

JM38510/10104

JAN SINGLE LOW-INPUT-CURRENT OPERATIONAL AMPLIFIER (EXTERNALLY COMPENSATED)

Precision Monolithics Inc

GENERAL DESCRIPTION

This data sheet covers the electrical requirements for a monolithic, low input-current, externally-compensated operational amplifier as specified in MIL-M-38510/101 for device type 04. Devices supplied to this data sheet are manufactured and tested at PMI's MIL-M-38510 certified facility and are listed in QPL-38510.

Complete device requirements will be found in MIL-M-38510 and MIL-M-38510/101 for Class B processed devices.

GENERIC CROSS-REFERENCE INFORMATION

This cross-reference information is presented for the convenience of the user. The generic-industry types listed may not have identical operational performance characteristics across the military temperature range or reliability factors equivalent to the MIL-M-38510 device.

Military	Device	Type
	04	

Generic-Industry Type LM108A

CASE OUTLINE

Per MIL-M-38510, Appendix C, Case Outline A-1 (8 Lead Can), Package Type Designator "G"; and Appendix C, Case Outline D-4 (8 Lead Dual-in-Line), Package Type Designator "P".

ORDERING INFORMATION

JAN SLASH SHEET	PMI DEVICE
JM38510/10104BGC	PM108AJ1/38510
JM38510/10104BGA	PM108AJ5/38510
JM38510/10104SGA*	PM108SAJ5/38510*
JM38510/10104BPB	PM108AZ2/38510
JM38510/10104BPA	PM108AZ5/38510

 JM38510/10104SGA, Class S device currently undergoing part I qualification. Consult PMI for availability.

PIN CONNECTIONS

SIMPLIFIED SCHEMATIC

5-579

ELECTRICAL CHARACTERISTICS at $5V \le \pm V_{CC} \le 20V$ and $-55^{\circ}C \le T_{A} \le +125^{\circ}C$, unless otherwise noted.

PARAMETER	SYMBOL	CONDITIONS	MIN	MAX	UNITS
Input Offset Voltage	V _{IO}	(Note 2) $T_A = +25^{\circ}C$ $R_S = 50\Omega -55^{\circ}C \le T_A \le +125^{\circ}C$	-0.5 -1.0	+0.5 +1.0	m∨
Input Offset Voltage Temperature Sensitivity	ΔV ₁₀ /ΔΤ	ΔT_A from -55°C to +25°C ΔT_A from +25°C to +125°C	-5.0 -5.0	+5.0 +5.0	μV/C°
Input Offset Current	110	(Note 2) T _A = +25°C -55°C ≤ T _A ≤ +125°C	0.2 -0.4	+0.2 +0.4	nA
Input Offset Current Temperature Sensitivity	ΔΙ ₁₀ /ΔΤ	ΔT _A from -55°C to +25°C ΔT _A from +25°C to +125°C	-2.5 -2.5	+2.5 +2.5	pA/°C
Input Bias Current	+1 _{IB,} -1 _{IB}	T _A = +25°C (Note 2) T _A = -55°C T _A = +125°C	~0.1 -0.1 -1.0	2 0 3 0 2.0	nA
Power Supply Rejection Ratio	+PSRR	$^{+V}_{CC} = 10V$ $^{-V}_{CC} = 20V$ $R_S = 50\Omega$ $T_A = +25^{\circ}C$ $^{-55^{\circ}C} \le T_A \le +125^{\circ}C$	-16 -16	+16 +16	μV/V
Power Supply Rejection Ratio	-PSRR	$^{+V}_{CC} = ^{20V}_{CC} = ^{10V}_{S} = ^{50}_{O} \xrightarrow{T_A} = ^{+25}_{C}$ $^{-V}_{CC} = ^{-10V}_{C} = ^{50}_{C} = ^{50}_{C} = ^{7}_{A} = ^{+125}_{C}$	-16 -16	+16 +16	μV/V
Input Voltage Common-Mode Rejection	CMR	±V _{CC} = 20V V _{IN} = ±15V P _S = 50Ω	96	_	dB
Adjustment For Input Offset Voltage	V _{IO} ADJ(+)	±V _{CC} = 20V	No External Adjustment		m\/
Adjustment For Input Offset Voltage	V _{IO} ADJ()	±V _{CC} = 20V	No External Adjustment		m∨
Output Short-Circuit Current (For Positive Output)	l _{OS(+)}	±V _{CC} = 15V, t ≤ 25ms (Note 3)	15		mA
Output Short-Circuit Current (For Negative Output)	l _{OS(-)}	±V _{CC} = 15V, t ≤ 25ms (Note 3)	_	15	m <i>P</i>
Supply Current	l _{cc}	$T_{A} = -55^{\circ}C$ $\pm V_{CC} = 15V$ $T_{A} = +25^{\circ}C$ $T_{A} = +125^{\circ}C$	 	0.8 0.6 0.6	m <i>£</i>
Output Voltage Swing (Maximum)	V _{OP}	$\pm V_{CC} = 20V$, $R_L = 10k\Omega$ $\pm V_{CC} = 20V$, $R_L = 2k\Omega$	+1 6 —		
Open-Loop Voltage Gain (Single Ended) (Note 1)	A _{VS (±)}	$\pm V_{CC} = 20V$ $R_L = 10k\Omega$ $T_A = +25^{\circ}C$ $V_{OUT} = \pm 15V$ $-55^{\circ}C \le T_A \le +125^{\circ}C$	80 40		V/m\
Open-Loop Voltage Gain (Single Ended) (Note 1)	A _{vs}	$\pm V_{CC} = 5V$ $R_{L} = 10k\Omega$ $V_{OUT} = \pm 2V$	80	_	V/m\
Transient Response Rise Time	TR _(lr)	C _F = 10pF	_	1000	n:
Transient Response Overshoot	TR _(OS)	C _F = 10pF	_	50	9,
Noise (Referred to Input) Broadband	N (BB)	V _{CC} = 20V Bandwidth = 5kHz T _A = +25°C		15	μV rm
Noise (Referred to Input) Popcorn	N _I (PC)	±V _{CC} = 20V Bandwidth = 5kHz T _A = +25°C		40	μV pea

NOTES:

^{1.} Note that gain is not specified at V_{1O (ADJ)} extremes. Some gain reduction is usually seen at V_{1O (ADJ)} extremes. For closed-loop applications (closed-loop gain less than 1.000), the open-loop lests (A_{VS}) prescribed herein should guarantee a positive, reasonably linear, transfer characteristic. They do not, however, guarantee that the open-loop gain is linear, or even positive, over the operating range. If either of these requirements exist (positive open-loop gain or open-loop gain linearity), they should be specified in the individual procurement document as additional requirements.

^{2.} Tests at common-mode V_{CM} = 0, V_{CM} = -15V, and V_{CM} = +15V.

Continuous short-circuit limits will be considerably less than the indicated ter limits. Continuous I_{OS} at T_A -75°C will cause T_i to exceed the maximum in 175°C

ELECTRICAL CHARACTERISTICS at $5V \le \pm V_{CC} \le 20V$ and $-55^{\circ}C \le T_{A} \le +125^{\circ}C$, unless otherwise noted. (Continued)

PARAMETER	SYMBOL	CONDITIONS	MIN	MAX	UNITS
Slew Rate	SR (+)	$A_V = 1$ $-55^{\circ} C \le T_A \le 25^{\circ} C$ $V_{IN} = +5V$ $T_A = 125^{\circ} C$	0.05 0.05	_ _	V/μsec
Slew Rate	SR (-)	$A_V = 1$ $-55^{\circ}C \le T_A \le 25^{\circ}C$ $V_{IN} = \pm 5V$ $T_A = 125^{\circ}C$	0.05 0.05	_	V/μsec

NOTES:

- 1. Note that gain is not specified at V_{IO (ADJ)}, extremes. Some gain reduction is usually seen at V_{IO (ADJ)} extremes. For closed-loop applications closed-loop gain less than 1,000), the open-loop test A_{VS}) prescribed herein should guarantee a positive, reasonably linear, transfer characteristic. They do not, however, guarantee that the open-loop gain is linear, or even positive, over the operating range. If either of these requirements exist; positive open-loop gain or open-loop gain linearity, they should be
- specified in the individual procurement document as additional requirements
- 2. Tests at common-mode V_{CM} = 0, V_{CM} = -15V, and V_{CM} = +15V.
- Continuous short-circuit limits will be considerably less than the indicated test limits. Continuous I_{OS} at T_A ≤ 75° C will cause T_j to exceed the maximum of 175° C.

For Other Test Circuit Diagrams, See MIL-M-38510/101

BURN-IN CIRCUIT

POWER AND THERMAL CHARACTERISTICS

Package	Case outline	Maximum allowable power dissipation	Maximum θJ—C	Maximum θJ—A
8 Lead Can .TO-99)	G	330mW at T _A = 125° C	40° C/W	150°C/W
8 Lead Hermetic (Dual-in-Line)	Р	417mW at T _A = 125°C	50°C/W	120°C/W