

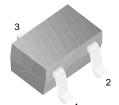
Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All recreations are done with the approval of the OCM.

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceed the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-35835
 - Class Q Military
 - Class V Space Level
- Qualified Suppliers List of Distributors (QSLD)
- Rochester is a critical supplier to DLA and meets all industry and DLA standards.


Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OEM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

FJX2907A

General Purpose Transistor

SOT-323

1. Base 2. Emitter 3. Collector

PNP Epitaxial Silicon Transistor

Absolute Maximum Ratings T_a=25°C unless otherwise noted

Symbol	Parameter	Value	Units
V_{CBO}	Collector-Base Voltage	-60	V
V _{CES}	Collector-Emitter Voltage	-60	V
V_{EBO}	Emitter-Base Voltage	-5	V
I _C	Collector Current	-600	mA
P _C	Collector Power Dissipation	350	mW
T _{STG}	Storage Temperature	150	°C

Electrical Characteristics T_a =25°C unless otherwise noted

Symbol	Parameter	Test Condition	Min.	Max.	Units
BV _{CBO}	Collector-Base Breakdown Voltage	I _C = -10μA, I _E =0	-60		V
BV _{CEO}	* Collector-Emitter Breakdown Voltage	I _C = -10mA, I _B =0	-60		V
BV _{EBO}	Emitter-Base Breakdown Voltage	I _E = -10μA, I _C =0	-5		V
I _{CBO}	Collector Cut-off Current	V _{CB} = -50V, I _E =0		-0.01	μΑ
h _{FE}	DC Current Gain	V_{CE} = -10V, I_{E} = -0.1mA V_{CE} = -10V, I_{C} = -1.0mA V_{CE} = -10V, I_{C} = -10mA V_{CE} = -10V, I_{C} = -150mA V_{CE} = -10V, I_{C} = -500mA	75 100 100 100 50	300	
V _{CE} (sat)	* Collector-Emitter Saturation Voltage	I _C = -150mA, I _B = -15mA I _C = -500mA, I _B = -50mA		-0.4 -1.6	V V
V _{BE} (sat)	* Base-Emitter Saturation Voltage	I _C = -150mA, I _B = -15mA I _C = -500mA, I _B = -50mA		-1.3 -2.6	V V
f _T	Current Gain Bandwidth Product	I_{C} = -50mA, V_{CE} = -20V, f=100MHz	200		MHz
C _{ob}	Output Capacitance	V _{CB} = -10V, I _E =0 f=1.0MHz		8	pF
t _{ON}	Turn On Time	V_{CC} = -30V, I_{C} = -150mA I_{B1} = -15mA		45	ns
t _{OFF}	Turn Off Time	V_{CC} = -6V, I_{C} = -150mA I_{B1} = I_{B2} =15mA		100	ns

* Pulse Test: PW≤300μs, Duty Cycle≤2%

Typical Characteristics

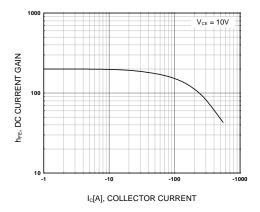


Figure 1. DC current Gain

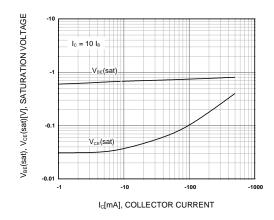


Figure 2. Collector-Emitter Saturation Voltage Base-Emitter Saturation Voltage

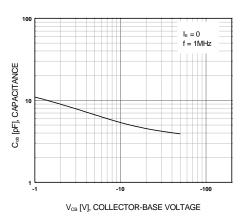
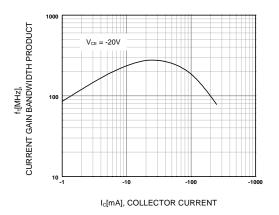
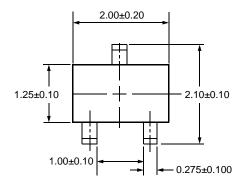
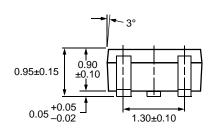
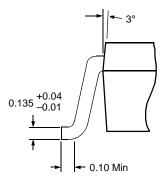


Figure 3. Output Capacitance


Figure 4. Current Gain Bandwidth Product

Package Demensions

SOT-323

Dimensions in Millimeters

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx™	FAST [®]	OPTOPLANAR™	STAR*POWER™
Bottomless™	FASTr™	PACMAN™	Stealth™
CoolFET™	FRFET™	POP™	SuperSOT™-3
$CROSSVOLT^{rM}$	GlobalOptoisolator™	Power247™	SuperSOT™-6
DenseTrench™	GTO™	PowerTrench [®]	SuperSOT™-8
DOME™	HiSeC™	QFET™	SyncFET™
EcoSPARK™	ISOPLANAR™	QS™	TruTranslation™
E ² CMOS™	LittleFET™	QT Optoelectronics™	TinyLogic™
EnSigna™	MicroFET™	Quiet Series™	UHC™
FACT™	MICROWIRE™	SLIENT SWITCHER®	UltraFET [®]
FACT Quiet Series™	OPTOLOGIC™	SMART START™	VCX™

STAR*POWER is used under license

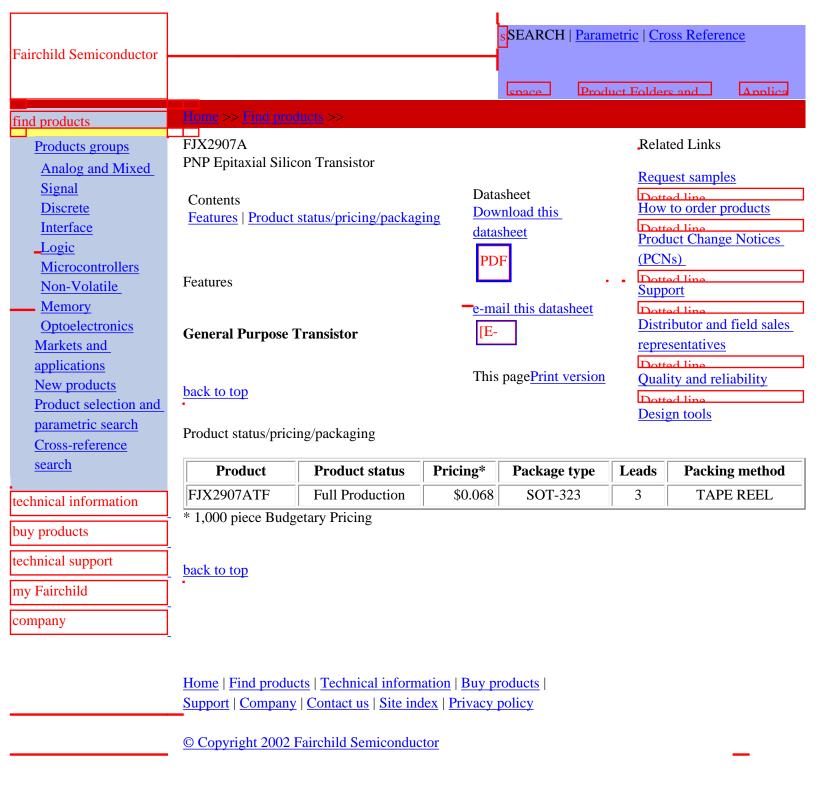
DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:


- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

©2001 Fairchild Semiconductor Corporation Rev. H

