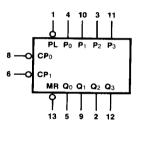

54/74177 610585

PRESETTABLE BINARY COUNTER

CONNECTION DIAGRAM
PINOUT A



DESCRIPTION — The 1777 is a presettable modulo-16 ripple counter partitioned into divide-by-two and divide-by-eight sections, with a separate clock input for each section. In the counting mode, state changes are initiated by the falling edge of the clock. A LOW signal on the Master Reset ($\overline{\text{MR}}$) input overrides all other inputs and forces the outputs LOW. A LOW signal on the Parallel Load ($\overline{\text{PL}}$) input overrides the clocks and causes the Q outputs to assume the state of their respective Parallel Data ($\overline{\text{Pn}}$) inputs. For detail specifications, please refer to the 176 data sheet.

ORDERING CODE: See Section 9

	PIN OUT	COMMERCIAL GRADE	MILITARY GRADE	PKG
PKGS		$V_{CC} = +5.0 \text{ V} \pm 5\%,$ $V_{CC} = +5.0 \text{ V} \pm 10\%,$ $T_A = 0^{\circ}\text{C to} +70^{\circ}\text{C}$ $T_A = -55^{\circ}\text{C to} +125^{\circ}\text{C}$		
Plastic DIP (P)	Α	74177PC		9A
Ceramic DIP (D)	А	74177DC	54177DM	6A
Flatpak (F)	· I A 174177FC		54177FM	31

LOGIC SYMBOL

V_{CC} = Pin 14 GND = Pin 7

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

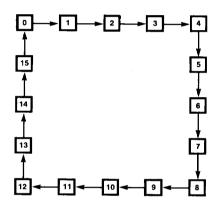
PIN NAMES	DESCRIPTION	54/74 (U.L.) HIGH/LOW	
P ₀ P ₁ P ₃ 	÷2 Section Clock Input (Active Falling Edge) ÷8 Section Clock Input (Active Falling Edge) Asynchronous Master Reset Input (Active LOW) Parallel Data Inputs Asynchronous Parallel Load Input (Active LOW) Flip-flop Outputs*	2.0/3.0 2.0/2.0 2.0/2.0 1.0/1.0 1.0/1.0 20/10	

*Qo is guaranteed to drive CP1 in addition to the full rated load.

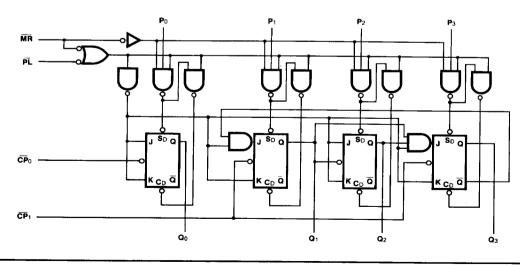
FUNCTIONAL DESCRIPTION—The '177 is an asynchronously presettable binary ripple counter partitioned into divide-by-two and divide-by-eight sections. In the counting modes, state changes are initiated by the HIGH-to-LOW transition of the clock signals. State changes of the Q outputs, however, do not occur simultaneously because of the internal ripple delays. When using external logic to decode the Q_n outputs, designers should bear in mind that the unequal delays can lead to decoding spikes and thus a decoded signal should not be used as a clock or strobe. The $\overline{CP_0}$ input serves the Q_0 flip-flop while the $\overline{CP_1}$ input serves the divide-by-eight section. The Q_0 output is designed and specified to drive the rated fan-out plus the $\overline{CP_1}$ input. With the input frequency connected to $\overline{CP_0}$ and with Q_0 driving $\overline{CP_1}$, the '177 forms a straightforward modulo-16 counter, with Q_0 the least significant output and Q_3 the most significant output.

The '177 has an asynchronous active LOW Master Reset input (\overline{MR}) which overrides all other inputs and forces all outputs LOW. The counters are also asynchronously presettable. A LOW on the Parallel Load input (\overline{PL}) overrides the clock inputs and loads the data from Parallel Data $(P_0 - P_3)$ inputs into the flip-flops. While \overline{PL} is LOW, the counters act as transparent latches and any change in the P_n inputs will be reflected in the outputs.

MODE SELECT TABLE


	INPU	JTS	RESPONSE
М	Ř PL	СP	11201 01102
LHH	X L H	××	Q _n forced LOW P _n → Q _n Count Up

H = HIGH Voltage Level


L = LOW Voltage Level

X = Immaterial

STATE DIAGRAM

LOGIC DIAGRAM

