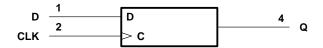
- EPIC[™] (Enhanced-Performance Implanted CMOS) Submicron Process
- Packaged in Plastic Small-Outline Transistor Package

description


This single positive-edge-triggered D-type flip-flop is designed for 1.65-V to 3.6-V V_{CC} operation.

When data at the data (D) input meets the setup time requirement, the data is transferred to the Q output on the positive-going edge of the clock pulse. Clock triggering occurs at a voltage level and is not directly related to the rise time of the clock pulse. Following the hold-time interval, data at the D input may be changed without affecting the levels at the outputs.

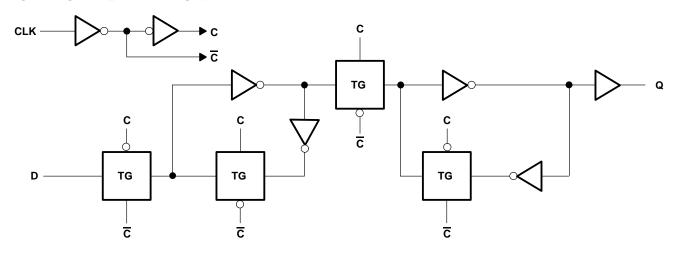
The SN74ALVC1G79 is characterized for operation from -40°C to 85°C.

FUNCTION TABLE								
INPU	OUTPUT							
CLK	D	Q						
↑	Н	Н						
↑	L	L						
L	Х	Q ₀						

logic symbol[†]

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

SCES105C – SEPTEMBER 1997– REVISED JANUARY 1999 DCK PACKAGE (TOP VIEW) D [1 5] V_{CC} CLK [2 GND [3 4] Q


RODUCT PREVIEW

EPIC is a trademark of Texas Instruments Incorporated.

SCES105C - SEPTEMBER 1997- REVISED JANUARY 1999

logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V_{CC} Input voltage range, V_I (see Note 1) Output voltage range, V_O (see Notes 1 and 2) Input clamp current, I_{IK} ($V_I < 0$) Output clamp current, I_{OK} ($V_O < 0$) Continuous output current, I_O Continuous current through V_{CC} or GND Package thermal impedance, θ_{JA} (see Note 3)	$\begin{array}{c} -0.5 \mbox{ V to } 4.6 \mbox{ V} \\ -0.5 \mbox{ V to } \mbox{ V}_{CC} + 0.5 \mbox{ V} \\ -50 \mbox{ mA} \\ -50 \mbox{ mA} \\ \pm 50 \mbox{ mA} \\ \pm 100 \mbox{ mA} \end{array}$
Package thermal impedance, θ_{JA} (see Note 3) Storage temperature range, T_{stg}	

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.

2. This value is limited to 4.6 V maximum.

3. The package thermal impedance is calculated in accordance with JESD 51.

SCES105C - SEPTEMBER 1997- REVISED JANUARY 1999

recommended operating conditions (see Note 4)

			MIN	MAX	UNIT
VCC	Supply voltage		1.65	3.6	V
		V _{CC} = 1.65 V to 1.95 V	$0.65 \times V_{CC}$		
VIH	High-level input voltage	V_{CC} = 2.3 V to 2.7 V	1.7		V
		V _{CC} = 2.7 V to 3.6 V	2		
		V _{CC} = 1.65 V to 1.95 V		$0.35 \times V_{CC}$	
VIL	Low-level input voltage	V_{CC} = 2.3 V to 2.7 V		0.7	V
		V _{CC} = 2.7 V to 3.6 V		0.8	
VI	Input voltage		0	VCC	V
VO	Output voltage		0	VCC	V
		V _{CC} = 1.65 V		-4	
	/IL Low-level input voltage /I Input voltage /O Output voltage OH High-level output current OL Low-level output current	V _{CC} = 2.3 V		-12	س ۸
ЮН		V _{CC} = 2.7 V		-12	mA
		V _{CC} = 3 V		-24	
		V _{CC} = 1.65 V		4	
1		V _{CC} = 2.3 V		12	mA
OL	Low-level output current	V _{CC} = 2.7 V		12	
	V _{CC} = 3 V			24	
$\Delta t/\Delta v$	Input transition rise or fall rate	•		5	ns/V
Τ _Α	Operating free-air temperature		-40	85	°C

NOTE 4: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS	Vcc	MIN TYP [†] M	
	$I_{OH} = -100 \ \mu A$	1.65 V to 3.6 V	V _{CC} -0.2	
	$I_{OH} = -4 \text{ mA}$	1.65 V	1.2	
	$I_{OH} = -6 \text{ mA}$	2.3 V	2	
VOH		2.3 V	1.7	V
	$I_{OH} = -12 \text{ mA}$	2.7 V	2.2	
		3 V	2.4	
	$I_{OH} = -24 \text{ mA}$	3 V	2	
	I _{OL} = 100 μA	1.65 V to 3.6 V	().2
Vei	I _{OL} = 4 mA	1.65 V	0.	45
	I _{OL} = 6 mA	2.3 V).4 V
VOL	lot = 12 mA	2.3 V).7
	I _{OL} = 12 mA	2.7 V	().4
	I _{OL} = 24 mA	3 V	0.	55
lı	$V_I = V_{CC}$ or GND	3.6 V		±5 μΑ
Icc	$V_{I} = V_{CC} \text{ or } GND,$ $I_{O} = 0$	3.6 V		10 μA
Ci	$V_I = V_{CC}$ or GND	3.3 V		pF

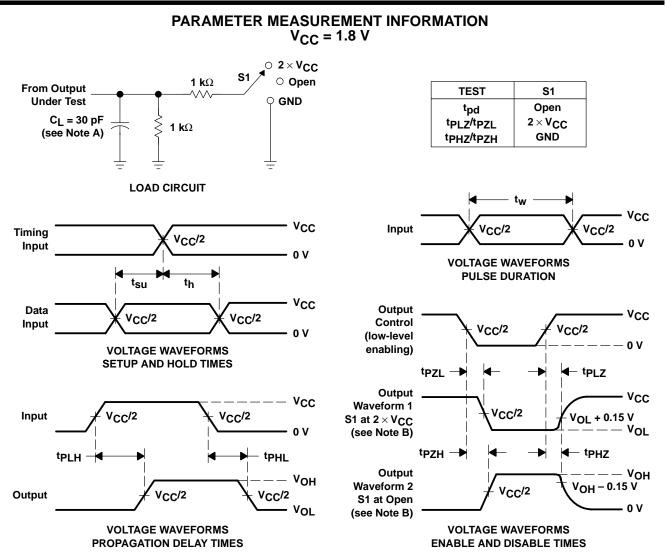
[†] All typical values are at V_{CC} = 3.3 V, T_A = 25° C.

SCES105C - SEPTEMBER 1997- REVISED JANUARY 1999

timing requirements over recommended operating free-air temperature range (unless otherwise noted) (see Figures 1 through 3)

			V _{CC} = 1.8 V		V _{CC} = 2.5 V ± 0.2 V		V _{CC} = 2.7 V		V _{CC} = 3.3 V ± 0.3 V		UNIT
			MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
fclock	f _{clock} Clock frequency										MHz
tw	V Pulse duration, CLK high or low										ns
•		Data high									
t _{su}	Setup time before CLK↑ Data low										ns
th	t _h Hold time, data after CLK↑										ns

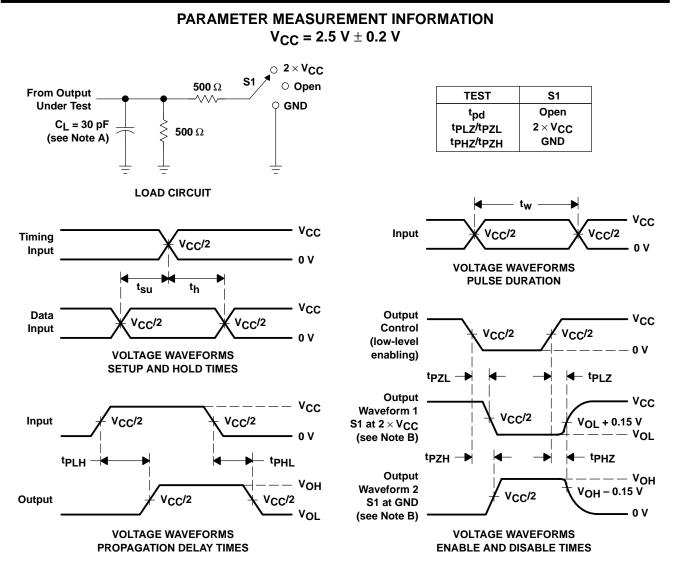
switching characteristics over recommended operating free-air temperature range (unless otherwise noted) (see Figures 1 through 3)


PARAMETER	FROM (INPUT)	TO (OUTPUT)	$V_{CC} = 1.8 V$ $V_{CC} = 2.5 V$ $\pm 0.2 V$		V _{CC} = 2.7 V	V _{CC} = 3.3 V ± 0.3 V	UNIT
		(001101)	TYP	MIN MAX	MIN MAX	MIN MAX	
fmax							MHz
^t pd	CLK	Q					ns

operating characteristics, $T_A = 25^{\circ}C$

PARAMETER		TEST CONDITIONS		V _{CC} = 1.8 V TYP	V _{CC} = 2.5 V TYP	V _{CC} = 3.3 V	UNIT
Cpd	Power dissipation capacitance	C _L = 0,	f = 10 MHz				pF

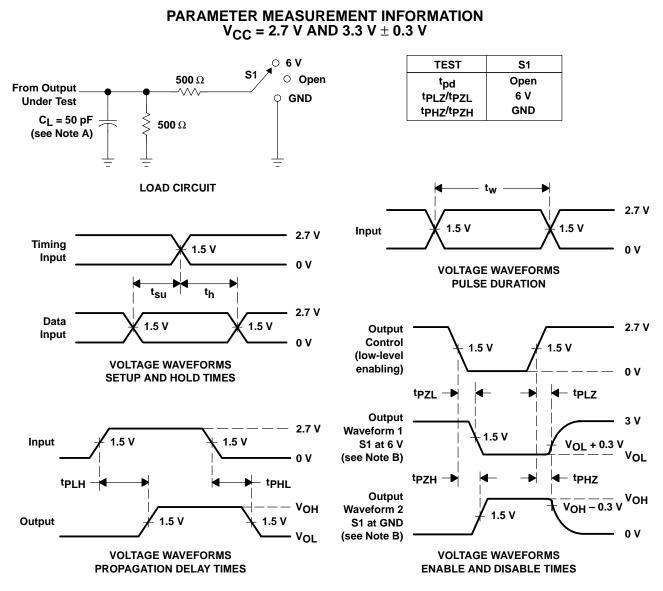
SCES105C - SEPTEMBER 1997- REVISED JANUARY 1999



- NOTES: A. CL includes probe and jig capacitance.
 - B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
 - C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , t_f \leq 2 ns, t_f \leq 2 ns.
 - D. The outputs are measured one at a time with one transition per measurement.
 - E. tpLz and tpHz are the same as tdis.
 - F. tpzL and tpzH are the same as ten.
 - G. tpLH and tpHL are the same as tpd.

Figure 1. Load Circuit and Voltage Waveforms

SCES105C - SEPTEMBER 1997- REVISED JANUARY 1999


NOTES: A. Cl includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
 C. All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, Z_Q = 50 Ω, t_f ≤ 2 ns, t_f ≤ 2 ns.
- D. The outputs are measured one at a time with one transition per measurement.
- E. tpLz and tpHz are the same as tdis.
- F. tpzL and tpzH are the same as ten.
- G. tPLH and tPHL are the same as tpd.

Figure 2. Load Circuit and Voltage Waveforms

SCES105C - SEPTEMBER 1997- REVISED JANUARY 1999

- NOTES: A. CL includes probe and jig capacitance.
 - B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
 - C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , t_f \leq 2.5 ns, t_f \leq 2.5 ns.
 - D. The outputs are measured one at a time with one transition per measurement.
 - E. tPLZ and tPHZ are the same as tdis.
 - F. t_{PZL} and t_{PZH} are the same as t_{en} .
 - G. t_{PLH} and t_{PHL} are the same as t_{pd} .

Figure 3. Load Circuit and Voltage Waveforms

