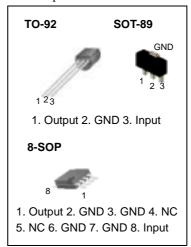
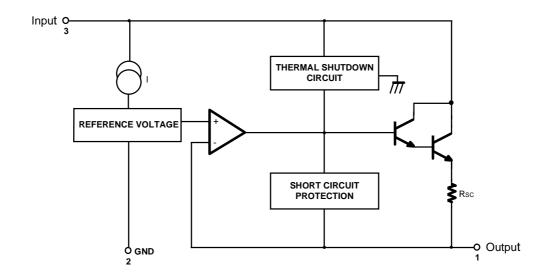


MC78LXXA/LM78LXXA/MC78L05AA


3-Terminal 0.1A Positive Voltage Regulator

Features


- Maximum Output Current of 100mA
- Output Voltage of 5V, 8V, 12V, 15V, 18V and 24V
- Thermal Overload Protection
- · Short Circuit Current Limiting
- Output Voltage Offered in ±5% Tolerance

Description

The MC78LXXA/LM78LXXA/MC78L05AA series of fixed voltage monolithic integrated circuit voltage regulators are suitable for application that required supply current up to 100mA.

Internal Block Diagram

Absolute Maximum Ratings

Parameter	Symbol	Value	Unit
Input Voltage (for Vo = 5V, 8V)		30	V
(for Vo = 12V to 18V)	VI	35	V
$(for V_O = 24V)$		40	V
Operating Junction Temperature Range	TJ	0 ~ +150	°C
Storage Temperature Range	TSTG	-65 ~ +150	°C

Electrical Characteristics(MC78L05A/LM78L05A)

(VI = 10V, IO = 40mA, 0° C \leq TJ \leq 125 $^{\circ}$ C, CI = 0.33μ F, CO = 0.1μ F, unless otherwise specified. (Note 1)

Parameter		Symbol	Cor	nditions	Min.	Тур.	Max.	Unit
Output Voltage	Output Voltage		TJ = 25°C		4.8	5.0	5.2	V
Line Regulation (Not	te1)	۸۱/۵	T.J = 25°C	7V ≤ V _I ≤ 20V	-	8	150	mV
3, 3, 4, 4	,	ΔVO	1J = 25°C	$8V \le V_I \le 20V$	-	6	100	mV
Load Population (No	sto1)	ΔVο	T _J = 25°C	$1mA \le IO \le 100mA$	-	11	60	mV
Load Regulation (No	ne i)		1J = 23 C	$1mA \le IO \le 40mA$	-	5.0	30	mV
	Output Voltage		7V ≤ V _I ≤ 20V	$1mA \le IO \le 40mA$	-	-	5.25	V
Output Voltage			$7V \le V_I \le V_{MAX}$ (Note2)	1mA ≤ I _O ≤ 70mA	4.75	-	5.25	V
Quiescent Current		IQ	T _J = 25°C		-	2.0	5.5	mA
Quiescent Current	With Line	ΔlQ	8V ≤V _I ≤ 20V		-	-	1.5	mA
Change	With Load	ΔlQ	1mA ≤ I _O ≤ 40 m	nA	-	-	0.1	mA
Output Noise Voltage		VN	T _A = 25°C, 10Hz	z ≤ f ≤ 100kHz	-	40	-	μV/Vo
Temperature Coefficient of VO ΔVC		ΔV0/ΔΤ	IO = 5mA		-	-0.65	-	mV/°C
Ripple Rejection		RR	f = 120Hz, 8V ≤	V _I ≤ 18V, T _J = 25°C	41	80	-	dB
Dropout Voltage		VD	TJ = 25°C		-	1.7	-	V

^{1.} The maximum steady state usable output current and input voltage are very dependent on the heat sinking and/or lead length of the package. The data above represent pulse test conditions with junction temperature as indicated at the initiation of tests.

^{2.} Power dissipation $PD \le 0.75W$.

Electrical Characteristics(MC78L08A) (Continued)

(VI = 14V, IO = 40mA, 0° C \leq TJ \leq 125 $^{\circ}$ C, CI = 0.33 μ F, CO = 0.1 μ F, unless otherwise specified. (Note 1)

Parameter		Symbol	Cor	nditions	Min.	Тур.	Max.	Unit
Output Voltage		Vo	T _J = 25°C		7.7	8.0	8.3	V
Line Regulation (Note	Line Degulation (Note1)		T _J = 25°C	$10.5 \text{V} \leq \text{V}_{\text{I}} \leq 23 \text{V}$	-	10	175	mV
Line Regulation (Note	<i>=1)</i>	ΔVO	1) = 20 0	11V ≤ V _I ≤ 23V	-	8	125	mV
Load Population (Not	:01)	4)/0	TJ = 25°C	1mA ≤ I _O ≤ 100mA	-	15	80	mV
Load Regulation (Not	.e i)	ΔVο		$1mA \le I_O \le 40mA$	-	8.0	40	mV
			10.5V ≤ V _I ≤ 23V	$1mA \le IO \le 40mA$	7.6	-	8.4	V
Output Voltage	Output Voltage		10.5V ≤ V _I ≤ VMAX (Note2)	1mA ≤ I _O ≤ 70mA	7.6	-	8.4	V
Quiescent Current		lQ	T _J = 25°C		-	2.0	5.5	mA
Quiescent Current	With Line	ΔlQ	11V ≤ V _I ≤ 23V		-	-	1.5	mA
Change	With Load	ΔlQ	1mA ≤ I _O ≤ 40m	A	-	-	0.1	mA
Output Noise Voltage	Output Noise Voltage		T _A = 25°C, 10Hz	z ≤ f ≤100kHz	-	60	-	μV/Vo
Temperature Coefficient of VO		ΔV0/ΔΤ	IO = 5mA		-	-0.8	-	mV/°C
Ripple Rejection		RR	f = 120Hz, 11V s	≤ V _I ≤ 21V, T _J = 25°C	39	70	-	dB
Dropout Voltage		VD	T _J = 25°C		-	1.7	-	V

^{1.} The maximum steady state usable output current and input voltage are very dependent on the heat sinking and/or lead length of the package. The data above represent pulse test conditions with junction temperature as indicated at the initiation of tests.

^{2.} Power dissipation $PD \le 0.75W$.

Electrical Characteristics(MC78L12A/LM78L12A) (Continued)

 $(V_I = 19V, I_O = 40mA, 0^{\circ}C \le T_J \le 125^{\circ}C, C_I = 0.33 \,\mu\text{F}, C_O = 0.1 \mu\text{F}, unless otherwise specified. (Note1))$

Parameter		Symbol	Cor	nditions	Min.	Тур.	Max.	Unit
Output Voltage		Vo	TJ = 25°C		11.5	12	12.5	V
Line Regulation (Note	01)	ΔVΩ	T _J = 25°C	$14.5 \text{V} \leq \text{V}_{\text{I}} \leq 27 \text{V}$	-	20	250	mV
Line Regulation (Not	5 1)	ΔνΟ	11 = 25 C	16V ≤ V _I ≤ 27V	-	15	200	mV
Load Regulation (No	to1)	ΔVΩ	TJ = 25°C -	$1mA \le IO \le 100mA$	-	20	100	mV
Load Negulation (No	le i)	ΔνΟ		$1mA \le IO \le 40mA$	-	10	50	mV
Output Voltage			14.5V ≤ V _I ≤ 27V	$1mA \le IO \le 40mA$	11.4	-	12.6	V
		Vo	14.5V ≤ V _I ≤ V _{MAX} (Note2)	1mA ≤ I _O ≤ 70mA	11.4	-	12.6	V
Quiescent Current		lQ	T _J = 25°C		-	2.1	6.0	mA
Quiescent Current	With Line	ΔlQ	16V ≤ V _I ≤ 27V		-	-	1.5	mA
Change	With Load	ΔlQ	1mA ≤ I _O ≤ 40m	A	-	-	0.1	mA
Output Noise Voltage	Output Noise Voltage		TA = 25°C, 10Hz	z ≤ f ≤ 100kHz	-	80	-	μV/Vo
Temperature Coefficient of Vo		ΔV0/ΔΤ	IO = 5mA		-	-1.0	-	mV/°C
Ripple Rejection		RR	f = 120Hz, 15V ≤	≤ V _I ≤ 25V, T _J = 25°C	37	65	-	dB
Dropout Voltage		VD	T _J = 25°C		ı	1.7	-	V

^{1.} The maximum steady state usable output current and input voltage are very dependent on the heat sinking and/or lead length of the package. The data above represent pulse test conditions with junction temperature as indicated at the initiation of tests.

^{2.} Power dissipation $PD \le 0.75W$.

Electrical Characteristics(MC78L15A) (Continued)

(VI = 23V, IO = 40mA, 0° C \leq TJ \leq 125 $^{\circ}$ C, CI = 0.33 μ F, CO = 0.1 μ F, unless otherwise specified. (Note1))

Parameter		Symbol	Coi	nditions	Min.	Тур.	Max.	Unit
Output Voltage		Vo	TJ = 25°C		14.4	15	15.6	V
Line Regulation (Note	51)	ΔVΩ	TJ = 25°C	17.5V ≤ V _I ≤ 30V	-	25	300	mV
Line Regulation (Note	<i>=1)</i>	ΔνΟ	1J = 25 C	$20V \le V_I \le 30V$	=	20	250	mV
Load Degulation (Not	·o1)	۸۱/۵	T. 25°C	$1mA \le IO \le 100mA$	-	25	150	mV
Load Regulation (Not	.e i)	ΔVΟ	T _J = 25°C	$1mA \le IO \le 40mA$	-	12	75	mV
			17.5V ≤ V _I ≤ 30V	$1mA \le IO \le 40mA$	14.25	-	15.75	V
Output Voltage	Output Voltage		17.5V ≤ V _I ≤ VMAX (Note2)	1mA ≤ I _O ≤ 70mA	14.25	-	15.75	V
Quiescent Current		lQ	T _J = 25°C		=	2.1	6.0	mA
Quiescent Current	With Line	ΔlQ	20V ≤ V _I ≤ 30V		-	-	1.5	mA
Change	With Load	ΔlQ	1mA ≤ I _O ≤ 40m/	4	-	-	0.1	mA
Output Noise Voltage		VN	T _A = 25°C, 10Hz	z ≤ f ≤ 100kHz	-	90	-	μV/Vo
Temperature Coefficient of VO Δ		ΔV _O /ΔT	IO = 5mA		-	-1.3	-	mV/°C
Ripple Rejection		RR	f = 120Hz, 18.5V	≤V _I ≤28.5V, T _J = 25°C	34	60	-	dB
Dropout Voltage		VD	T _J = 25°C		-	1.7	-	V

^{1.} The maximum steady state usable output current and input voltage are very dependent on the heat sinking and/or lead length of the package. The data above represent pulse test conditions with junction temperature as indicated at the initiation of tests.

^{2.} Power dissipation $PD \le 0.75W$.

Electrical Characteristics(MC78L18A) (Continued)

(VI = 27V, IO = 40mA, 0° C \leq TJ \leq 125 $^{\circ}$ C, CI = 0.33 μ F, CO = 0.1 μ F, unless otherwise specified. (Note1))

Parameter	Parameter Symbol		Coi	nditions	Min.	Тур.	Max.	Unit
Output Voltage		Vo	T _J = 25°C		17.3	18	18.7	V
Line Regulation (Note1)		ΔVΩ	TJ = 25°C	21V ≤ V _I ≤ 33V	-	145	300	mV
Line Regulation (Note	3 1)	<u> </u>	1J = 25 C	22V ≤ V _I ≤ 33V	-	135	250	mV
Load Dogulation (Not	101)	11/0	T. 25°C	1mA ≤ Io≤100mA	-	30	170	mV
Load Regulation (Not	le i)	ΔVO	T _J = 25°C	$1mA \le IO \le 40mA$	-	15	85	mV
			21V ≤ V _I ≤ 33V	$1mA \le IO \le 40mA$	17.1	-	18.9	V
Output Voltage	Output Voltage		21V ≤ V _I ≤ VMAX (Note2)	1mA ≤ I _O ≤ 70mA	17.1	-	18.9	V
Quiescent Current		IQ	T _J = 25°C		-	2.2	6.0	mA
Quiescent Current	With Line	ΔlQ	21V ≤ V _I ≤ 33V		-	-	1.5	mA
Change	With Load	ΔlQ	1mA ≤ I _O ≤ 40m	A	-	-	0.1	mA
Output Noise Voltage	Output Noise Voltage		T _A = 25°C, 10H;	z ≤ f ≤ 100kHz	-	150	-	μV/Vo
Temperature Coefficient of VO		ΔV0/ΔΤ	IO = 5mA		-	-1.8	-	mV/°C
Ripple Rejection		RR	f = 120Hz, 23V	≤ V _I ≤ 33V, T _J = 25°C	34	48	-	dB
Dropout Voltage		VD	T _J = 25°C		-	1.7	-	V

^{1.} The maximum steady state usable output current and input voltage are very dependent on the heat sinking and/or lead length of the package. The data above represent pulse test conditions with junction temperature as indicated at the initiation of tests.

^{2.} Power dissipation PD \leq 0.75W.

Electrical Characteristics(MC78L24A) (Continued)

(VI = 33V, IO = 40mA, 0° C \leq TJ \leq 125 $^{\circ}$ C, CI = 0.33 μ F, CO = 0.1 μ F, unless otherwise specified. (Note1))

Parameter		Symbol	Coi	nditions	Min.	Тур.	Max.	Unit
Output Voltage		Vo	T _J = 25°C		23	24	25	V
Line Regulation (Note	Line Regulation (Note1)		T _J = 25°C	27V ≤ V _I ≤ 38V	-	160	300	mV
,	,	ΔVο	13 = 23 0	28V ≤ V _I ≤ 38V	=	150	250	mV
Load Population (Not	:01)	4)/0	T _J = 25°C	1mA ≤ IO ≤ 100mA	-	40	200	mV
Load Regulation (Not	. e 1)	ΔVO	1J = 25°C	$1mA \le IO \le 40mA$	=	20	100	mV
			27V ≤ V _I ≤ 38V	$1mA \le IO \le 40mA$	22.8	-	25.2	V
Output Voltage	Output Voltage		27V ≤ V _I ≤ VMAX (Note2)	1mA ≤ I _O ≤ 70mA	22.8	-	25.2	V
Quiescent Current		lQ	T _J = 25°C		-	2.2	6.0	mA
Quiescent Current	With Line	ΔlQ	28V ≤ V _I ≤ 38V		=	-	1.5	mA
Change	With Load	ΔlQ	1mA ≤ I _O ≤ 40m	A	-	-	0.1	mA
Output Noise Voltage	Output Noise Voltage		T _A = 25°C, 10H;	z ≤ f ≤ 100kHz	=	200	-	μV/Vo
Temperature Coefficient of VO		ΔV0/ΔΤ	I _O = 5mA		-	-2.0	-	mV/°C
Ripple Rejection		RR	f = 120Hz, 28V s	≤ V _I ≤ 38V, T _J = 25°C	34	45	-	dB
Dropout Voltage		VD	T _J = 25°C		ı	1.7	-	V

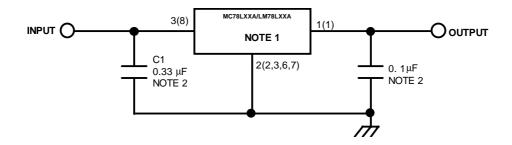
^{1.} The maximum steady state usable output current and input voltage are very dependent on the heat sinking and/or lead length of the package. The data above represent pulse test conditions with junction temperature as indicated at the initiation of tests.

^{2.} Power dissipation $PD \le 0.75W$.

Absolute Maximum Ratings

Parameter	Symbol	Value	Unit
Input Voltage (for Vo = 5V, 8V)		30	V
(for Vo = 12V to 18V)	VI	35	V
(for VO = 24V)		40	V
Operating Junction Temperature Range	TJ	0 ~ +150	°C
Storage Temperature Range	TSTG	-65 ~ +150	°C

Electrical Characteristics(MC78L05AA) (Continued)


(VI = 10V, IO = 40mA, 0° C \leq TJ \leq 125 $^{\circ}$ C, CI = 0.33 μ F, CO = 0.1 μ F, unless otherwise specified. (Note))

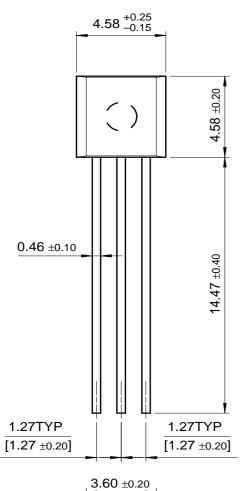
Parameter		Symbol	Coi	nditions	Min.	Тур.	Max.	Unit
Output Voltage		Vo	T _J = 25°C		4.9	5.0	5.1	V
Line Regulation (Not	te1)	ΔVο	T.J = 25°C	7V ≤ V _I ≤ 20V	-	8	150	mV
	,	300 13 = 2	1J = 25 C	8V ≤ V _I ≤ 20V	-	6	100	mV
Load Population (No	sto1)	ΔVο	T _J = 25°C	1mA ≤ I _O ≤ 100mA	-	11	50	mV
Load Regulation (No	ne i)		11 = 23 0	$1mA \le IO \le 40mA$	-	5.0	25	mV
	Output Voltage		7V ≤V _I ≤20V	$1mA \le IO \le 40mA$	-	-	5.15	V
Output Voltage			7V ≤V _I ≤ V _{MAX} (Note2)	1mA ≤ I _O ≤ 70mA	4.75	-	5.15	V
Quiescent Current		lQ	T _J = 25°C		-	2.0	5.5	mA
Quiescent Current	With Line	ΔlQ	8V ≤V _I ≤ 20V		-	-	1.5	mA
Change	With Load	ΔlQ	1mA ≤ I _O ≤ 40 m	nA	-	-	0.1	mA
Output Noise Voltage		VN	T _A = 25°C, 10H;	z ≤ f ≤ 100kHz	-	40	-	μV/Vo
Temperature Coefficient of V _O ΔV _O /.		ΔV0/ΔΤ	IO = 5mA		-	-0.65	-	mV/°C
Ripple Rejection		RR	f = 120Hz, 8V ≤	V _I ≤ 18V, T _J = 25°C	41	80	-	dB
Dropout Voltage		VD	TJ = 25°C		-	1.7	-	V

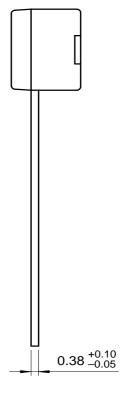
^{1.} The maximum steady state usable output current and input voltage are very dependent on the heat sinking and/or lead length of the package. The data above represent pulse test conditions with junction temperature as indicated at the initiation of tests.

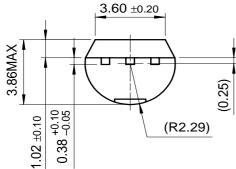
^{2.} Power dissipation PD \leq 0.75W.

Typical Application

'()': 8SOP Type

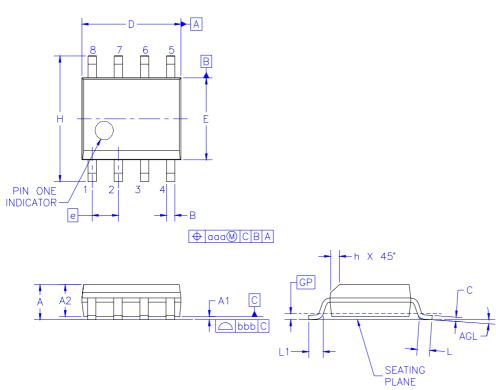

- 1. To specify an output voltage, substitute voltage value for "XX".
- 2. Bypass Capacitors are recommend for optimum stability and transient response and should be located as close as possible to the regulator


Mechanical Dimensions


Package

Dimensions in millimeters

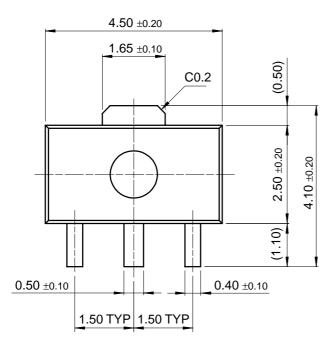
TO-92

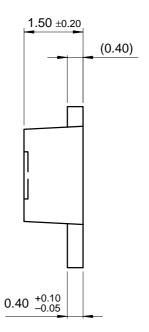


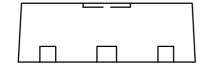
Mechanical Dimensions (Continued)

Package

Dimensions in millimeters


Symbol	Min	Nom	Max		
А	-	-	1.75		
A1	0.10	0.15	0.25		
A2	1.25	1.45	1.50		
В	0.35	0.37	0.51		
С	0.19	0.20	0.25		
D	4.80	4.80 4.90			
E	3.80	3.80 3.90			
е		1.27BSC			
Н	5.79	5.99	6.20		
h	0.25	-	0.50		
L	0.50	0.70	0.90		
GP		0.36 BSC			
q	0	-	8		
aaa	-	-	0.25		
bbb	-	-	0.10		


Mechanical Dimensions (Continued)


Package

Dimensions in millimeters

SOT-89

Ordering Information

Product Number	Package	Output Voltage Tolerance	Operating Temperature	Shipping
LM78L05ACZ				Bulk
LM78L12ACZ				Buik
LM78L05ABZX				Tape & Reel
LM78L05ABZXA	TO-92	5%	0 ~ +125°C	Ammo Pack
LM78L05ACZX	10-92	3 /6	0 ~ +125 C	Tape & Reel
LM78L05ACZXA				Ammo Pack
LM78L12ACZX				Tape & Reel
LM78L12ACZXA				Ammo Pack
Product Number	Package	Output Voltage Tolerance	Operating Temperature	Shipping
MC78L05ACP				
MC78L08ACP				
MC78L12ACP	TO-92			
MC78L15ACP	10-92			
MC78L18ACP				
MC78L24ACP		5%		
MC78L05ACD		5%		Bulk
MC78L08ACD	8-SOP			
MC78L12ACD				
MC78L05ACH				
MC78L08ACH	SOT-89			
MC78L12ACH				
MC78L05AACP		2%		
MC78L05AACPXA				Ammo Pack
MC78L05ABPX				Tape & Reel
MC78L05ABPXA			0 ~ +125°C	Ammo Pack
MC78L05ACPX			0 * 1120 0	Tape & Reel
MC78L05ACPXA				Amma Dook
MC78L06ACPXA				Ammo Pack
MC78L08ACPX				Tape & Reel
MC78L08ACPXA				
MC78L09ACPXA	TO-92	F0/		Ammo Pack
MC78L10ACPXA		5%		
MC78L12ACPX				Tape & Reel
MC78L12ACPXA				Ammo Pack
MC78L15ACPX				Tape & Reel
MC78L15ACPXA				Ammo Pack
MC78L18ACPX				Tape & Reel
MC78L18ACPXA				Ammo Pack
MC78L24ACPX				Tape & Reel
MC78L24ACPXA				Ammo Pack

[•] For information on tape & reel and ammo pack specifications, including part orientation and tape sizes, please refer to our tape and reel data, www.fairchildsemi.com/products/discrete/pdf/to92_tr.pdf.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com

Go

Search:

Home >> Find products >>

MC78L08A

3-Terminal 0.1A Postive Voltage Regulator

Contents

General description

Qualification Support

- Features
- Product status/pricing/packaging
- Order Samples

General description

The MC78LXXA/LM78LXXA/MC78L05AA series of fixed voltage monolithic integrated circuit voltage regulators are suitable for application that required supply up to 100mA.

back to top

Features

- Maximum Output Current of 100mA
- Output Voltage of 5V, 8V, 12V, 15V, 18V and 24V
- Thermal Overload Protection
- Short Circuit Current Limiting
- Output Voltage Offered in ± 5% Tolerance

back to top

Product status/pricing/packaging

BUY

BUY

Datasheet Download this datasheet

e-mail this datasheet

This page Print version

Related Links

Request samples

How to order products

Product Change Notices (PCNs)

Support

Sales support

Quality and reliability

Design center

Product	Product status	Pb-free Status	Pricing*	Package type	Leads	Packing method
MC78L08ACHX	Full Production	Full Production	\$0.308	<u>SOT-89</u>	3	TAPE REEL
MC78L08ACP	Full Production		\$0.197	<u>TO-92R</u>	3	BULK

		Full Production				
MC78L08ACPX	Full Production	Full Production	\$0.197	<u>TO-92R</u>	3	TAPE REEL

^{*} Fairchild 1,000 piece Budgetary Pricing

** A sample button will appear if the part is available through Fairchild's on-line samples program. If there is no sample button, please contact a Fairchild distributor to obtain samples

Indicates product with Pb-free second-level interconnect. For more information click here.

back to top

Qualification Support

Click on a product for detailed qualification data

Product				
MC78L08ACHX				
MC78L08ACP				
MC78L08ACPX				

back to top

© 2007 Fairchild Semiconductor

Products | Design Center | Support | Company News | Investors | My Fairchild | Contact Us | Site Index | Privacy Policy | Site Terms & Conditions | Standard Terms & Conditions |