HXV
Internal visual inspection (precap)	2072	N/A	100%
2. High temperature non-operating life	1032	100%	100%
3. Temperature cycling	1051	100%	100%
4. Constant Acceleration (Gold wires only)(1)	2006	100%	100%
5. Hermetic seal (Fine and Gross)	1071	100%	100%
6. Establish Unit Identity	none	100%	100%
7. Interim electrical parameters	as specified	100%	100%
8. High temperature reverse bias (HTRB)	1039	100%	100%
9. Interim electrical parameters	as specified	100%	100%
10. Power burn-in	1039	100%	100%
11. Final electrical parameters	as specified	100%	100%
12. Hermetic seal (Fine and Gross)	1071	optional	optional

GROUP A TEST SEQUENCE

		Subgroups	
A1	A2	A3	A4
		Type of Test	
Visual/Mechanical Package: Dimensions, Marking	DC Tests V(BR)CBO V(BR)CES V(BR)EBO ICBO hFE	Hi/Lo Temp Not Applicable	AC Tests GpB η

GROUP B TEST SEQUENCE

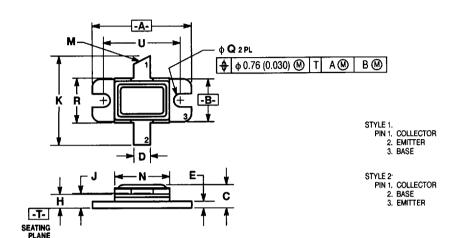
		S	ubgroups		
B1**	B2*	B3*	B4	B5	B6*
			Type of Test		
Solderability (1)	Temp. Cycling	Steady State Operating Life	Decap Visual	Not Required	High Temp. Life (Non-Operating)
Resistance to	Hermetic Seal	' "			(itali opolaling)
Solvents	Fine				
	Gross	Bond Strength			

 $^{^{\}star}$ The tests in this subgroup are preceded and followed by $I_{\mbox{\footnotesize{CBO}}}$ and $I_{\mbox{\footnotesize{hFE}}}$ electrical tests.

GROUP C TEST SEQUENCE*

		S	ubgroups		
C1	C2**	C3**	C4	C5	C6**
			Type of Test		
Physical Dimensions	Thermal Shock (Glass Strain) Terminal Strength Hermetic Seal Moist. Resistance	Mech. Shock Vibration (Var. Freq.) Const. Accel.	Salt Atmosphere	Not Applicable	Steady State Op Life

^{*} Group C is performed on the initial lot and requalification only.


MRF10350H/D

^{**} Separate samples may be used for each test.

⁽¹⁾ Omit Steam Aging requirements.

^{**} The tests in this subgroup are preceded and followed by $I_{\mbox{\footnotesize{CBO}}}$ and $h_{\mbox{\footnotesize{FE}}}$ electrical tests.

OUTLINE DIMENSIONS

NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- 2. CONTROLLING DIMENSION: INCH.

	MILLIM	ETERS	INC	HES
DIM	MIN	MAX	MIN	MAX
A	22.61	23.11	0.890	0.910
В	9.53	10.03	0.375	0.395
С	4.83	5.33	0.190	0.210
D	3.69	3.93	0.145	0.155
Ę	1.40	1.65	0.055	0.065
Н	3.05	3.30	0.120	0.130
J	0.08	0.15	0.003	0.006
K	19.56	21.08	0.770	0.830
M	45°	REF	45°	REF
N	12.45	12.95	0.490	0.510
Q	2.93	3.17	0.115	0.125
R	10.04	10.28	0.395	0.405
U	17.78	BSC	0.700	BSC

CASE 355E-01

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters can and do vary in different applications. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola ot convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

Literature Distribution Centers:

USA: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036.

EUROPE: Motorola Ltd.; European Literature Centre; 88 Tanners Drive, Blakelands, Milton Keynes, MK14 5BP, England.

JAPAN: Nippon Motorola Ltd., 4-32-1, Nishi-Gotanda, Shinagawa-ku, Tokyo 141, Japan.

ASIA PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Center, No. 2 Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong.

42926

MRF10350H/D

1PHX31253-1 PRINTED IN USA 5/94 IMPERIAL LITHO 98144 15,000 BIP LOG YDABAA