CDC9841 PC MOTHERBOARD CLOCK SYNTHESIZER/DRIVER WITH 3-STATE OUTPUTS

SCAS458D - DECEMBER 1994 - REVISED APRIL 1998

● Four CPU Clock Outputs With Programmable Frequency (50 MHz, 60 MHz, and 66 MHz)
 Six Clock Outputs at Half-CPU Frequency for PCI
One 24-MHz Clock Output
One 12-MHz Clock Output
Two 14.318-MHz Reference Outputs
 All Output Clock Frequencies Derived From a Single 14.31818-MHz Crystal Input
LVTTL-Compatible Inputs and Outputs

v _{cc} [1	28]] REF0
X1 [2	27 🛮 REF1
X2[3	26 V _{CC}
GND [4	25 CLK12
OE [5	24]] CLK24
PCLK0[6	23 GND
PCLK1	7	22 BCLK2
v _{cc} [8	21 BCLK3
PCLK2	9	20 V _{CC}
PCLK3	10	19 BCLK4
GND [11	18 BCLK5
SEL1[12	17 🛮 GND
SEL0[13	16 BCLK1
v _{cc} [14	15 BCLK0

DW PACKAGE (TOP VIEW)

- Components

 Operates at 3.3 V_{CC}
- Distributed V_{CC} and Ground Pins Reduce Switching Noise

Internal Loop Filters for Phase-Lock Loops

Eliminate the Need for External

Packaged in Plastic Small-Outline Package

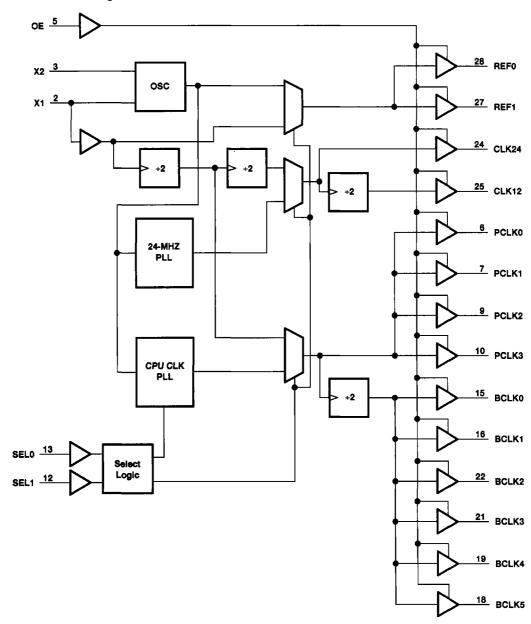
description

The CDC9841 is a high-performance clock synthesizer/driver that generates all required clock signals necessary for a high-performance PC motherboard. The four central processing unit (CPU) clock outputs (PCLKn) are programmable to one of three frequencies (50 MHz, 60 MHz, or 66 MHz) via the SEL0 and SEL1 control inputs. The six peripheral-component-interconnect (PCI) clock outputs (BCLKn) are half the frequency of PCLKn and are delayed 1 ns to 4 ns from the rising edge of the CPU clock. In addition, the four fixed-frequency outputs provide a 24-MHz clock (CLK24), a 12-MHz clock (CLK12), and two buffered copies of the 14.318-MHz input reference (REF0, REF1).

The CDC9841 generates all output frequencies from a 14.31818-MHz crystal input. A reference clock can be provided at X1 instead of a crystal input.

Two phase-lock loops (PLLs) generate the CPU clock frequency and the 24-MHz clock frequency. On-chip loop filters and internal feedback eliminate the need for external components. The PCI and 12-MHz clock frequencies are derived from the base CPU and 24-MHz clock frequencies, respectively. The PLL circuit can be bypassed in the TEST mode (i.e., SEL0 = SEL1 = H) to distribute a test clock provided at the X1 input. Because the CDC9841 is based on PLL circuitry, it requires a stabilization time to achieve phase lock of the PLL. This stabilization time is required following power up and application of a fixed-frequency, fixed-phase signal at the X1 input, as well as following any changes to the SELn inputs.

PCLKn and BCLKn provide low-skew/low-jitter clock signals for reliable clock operation. All outputs are 3 state and are enabled via OE.


CDC9841 PC MOTHERBOARD CLOCK SYNTHESIZER/DRIVER WITH 3-STATE OUTPUTS SCAS458D - DECEMBER 1994 - REVISED APRIL 1996

FUNCTION TABLE

OE	SELO	SEL1	X1	PÇLKn	BCLKn	REFn	CLK24	CLK12
L	X	Х	14.31818 MHz	Hi-Z	Hi-Z	Hi-Z	Hi-Z	Hi-Z
н	L	L	14.31818 MHz	50 MHz	25 MHz	14.318 MHz	24 MHz	12 MHz
н	L	н	14.31818 MHz	60 MHz	30 MHz	14.318 MHz	24 MHz	12 MHz
н	н	L	14.31818 MHz	66 MHz	33 MHz	14.318 MHz	24 MHz	12 MHz
Н	Н	Н	TCLK†	TCLK/2	TCLK/4	TCLK	TCLK/4	TCLK/8

[†] TCLK is a test clock input at the X1 input during test mode.

functional block diagram

CDC9841 PC MOTHERBOARD CLOCK SYNTHESIZER/DRIVER WITH 3-STATE OUTPUTS

SCAS458D - DECEMBER 1994 - REVISED APRIL 1996

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†	
Supply voltage range, V _{CC} –0.5 V to 4.6 V	
Input voltage range, V _I (see Note 1)	
Voltage range applied to any output in the high state or power-off state,	
V _O (see Note 1)	
Current into any output in the low state, Io	
Input clamp current, lik (VI < 0)	

NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

recommended operating conditions (see Note 3)

			MIN	MAX	UNIT
VCC	Supply voltage	**	3.135	3.6	V
VIH	High-level input voltage		2		٧
V_{IL}	Low-level input voltage			8.0	ν
۷Į	input voltage		0	Vcc	٧
		REF0		-12	
		REF1		-8	
ЮН	BC	PCLKn		-6	mA
		BCLKn		-12	
		CLK24, CLK12		-4	
		REF0		12	·
		REF1		8	
IOL	Low-level output current	PCLKn		6	mA
		BCLKn		12	
	CLK24, CLK12			4	
TA	Operating free-air temperature		0	70	°C

NOTE 3: Unused inputs must be held high or low to prevent them from floating.

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

The maximum package power dissipation is calculated using a junction temperature of 150°C and a board trace length of 750 mils.
 For more information, refer to the Package Thermal Considerations application note in the 1994 ABT Advanced BiCMOS Technology Data Book. literature number SCBD002B.

CDC9841 PC MOTHERBOARD CLOCK SYNTHESIZER/DRIVER WITH 3-STATE OUTPUTS

SCAS458D - DECEMBER 1994 - REVISED APRIL 1996

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS	-	MIN	MAX	UNIT
ViK	V _{CC} = 3.135 V,	I _I = -18 mA			-1.2	٧
		IOH = -12 mA	REF0	2.5		
		IOH = -8 mA	REF1	2.5		
VOH	V _{CC} = 3.135 V	1 _{OH} = -6 mA	PCLKn	2.5		v
		IOH = -12 mA	BCLKn	2.5		
		IOH = -4 mA	CLK24, CLK12	2.5		
		I _{OL} = 12 mA	REF0		0.4	
		IOL = 8 mA	REF1		0.4	
VOL	V _{CC} = 3.135 V	IOŁ ≖ 6 mA	PCLKn		0.4	v
		IOL = 12 mA	BCLKn		0.4	
		IOL = 4 mA	CLK24, CLK12		0.4	
li .	V _{CC} = 3.6 V,	V _I = V _{CC} or GND	<u></u>		±1	μΑ
loz	$V_{CC} = 3.6 \text{ V},$	VO = VCC or GND			±10	μА
($V_{CC} = 3.6 \text{ V}, \qquad I_{C} = 0,$	IO = 0,	Outputs enabled†		50	4
lcc	VI = VCC or GND		Outputs disabled		1	mA
Ci	VI = VCC or GND					ρF
C _o	VO = VCC or GND				·	ρF
C _{pd}	V _I = 3 V or 0					pF

[†] Device in normal operating mode with no load on outputs

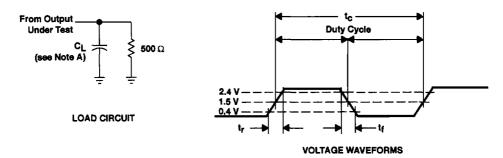
timing requirements over recommended ranges of supply voltage and operating free-air temperature

			MIN	MAX	UNIT
		After SEL1, SEL0		5	
1	Stabilization time‡	After OE↑		5	ms
		After power up		5	

Time required for the integrated PLL circuit to obtain phase lock of its feedback signal to its reference signal. In order for phase lock to be obtained, a fixed-frequency, fixed-phase reference signal must be present at X1. Until phase lock is obtained, the specifications for propagation delay and skew parameters given in the switching characteristics table are not applicable.

CDC9841 PC MOTHERBOARD CLOCK SYNTHESIZER/DRIVER WITH 3-STATE OUTPUTS SCAS458D - DECEMBER 1994 - REVISED APRIL 1996

switching characteristics (see Figures 1 and 2)


PARAMETER	FROM (INPUT)	TO (OUTPUT)		V _{CC} = 3 to 3. T _A = 0°C	.6 V,	UNIT
			, ,		MAX	
. +		PCLKn (C _L	PCLKn (C _L = 20 pF)		200	
^t skew [†]		BCLKn (CL	- 30 pF)		400	ps
Offset [†]	PCLKn (C _L = 20 pF)	BCLKn (CL	= 30 pF)	1	4	ns
†		PCLKn (C _L = 20 p BCLKn (C _L = 30 p	= 20 pF)		±250	
Jitter ^T		BCLKn (CL	= 30 pF)		±350	ps
Duty cycle†		Any out	put	45%	55%	
		PCLKn (C _L = 20 pF)	SEL0 = L, SEL1 = L	20		
			SEL0 = L, SEL1 = H	16.7		1
			SEL0 = H, SEL1 = L	15		1
^t c			SELO = L, SEL1 = L	40		ns
		BCLKn (C _L = 30 pF)	SEL0 = L, SEL1 = H	33.3		1
			SELO = H, SEL1 = L	30		1
t _r †‡		PCLKn (C _L = 20 pF), BCLKn (C _L = 30 pF)			2	ns
t _f †‡		PCLKn (CL = 20 pF), BCLKn (CL = 30 pF)			2	ns

[†] Specifications are applicable only after the PLL stabilization time has elapsed.

[‡] Rise and fall times are characterized using the load circuits shown in Figure 1.

SCAS458D - DECEMBER 1994 - REVISED APRIL 1996

PARAMETER MEASUREMENT INFORMATION CLOCK DRIVER CIRCUITS

- NOTES: A. C_L includes probe and jig capacitance.
 - B. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

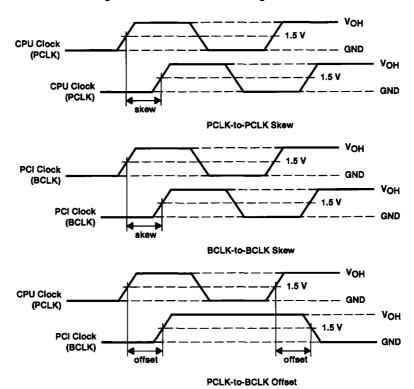


Figure 2. Waveforms for Calculation of tskew and Offset