JM38510/10104 JAN SINGLE LOW-INPUT-CURRENT OPERATIONAL AMPLIFIER (EXTERNALLY COMPENSATED) #### Precision Monolithics Inc ### **GENERAL DESCRIPTION** This data sheet covers the electrical requirements for a monolithic, low input-current, externally-compensated operational amplifier as specified in MIL-M-38510/101 for device type 04. Devices supplied to this data sheet are manufactured and tested at PMI's MIL-M-38510 certified facility and are listed in QPL-38510. Complete device requirements will be found in MIL-M-38510 and MIL-M-38510/101 for Class B processed devices. #### GENERIC CROSS-REFERENCE INFORMATION This cross-reference information is presented for the convenience of the user. The generic-industry types listed may not have identical operational performance characteristics across the military temperature range or reliability factors equivalent to the MIL-M-38510 device. | Military | Device | Type | |----------|--------|------| | | 04 | | Generic-Industry Type LM108A #### **CASE OUTLINE** Per MIL-M-38510, Appendix C, Case Outline A-1 (8 Lead Can), Package Type Designator "G"; and Appendix C, Case Outline D-4 (8 Lead Dual-in-Line), Package Type Designator "P". ### **ORDERING INFORMATION** | JAN SLASH SHEET | PMI DEVICE | |-------------------|------------------| | JM38510/10104BGC | PM108AJ1/38510 | | JM38510/10104BGA | PM108AJ5/38510 | | JM38510/10104SGA* | PM108SAJ5/38510* | | JM38510/10104BPB | PM108AZ2/38510 | | JM38510/10104BPA | PM108AZ5/38510 | JM38510/10104SGA, Class S device currently undergoing part I qualification. Consult PMI for availability. ## PIN CONNECTIONS #### SIMPLIFIED SCHEMATIC 5-579 ## **ELECTRICAL CHARACTERISTICS** at $5V \le \pm V_{CC} \le 20V$ and $-55^{\circ}C \le T_{A} \le +125^{\circ}C$, unless otherwise noted. | PARAMETER | SYMBOL | CONDITIONS | MIN | MAX | UNITS | |---|------------------------------------|---|---------------------------|-------------------|------------| | Input Offset Voltage | V _{IO} | (Note 2) $T_A = +25^{\circ}C$
$R_S = 50\Omega -55^{\circ}C \le T_A \le +125^{\circ}C$ | -0.5
-1.0 | +0.5
+1.0 | m∨ | | Input Offset Voltage
Temperature Sensitivity | ΔV ₁₀ /ΔΤ | ΔT_A from -55°C to +25°C
ΔT_A from +25°C to +125°C | -5.0
-5.0 | +5.0
+5.0 | μV/C° | | Input Offset Current | 110 | (Note 2) T _A = +25°C
-55°C ≤ T _A ≤ +125°C | 0.2
-0.4 | +0.2
+0.4 | nA | | Input Offset Current Temperature Sensitivity | ΔΙ ₁₀ /ΔΤ | ΔT _A from -55°C to +25°C
ΔT _A from +25°C to +125°C | -2.5
-2.5 | +2.5
+2.5 | pA/°C | | Input Bias Current | +1 _{IB,} -1 _{IB} | T _A = +25°C
(Note 2) T _A = -55°C
T _A = +125°C | ~0.1
-0.1
-1.0 | 2 0
3 0
2.0 | nA | | Power Supply Rejection
Ratio | +PSRR | $^{+V}_{CC} = 10V$
$^{-V}_{CC} = 20V$ $R_S = 50\Omega$ $T_A = +25^{\circ}C$
$^{-55^{\circ}C} \le T_A \le +125^{\circ}C$ | -16
-16 | +16
+16 | μV/V | | Power Supply Rejection
Ratio | -PSRR | $^{+V}_{CC} = ^{20V}_{CC} = ^{10V}_{S} = ^{50}_{O} \xrightarrow{T_A} = ^{+25}_{C}$
$^{-V}_{CC} = ^{-10V}_{C} = ^{50}_{C} = ^{50}_{C} = ^{7}_{A} = ^{+125}_{C}$ | -16
-16 | +16
+16 | μV/V | | Input Voltage Common-Mode
Rejection | CMR | ±V _{CC} = 20V
V _{IN} = ±15V
P _S = 50Ω | 96 | _ | dB | | Adjustment For
Input Offset Voltage | V _{IO}
ADJ(+) | ±V _{CC} = 20V | No External
Adjustment | | m\/ | | Adjustment For
Input Offset Voltage | V _{IO}
ADJ() | ±V _{CC} = 20V | No External Adjustment | | m∨ | | Output Short-Circuit Current
(For Positive Output) | l _{OS(+)} | ±V _{CC} = 15V, t ≤ 25ms
(Note 3) | 15 | | mA | | Output Short-Circuit Current
(For Negative Output) | l _{OS(-)} | ±V _{CC} = 15V, t ≤ 25ms
(Note 3) | _ | 15 | m <i>P</i> | | Supply Current | l _{cc} | $T_{A} = -55^{\circ}C$ $\pm V_{CC} = 15V$ $T_{A} = +25^{\circ}C$ $T_{A} = +125^{\circ}C$ |
 | 0.8
0.6
0.6 | m <i>£</i> | | Output Voltage Swing
(Maximum) | V _{OP} | $\pm V_{CC} = 20V$, $R_L = 10k\Omega$
$\pm V_{CC} = 20V$, $R_L = 2k\Omega$ | +1 6
— | | | | Open-Loop Voltage Gain
(Single Ended) (Note 1) | A _{VS (±)} | $\pm V_{CC} = 20V$ $R_L = 10k\Omega$ $T_A = +25^{\circ}C$ $V_{OUT} = \pm 15V$ $-55^{\circ}C \le T_A \le +125^{\circ}C$ | 80
40 | | V/m\ | | Open-Loop Voltage Gain
(Single Ended) (Note 1) | A _{vs} | $\pm V_{CC} = 5V$ $R_{L} = 10k\Omega$ $V_{OUT} = \pm 2V$ | 80 | _ | V/m\ | | Transient Response Rise Time | TR _(lr) | C _F = 10pF | _ | 1000 | n: | | Transient Response Overshoot | TR _(OS) | C _F = 10pF | _ | 50 | 9, | | Noise (Referred to Input)
Broadband | N (BB) | V _{CC} = 20V
Bandwidth = 5kHz T _A = +25°C | | 15 | μV rm | | Noise (Referred to Input)
Popcorn | N _I (PC) | ±V _{CC} = 20V
Bandwidth = 5kHz T _A = +25°C | | 40 | μV pea | ## NOTES: ^{1.} Note that gain is not specified at V_{1O (ADJ)} extremes. Some gain reduction is usually seen at V_{1O (ADJ)} extremes. For closed-loop applications (closed-loop gain less than 1.000), the open-loop lests (A_{VS}) prescribed herein should guarantee a positive, reasonably linear, transfer characteristic. They do not, however, guarantee that the open-loop gain is linear, or even positive, over the operating range. If either of these requirements exist (positive open-loop gain or open-loop gain linearity), they should be specified in the individual procurement document as additional requirements. ^{2.} Tests at common-mode V_{CM} = 0, V_{CM} = -15V, and V_{CM} = +15V. Continuous short-circuit limits will be considerably less than the indicated ter limits. Continuous I_{OS} at T_A -75°C will cause T_i to exceed the maximum in 175°C ## **ELECTRICAL CHARACTERISTICS** at $5V \le \pm V_{CC} \le 20V$ and $-55^{\circ}C \le T_{A} \le +125^{\circ}C$, unless otherwise noted. (Continued) | PARAMETER | SYMBOL | CONDITIONS | MIN | MAX | UNITS | |-----------|---------------|--|--------------|--------|--------| | Slew Rate | SR (+) | $A_V = 1$ $-55^{\circ} C \le T_A \le 25^{\circ} C$
$V_{IN} = +5V$ $T_A = 125^{\circ} C$ | 0.05
0.05 | _
_ | V/μsec | | Slew Rate | SR (-) | $A_V = 1$ $-55^{\circ}C \le T_A \le 25^{\circ}C$
$V_{IN} = \pm 5V$ $T_A = 125^{\circ}C$ | 0.05
0.05 | _ | V/μsec | #### NOTES: - 1. Note that gain is not specified at V_{IO (ADJ)}, extremes. Some gain reduction is usually seen at V_{IO (ADJ)} extremes. For closed-loop applications closed-loop gain less than 1,000), the open-loop test A_{VS}) prescribed herein should guarantee a positive, reasonably linear, transfer characteristic. They do not, however, guarantee that the open-loop gain is linear, or even positive, over the operating range. If either of these requirements exist; positive open-loop gain or open-loop gain linearity, they should be - specified in the individual procurement document as additional requirements - 2. Tests at common-mode V_{CM} = 0, V_{CM} = -15V, and V_{CM} = +15V. - Continuous short-circuit limits will be considerably less than the indicated test limits. Continuous I_{OS} at T_A ≤ 75° C will cause T_j to exceed the maximum of 175° C. For Other Test Circuit Diagrams, See MIL-M-38510/101 ## **BURN-IN CIRCUIT** ## **POWER AND THERMAL CHARACTERISTICS** | Package | Case outline | Maximum allowable
power dissipation | Maximum
θJ—C | Maximum
θJ—A | |-----------------------------------|--------------|--|-----------------|-----------------| | 8 Lead Can
.TO-99) | G | 330mW at T _A = 125° C | 40° C/W | 150°C/W | | 8 Lead Hermetic
(Dual-in-Line) | Р | 417mW at T _A = 125°C | 50°C/W | 120°C/W |