
- DOC™ (Dynamic Output Control) Circuit Dynamically Changes Output Impedance, Resulting in Noise Reduction Without Speed Degradation
- EPIC[™] (Enhanced-Performance Implanted CMOS) Submicron Process
- Less Than 2-ns Maximum Propagation
 Delay at 2.5-V and 3.3-V V_{CC}
- Dynamic Drive Capability Is Equivalent to Standard Outputs With I_{OH} and I_{OL} of ±24 mA at 2.5-V V_{CC}

- Overvoltage-Tolerant Inputs/Outputs Allow Mixed-Voltage-Mode Data Communications
- I_{off} Supports Partial-Power-Down Mode Operation
- Package Options Include Plastic Small-Outline (DW), Thin Very Small-Outline (DGV), and Thin Shrink Small-Outline (PW) Packages

description

A Dynamic Output Control (DOC) circuit is implemented, which, during the transition, initially lowers the output impedance to effectively drive the load and, subsequently, raises the impedance to reduce noise. Figure 1 shows typical V_{OL} vs I_{OL} and V_{OH} vs I_{OH} curves to illustrate the output impedance and drive capability of the circuit. At the beginning of the signal transition, the DOC circuit provides a maximum dynamic drive that is equivalent to a high-drive standard-output device. For more information, refer to the TI application reports, AVC Logic Family Technology and Applications, literature number SCEA006, and Dynamic Output Control (DOC TM) Circuitry Technology and Applications, literature number SCEA009.

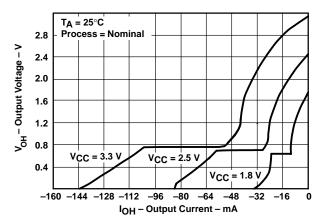


Figure 1. Output Voltage vs Output Current

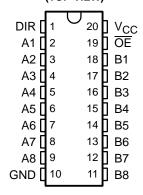
This octal bus transceiver is operational at 1.2-V to 3.6-V V_{CC} , but is designed specifically for 1.65-V to 3.6-V V_{CC} operation.

The SN74AVC245 is designed for asynchronous communication between data buses. The device transmits data from the A bus to the B bus or from the B bus to the A bus, depending on the logic level at the direction-control (DIR) input. The output-enable (\overline{OE}) input can be used to disable the device so the buses are effectively isolated.

This device can be used as two 8-bit transceivers or one 16-bit transceiver. It allows data transmission from the A bus to the B bus or from the B bus to the A bus, depending on the logic level at the direction-control (DIR) input. The output-enable (OE) input can be used to disable the device so that the buses are effectively isolated.

DOC, EPIC, and Widebus are trademarks of Texas Instruments Incorporated.

description (continued)

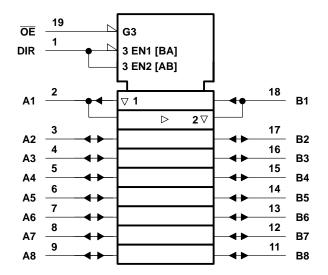

To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

This device is fully specified for partial-power-down applications using Ioff. The Ioff circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

The SN74AVC245 is characterized for operation from -40°C to 85°C.

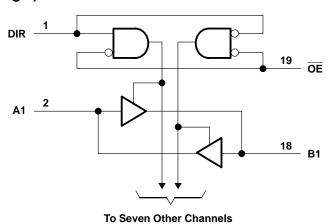
terminal assignments

DGV, DW, OR PW PACKAGE (TOP VIEW)



FUNCTION TABLE (each transceiver)

INP	UTS	OPERATION
OE	DIR	OPERATION
L	L	B data to A bus
L	Н	A data to B bus
Н	X	Isolation



logic symbol†

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage range, V _{CC}		−0.5 V to 4.6 V
Input voltage range, V _I : Except I/O ports (see No	ote 1)	-0.5 V to 4.6 V
	and 2)0.5 \	
Voltage range applied to any input/output		
when the output is in the high-impedance or p	oower-off state, VO (see Note 1)	-0.5 V to 4.6 V
Voltage range applied to any input/output		
when the output is in the high or low state, VO	(see Notes 1 and 2)0.5 \	$/$ to V_{CC} + 0.5 V
Input clamp current, I _{IK} (V _I < 0)	·	–50 mA
Output clamp current, I _{OK} (V _O < 0)		–50 mA
Continuous output current, IO		±50 mA
Continuous current through each V _{CC} or GND .		±100 mA
Package thermal impedance, θ_{JA} (see Note 3): I	DGV package	92°C/W
I	DW package	58°C/W
J	PW package	83°C/W
Storage temperature range, T _{stq}		

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output current ratings are observed.

- The output positive-voltage rating may be exceeded up to 4.6 V maximum if the output current rating is observed.
- 3. The package thermal impedance is calculated in accordance with JESD 51.

PRODUCT PREVIEW

recommended operating conditions (see Note 4)

			MIN	MAX	UNIT		
\/oo	Cupply voltage	Operating	1.4	3.6	V		
Vcc	Supply voltage	Data retention only	1.2		V		
		V _{CC} = 1.2 V	VCC				
		$V_{CC} = 1.4 \text{ V to } 1.6 \text{ V}$	0.65 × V _{CC}				
V_{IH}	High-level input voltage	$V_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$	0.65 × V _{CC}		V		
		$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$	1.7				
		$V_{CC} = 3 \text{ V to } 3.6 \text{ V}$	2				
		V _{CC} = 1.2 V		GND			
		$V_{CC} = 1.4 \text{ V to } 1.6 \text{ V}$		$0.35 \times V_{CC}$			
VIL	Low-level input voltage	$V_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$		$0.35 \times V_{CC}$	V		
		$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$		0.7			
		V _{CC} = 3 V to 3.6 V		0.8			
٧ _I	Input voltage		0	3.6	V		
\/o	Output voltage	Active state	0	Vcc	V		
۷o	Output voltage	3-state	0	3.6	V		
		$V_{CC} = 1.4 \text{ V to } 1.6 \text{ V}$		-2			
	.	$V_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$		-4	^		
IOHS	Static high-level output current [†]	$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$		-8	mA		
		$V_{CC} = 3 \text{ V to } 3.6 \text{ V}$		-12			
		$V_{CC} = 1.4 \text{ V to } 1.6 \text{ V}$		2			
	0	$V_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$		4	^		
lols	Static low-level output current [†]	V _{CC} = 2.3 V to 2.7 V		8	mA		
		V _{CC} = 3 V to 3.6 V		12			
Δt/Δν	Input transition rise or fall rate	V _{CC} = 1.4 V to 3.6 V		5	ns/V		
TA	Operating free-air temperature		-40	85	°C		

[†] Dynamic drive capability is equivalent to standard outputs with I_{OH} and I_{OL} of ±24 mA at 2.5-V V_{CC}. See Figure 1 for V_{OL} vs I_{OL} and V_{OH} vs I_{OH} characteristics. Refer to the TI application reports, *AVC Logic Family Technology and Applications*, literature number **SCEA006**, and *Dynamic Output Control (DOC™) Circuitry Technology and Applications*, literature number **SCEA009**.

NOTE 4: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004.

PRODUCT PREVIEW

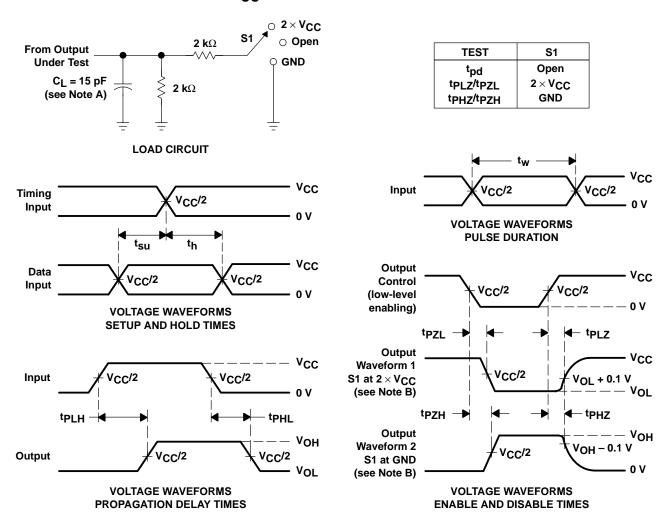
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS		Vcc	MIN	TYP [†]	MAX	UNIT	
		I _{OHS} = -100 μA		1.4 V to 3.6 V	V _{CC} -0	.2			
		$I_{OHS} = -2 \text{ mA},$	V _{IH} = 0.91 V	1.4 V	1.05				
Vон		$I_{OHS} = -4 \text{ mA},$	V _{IH} = 1.07 V	1.65 V	1.2			V	
		$I_{OHS} = -8 \text{ mA},$	V _{IH} = 1.7 V	2.3 V	1.75				
		$I_{OHS} = -12 \text{ mA},$	V _{IH} = 2 V	3 V	2.3				
		I _{OLS} = 100 μA		1.4 V to 3.6 V			0.2		
		$I_{OLS} = 2 \text{ mA},$	V _{IL} = 0.49 V	1.4 V			0.4		
VOL		$I_{OLS} = 4 \text{ mA},$	V _{IL} = 0.57 V	1.65 V			0.45	V	
		$I_{OLS} = 8 \text{ mA},$	$V_{IL} = 0.7 V$	2.3 V			0.55		
		I _{OLS} = 12 mA,	V _{IL} = 0.8 V	3 V			0.7		
II	Control inputs	$V_I = V_{CC}$ or GND		3.6 V			±2.5	μΑ	
l _{off}		V _I or V _O = 3.6 V		0			±10	μΑ	
loz [‡]		$V_O = V_{CC}$ or GND		3.6 V			±12.5	μΑ	
ICC		$V_I = V_{CC}$ or GND,	I _O = 0	3.6 V			40	μΑ	
C.	Control inputs	Vi – Va a or CND		2.5 V				n.E	
Ci	Control inputs $V_I = V_{CC}$ or GND			3.3 V				pF	
C.	A D (-	Va – Va a or CND		2.5 V				n.E	
Cio	C_{io} A or B ports $V_O = V_{CC}$ or GND			3.3 V			pF		

[†] Typical values are measured at $T_A = 25$ °C.

switching characteristics over recommended operating free-air temperature range (unless otherwise noted) (see Figures 2 through 5)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$V_{CC} = 1.2 \text{ V}$ $V_{CC} = 1.5 \text{ V}$ $\pm 0.1 \text{ V}$		V _{CC} = 1.8 V ± 0.15 V		V _{CC} = 2.5 V ± 0.2 V		V _{CC} = 3.3 V ± 0.3 V		UNIT		
			TYP	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX		
	^t pd	A or B	B or A										ns
	t _{en}	ŌE	A or B										ns
	^t dis	ŌE	A or B										ns

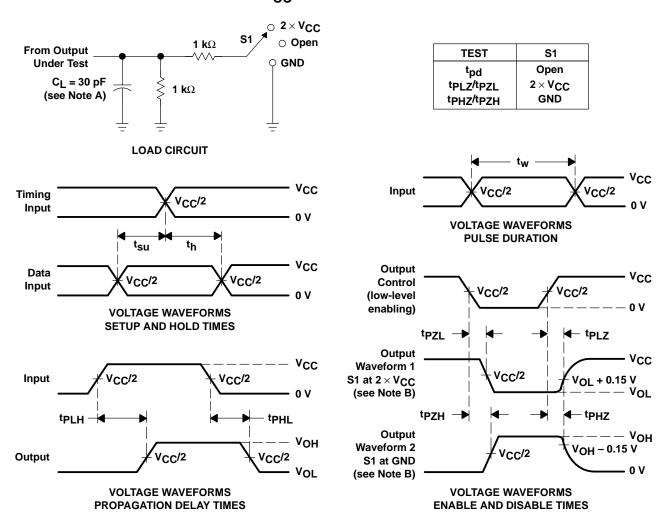

operating characteristics, T_A = 25°C

PARAMETER		TEST CONDITIONS	V _{CC} = 1.8 V	$V_{CC} = 2.5 V$	V _{CC} = 3.3 V	UNIT	
		1E31 CONDITIONS	TYP	TYP	TYP	ONIT	
<u> </u>	Power dissipation	Outputs enabled	Cı = 0. f = 10 MHz				PΓ
C _{pd}	capacitance	Outputs disabled	$C_L = 0$, $f = 10 MHz$				þг

[‡] For I/O ports, the parameter IOZ includes the input leakage current.

PRODUCT PREVIEW

PARAMETER MEASUREMENT INFORMATION V_{CC} = 1.2 V AND 1.5 V \pm 0.1 V

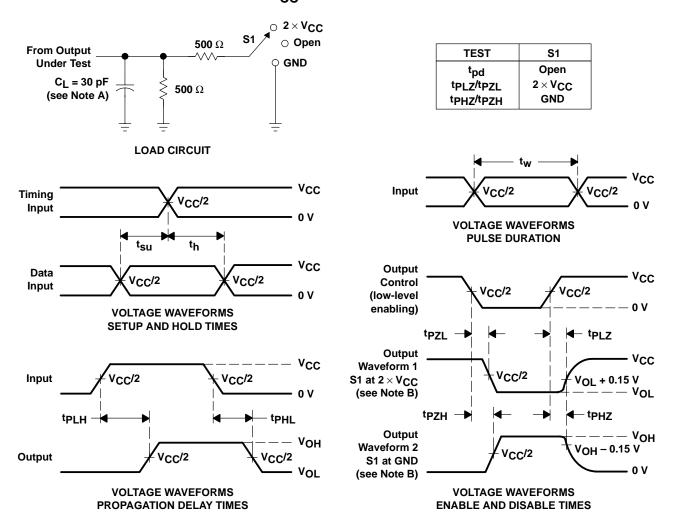


NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50~\Omega$, $t_f \leq$ 2 ns. $t_f \leq$ 2 ns.
- D. The outputs are measured one at a time with one transition per measurement.
- E. tpLz and tpHz are the same as tdis.
- F. tpzL and tpzH are the same as ten.
- G. tpLH and tpHL are the same as tpd.

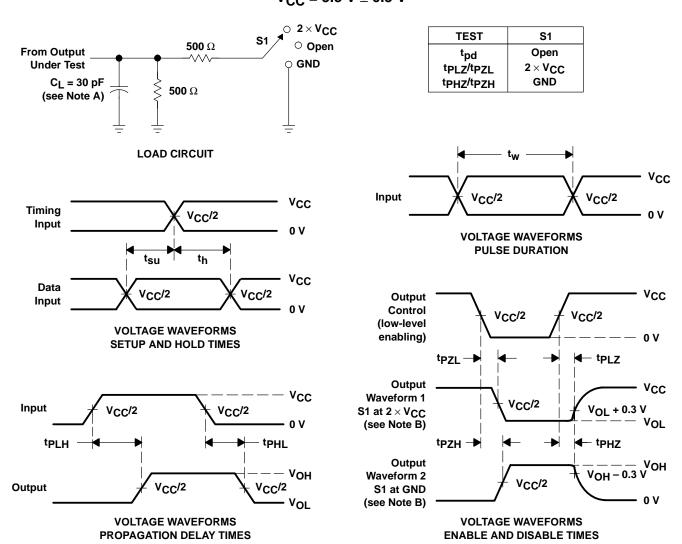
Figure 2. Load Circuit and Voltage Waveforms

PARAMETER MEASUREMENT INFORMATION $V_{CC} = 1.8 \text{ V} \pm 0.15 \text{ V}$


NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50 \Omega$, $t_f \leq 2$ ns. $t_f \leq 2$ ns.
- D. The outputs are measured one at a time with one transition per measurement.
- E. tpLz and tpHz are the same as tdis.
- F. tpzL and tpzH are the same as ten.
- G. tpLH and tpHL are the same as tpd.

Figure 3. Load Circuit and Voltage Waveforms


PARAMETER MEASUREMENT INFORMATION V_{CC} = 2.5 V \pm 0.2 V

- NOTES: A. C_L includes probe and jig capacitance.
 - B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
 - C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50~\Omega$, $t_f \leq$ 2 ns. $t_f \leq$ 2 ns.
 - D. The outputs are measured one at a time with one transition per measurement.
 - E. tpLz and tpHz are the same as tdis.
 - F. tpzL and tpzH are the same as ten.
 - G. tpLH and tpHL are the same as tpd.

Figure 4. Load Circuit and Voltage Waveforms

PARAMETER MEASUREMENT INFORMATION V_{CC} = 3.3 V \pm 0.3 V

- NOTES: A. C_L includes probe and jig capacitance.
 - B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
 - C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_Q = 50 \Omega$, $t_f \leq$ 2 ns, $t_f \leq$ 2 ns.
 - D. The outputs are measured one at a time with one transition per measurement.
 - E. tpLz and tpHz are the same as tdis.
 - F. tpzL and tpzH are the same as ten.
 - G. t_{PLH} and t_{PHL} are the same as t_{pd} .

Figure 5. Load Circuit and Voltage Waveforms

