

LM5032 High Voltage Dual Interleaved Current Mode Controller

Check for Samples: LM5032

FEATURES

- Two Independent PWM Current Mode Controllers
- Integrated High Voltage Startup Regulator
- Compound 2.5A Main Output Gate Drivers
- Single Resistor Oscillator Setting to 2 MHz
- Synchronizable Oscillator
- Programmable Maximum Duty Cycle
- Maximum Duty Cycle Fold-Back at High Line Voltage
- Adjustable Timer for Hiccup Mode Current Limiting
- Integrated Slope Compensation
- Adjustable Line Under-Voltage Lockout
- Independently Adjustable Soft-Start (Each Regulator)
- Direct Interface with Opto-Coupler Transistor
- Thermal Shutdown

APPLICATIONS

Telecommunication Power Converters

- Industrial Power Converters
- +42V Automotive Systems

DESCRIPTION

The LM5032 dual current mode PWM controller contains all the features needed to control either two independent forward dc/dc converters or a single high current converter comprised of two interleaved power stages. The two controller channels operate 180° out of phase thereby reducing input ripple current. The LM5032 includes a startup regulator that operates over a wide input range up to 100V and compound (bipolar + CMOS) gate drivers that provide a robust 2.5A peak sink current. The adjustable maximum PWM duty cycle reduce stress on the primary side MOSFET switches. Additional features include programmable line under-voltage lockout, cycle-bycycle current limit, hiccup mode fault operation with adjustable response time, PWM slope compensation, soft-start, and a 2 MHz capable oscillator with synchronization capability.

PACKAGE

TSSOP-16

Typical Application Circuit

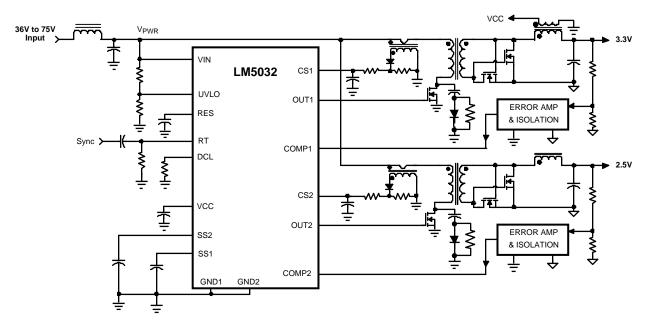


Figure 1. Dual Interleaved Regulators with Independent Outputs

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

All trademarks are the property of their respective owners.

Connection Diagram

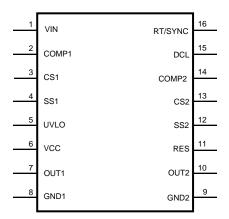


Figure 2. 16-Lead TSSOP (Top View) See Package Number PW0016A

PIN DESCRIPTION

Pin	Name	Description	Applications Information
1	VIN	Input Supply	Input to the startup regulator. The operating input range is 13V to 100V with transient capability to 105V.
2	COMP1	PWM Control, Controller 1	The COMP1 input provides voltage feedback to the PWM comparator inverting input of Controller 1 through a 3:1 divider. The OUT1 duty cycle increases as the COMP1 voltage increases. An internal $5K\Omega$ pull-up resistor to +5.0V provides bias current to an opto-coupler transistor.
3	CS1	Current Sense Input, Controller 1	Input for current mode control and the current limit sensing. If the CS1 pin exceeds 0.5V the OUT1 pulse is terminated producing cycle-by-cycle current limiting. External resistance connected to CS1 will adjust (increase) PWM slope compensation. This pin's voltage must not exceed 1.25V.
4	SS1	Soft-start, Controller 1	An internal 50 μ A current source charges an external capacitor to set the soft-start rate. During a current limit restart sequence, the internal current source is reduced to 1 μ A to increase the delay before retry. Forcing SS1 below 0.5V shuts off Controller 1.
5	UVLO	VIN Under-Voltage Lockout	An external resistor divider sets the input voltage threshold to enable the LM5032. The UVLO comparator reference voltage is 1.25V. A switched 20 µA current source provides adjustable UVLO hysteresis. The UVLO pin voltage also controls the maximum duty cycle as described in the Functional Description section.
6	VCC	Start-up regulator output	Output of the 7.7V high voltage start-up regulator. Current limit is a minimum of 19 mA.
7	OUT1	Main Gate Driver, Controller 1	Gate driver output to the primary side switch for Controller 1. OUT1 swings between VCC and GND1 at a frequency equal to half the oscillator frequency.
8	GND1	Ground, Controller 1	Ground connection for Controller 1 including gate driver, PWM controller, soft- start and support functions.
9	GND2	Ground, Controller 2	Ground connection for Controller 2 including the gate driver, PWM controller and soft-start.
10	OUT2	Main Gate Driver, Controller 2	Gate driver output to the primary side switch for Controller 2. OUT2 swings between VCC and GND2 at a frequency equal to half the oscillator frequency.
11	RES	Hiccup mode restart adjust	An external capacitor sets the time delay before forced restart during a sustained period of cycle-by-cycle current limiting. The hiccup mode comparator threshold is 2.55V.
12	SS2	Soft-start, Controller 2	An internal 50 μ A current source charges an external capacitor to set the soft-start rate. During a current limit restart sequence, the internal current source is reduced to 1 μ A to increase the delay before retry. Forcing SS2 below 0.5V shuts off Controller 2.

Product Folder Links: LM5032

DITIL DOCUMENTATION FEEDDACK

PIN DESCRIPTION (continued)

Pin	Name	Description	Applications Information
13	CS2	Current Sense Input, Controller 2	Input for current mode control and the current limit sensing. If the CS2 pin exceeds 0.5V the OUT2 pulse is terminated producing cycle-by-cycle current limiting. External resistance connected to CS2 will adjust (increase) PWM slope compensation. This pin's voltage must not exceed 1.25V.
14	COMP2	PWM Control, Controller 2	The COMP2 input provides voltage feedback to the PWM comparator inverting input of Controller 2 through a 3:1 divider. The OUT2 duty cycle increases as the COMP2 voltage increases. An internal $5k\Omega$ pull-up resistor to +5.0V provides bias current to the opto-coupler transistor.
15	DCL	Duty Cycle Limit	An external resistor sets the maximum allowed duty cycle at OUT1 and OUT2.
16	RT/SYNC	Oscillator Adjust and Synchronizing input	An external resistor sets the oscillator frequency. This pin also accepts accoupled synchronization pulses from an external source.

Copyright © 2005–2013, Texas Instruments Incorporated

Block Diagram

Figure 3. Detailed Block Diagram

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

Absolute Maximum Ratings (1)(2)

VIN to GND		-0.3V to 105V
VCC to GND		-0.3V to 16V
RT/SYNC, RES and DCL to GND		-0.3V to 5.5V
CS Pins to GND		-0.3V to 1.25V
All other inputs to GND		-0.3V to 7V
ESD Rating ⁽³⁾	Human Body Model	2kV
Storage Temperature Range		-55°C to 150°C
Junction Temperature		150°C
Lead Temperature (Soldering 4 sec), (4)		260°C

- (1) Absolute Maximum Ratings are limits beyond which damage to the device may occur. Operating Ratings are conditions under which operation of the device is intended to be functional. For specifications and test conditions, see the Electrical Characteristics.
- If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/Distributors for availability and
- The human body model is a 100 pF capacitor discharged through a 1.5 k Ω resistor into each pin.
- (4) For detailed information on soldering plastic TSSOP packages, refer to the Packaging Data Book available from Texas Instruments.

Operating Ratings⁽¹⁾

VIN Voltage	13.0V to 100V
External Voltage Applied to VCC	8V to 15V
Operating Junction Temperature	-40°C to +125°C

⁽¹⁾ Absolute Maximum Ratings are limits beyond which damage to the device may occur. Operating Ratings are conditions under which operation of the device is intended to be functional. For specifications and test conditions, see the Electrical Characteristics.

Electrical Characteristics

Specifications with standard typeface are for T_J = 25°C, and those with **boldface** type apply over full **Operating Junction Temperature range**. VIN = 48V, VCC = 10V externally applied, $R_T = R_{DCL} = 42.2k\Omega$, UVLO = 1.5V, unless otherwise stated, see⁽¹⁾and see⁽²⁾.

Symbol	Parameter	Conditions	Min	Тур	Max	Units
Startup Regi	ulator (VIN, VCC Pins)					
V _{CC} Reg	V _{CC} voltage	Ext. supply disconnected.	7.4	7.7	8	V
I _{CC(Lim)}	V _{CC} current limit	VCC = 0V.	19	22		mA
V _{CC} UVT	V _{CC} Under-voltage threshold (V _{CC} increasing)	Ext. supply disconnected, VIN =11V.	VCC - 300 mV	VCC - 100 mV		V
	V _{CC} decreasing		5.5	6.2	6.9	V
I _{IN}	Startup regulator current	VIN = 90V, UVLO = 0V		500	600	μΑ
I _{CC} In	Supply current into VCC from external source	Output loads = open, V _{CC} = 10V		4.3	7	mA
UVLO						
UVLO	Under-voltage threshold		1.22	1.25	1.28	V
I _{HYST}	Hysteresis current		16	20	24	μA
Current Sens	se Input (CS1, CS2 Pins)		*			
CS	Current Limit Threshold		0.45	0.5	0.55	V
	CS delay to output	CS1 (CS2) taken from zero to 1.0V. Time for OUT1 (OUT2) to fall to 90% of VCC. Output load = 0 pF.		40		ns
	Leading edge blanking time at CS1 (CS2)			50		ns
	CS1 (CS2) sink impedance (clocked)	Internal pull-down FET on.		30	55	Ω

All electrical characteristics having room temperature limits are tested during production with T_A = 25°C. All hot and cold limits are specified by correlating the electrical characteristics to process and temperature variations and applying statistical process control.

Product Folder Links: LM5032

Typical specifications represent the most likely parametric norm at 25°C operation

Electrical Characteristics (continued)

Specifications with standard typeface are for $T_J = 25^{\circ}\text{C}$, and those with **boldface** type apply over full **Operating Junction Temperature range**. VIN = 48V, VCC = 10V externally applied, $R_T = R_{DCL} = 42.2k\Omega$, UVLO = 1.5V, unless otherwise stated, see⁽¹⁾and see⁽²⁾.

Symbol	Parameter	Conditions	Min	Тур	Max	Units
R _{CS}	Equivalent input resistance at CS	CS taken from 0.2V to 0.5V, internal FET off.		42		kΩ
Current Limi	t Restart (RES Pin)					
ResTh	Threshold		2.4	2.55	2.7	V
	Charge source current		15	20	25	μΑ
	Discharge sink current		7.5	10	12.5	μΑ
Soft-start (SS	S1, SS2 Pins)					
I _{SS}	Current source (normal operation)		35	50	65	μΑ
	Current source during a current limit restart		0.7	1	1.3	μΑ
V_{SS}	Open circuit voltage			5		V
Oscillator (R	T/SYNC Pin)					
F _{S1}	Frequency 1 (at OUT1, OUT2)	$R_T = 42.2 \text{ k}\Omega$	183	200	217	kHz
F _{S2}	Frequency 2 (at OUT1, OUT2)	$R_T = 13.7 \text{ k}\Omega$	530	600	670	kHz
	DC voltage			2		V
	Input Sync threshold		2.6	3.3	3.7	V
PWM Contro	ller (COMP1, COMP2, Duty Cycle	Limit Pins)				
	Delay to output	COMP1 (COMP2) set to 2V. CS1 (CS2) stepped from 0 to 0.4V. Time for OUT1 (OUT2) to fall to 90% of VCC. Output load = 0 pF.		50		ns
V_{COMP}	COMP1 (COMP2) open circuit voltage			5		V
I _{COMP}	COMP1 (COMP2) short circuit current	COMP1 (COMP2) = 0V	0.6	1	1.4	mA
	COMP1 (COMP2) to PWM1 (PWM2) gain			0.33		V/V
	Minimum duty cycle	SS1 (SS2) = 0V			0	%
	Maximum duty cycle 1	UVLO pin = 1.30V, R _{DCL} = R _T , COMP1 (COMP2) = open		76		%
	Maximum duty cycle 2	UVLO pin = 3.75V, R _{DCL} = R _T , COMP1 (COMP2) = open		20		%
	Maximum duty cycle 3	UVLO pin = 1.30V, R _{DCL} = R _T /4, COMP1 (COMP2) = open		20		%
	Maximum duty cycle 4	UVLO pin = 2.50V, R _{DCL} = R _T , COMP1 (COMP2) = open		50		%
	Maximum duty cycle 5	UVLO pin = 1.30V, $R_{DCL} = R_T/2$, COMP1 (COMP2) = open		40		%
	Slope compensation	Delta increase at PWM comparator to CS1 (CS2)		90		mV
	Channel mismatch	CS1 (CS2) = 0.25V			7	%
	Soft-start to COMP offset	SS1 (SS2) = 0.8V		0		V
Main Output	Drivers (OUT1, OUT2)					
	Output high voltage	I _{OUT} = 50mA (source)	VCC-1	VCC-0.2		V
	Output low voltage	I _{OUT} = 100 mA (sink)		0.3	1	٧
	Rise time	C _{LOAD} = 1 nF		12		ns
	Fall time	C _{LOAD} = 1 nF		10		ns
	Peak source current			1.5		Α

Electrical Characteristics (continued)

Specifications with standard typeface are for T_J = 25°C, and those with **boldface** type apply over full **Operating Junction Temperature range**. VIN = 48V, VCC = 10V externally applied, R_T = R_{DCL} = 42.2k Ω , UVLO = 1.5V, unless otherwise stated, see⁽¹⁾and see⁽²⁾.

Symbol	Parameter	Conditions	Min	Тур	Max	Units
	Peak sink current			2.5		Α
Thermal Shu	ıtdown					
T _{SD}	Shutdown temperature			165		°C
	Hysteresis			20		°C
Thermal Res	istance		1			
θ_{JA}	Junction to ambient, 0 LFPM Air Flow	TSSOP-16 package		125		°C/W

TEST CIRCUIT DIAGRAMS

Timing Diagram

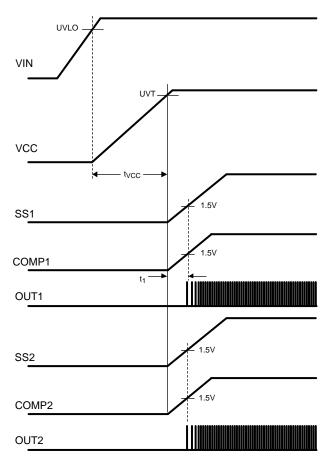


Figure 4. Startup Sequence

Typical Performance Characteristics

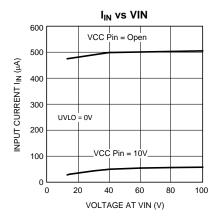


Figure 5.

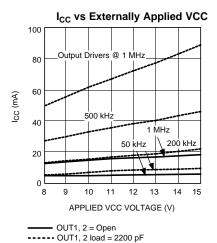
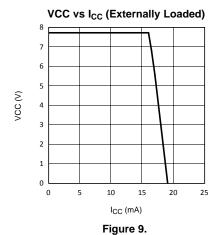



Figure 7.

I_{IN} vs VIN 14 12 VCC pin = open, INPUT CURRENT I_{IN} (mA) OUT1 & OUT2 load = 2200 pF 10 Outputs frequency = 200 kHz UVLO > 1.25V VCC pin = open, Driver Outputs Open VCC pin = 10V, Driver Outputs open or loaded 0 60 0 20 40 80 100 VOLTAGE AT VIN (V)

Figure 6.

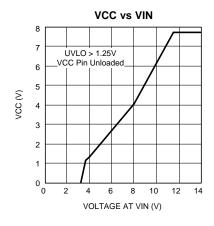


Figure 8.

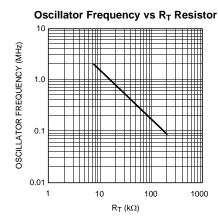


Figure 10.

Typical Performance Characteristics (continued) n Duty Cycle vs R_{DCL} Resistor Maximum Duty Cycle vs. UVLO Voltage

User Defined Maximum Duty Cycle vs R_{DCL} Resistor

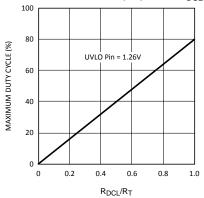


Figure 11.

Maximum Duty Cycle vs. VIN (Figure 27)

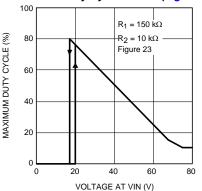
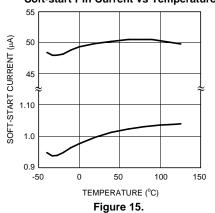



Figure 13.

Soft-start Pin Current vs Temperature

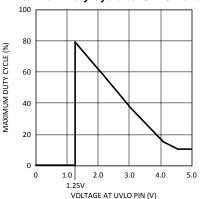


Figure 12.

Frequency vs. Temperature

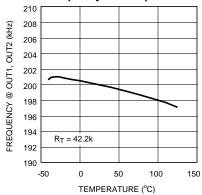


Figure 14.

Current Limit Threshold at CS1, CS2 vs Temperature

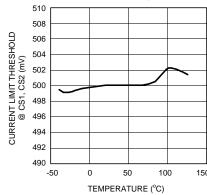


Figure 16.

FUNCTIONAL DESCRIPTION

The LM5032 contains all the features necessary to implement two independently regulated current mode dc/dc converters, or a single high current converter comprised of two parallel interleaved channels using the Forward converter topology. The two controllers operate 180° out of phase from a common oscillator, thereby reducing input ripple current. Each regulator channel contains a complete PWM controller, current sense input, soft-start circuit, and gate driver output. Common to both channels are the startup and V_{CC} regulator, line under-voltage lockout, 2 MHz capable oscillator, maximum duty cycle control, and the hiccup mode fault protection circuit.

The gate driver outputs (OUT1, OUT2) are designed to drive N-channel MOSFETs. Their compound configuration reduces the turn-off-time, thereby reducing switching losses. Additional features include thermal shutdown, slope compensation, and the oscillator synchronization capability.

Line Under-Voltage Lock Out, UVLO, Shutdown

The LM5032 contains a line under-voltage lockout circuit (UVLO) designed to enable the V_{CC} regulator and output drivers when the system voltage (V_{PWR}) exceeds the desired level (see Figure 17). V_{PWR} is the voltage normally applied to the transformer primary, and usually connected to the VIN pin (see the schematic on Page 1). The threshold at the UVLO comparator is 1.25V. An external resistor divider connected from V_{PWR} to ground provides 1.25V at the UVLO pin when V_{PWR} is increased to the desired turn-on threshold. When V_{PWR} is below the threshold the V_{CC} regulator and output drivers are disabled, and the internal 20 μ A current source is off. When V_{PWR} reaches the threshold, the comparator output switches low to enable the internal circuits and the 20 μ A current source. The 20 μ A flows into the external divider's junction, raising the voltage at UVLO, thereby providing hysteresis. Internally the voltage at UVLO also drives the Maximum Duty Cycle Limiter circuit (described below), which may influence the values chosen for the UVLO pin resistors. At maximum V_{PWR} , the voltage at UVLO should not exceed 6V. Refer to the Applications Information section for a procedure to calculate the resistors values.

The LM5032 controller can be shutdown by forcing the UVLO pin below 1.25V with an external switch. When the UVLO pin is low, the outputs and the V_{CC} regulator are disabled, and the LM5032 enters a low power mode. If VCC pin is not powered from an external source, the current into VIN drops to a nominal 500 μ A. If the VCC pin is powered from an external source, the current into VIN is nominally 50 μ A, and the current into the VCC pin is approximately 4.3 mA. To disable one regulator without affecting the other, see the description of the Soft-start section.

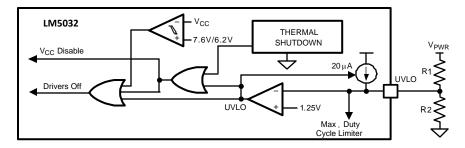


Figure 17. Drivers Off and V_{CC} Disable

Startup Regulator, VIN, VCC

The high voltage startup regulator is integral to the LM5032. The input pin VIN can be connected directly to a voltage between 13V and 100V, with transient capability to 105V. The startup regulator provides bias voltages to the series pass V_{CC} regulator and the UVLO circuit. The V_{CC} regulator is disabled until the voltage at the UVLO pin (described above) exceeds 1.25V. For applications where V_{PWR} exceeds 100V the internal startup regulator can be powered from an external startup regulator or other available low voltage source. See the Applications Information section for details.

The V_{CC} under-voltage threshold circuit (UVT) monitors the VCC regulator output. When the series pass regulator is enabled and the internal V_{CC} voltage increases to > 7.6V, the UVT comparator activates the PWM controller and output drivers via the Drivers Off signal. The UVT comparator has built-in hysteresis, with the lower threshold nominally set to 6.2V. See Figure 4 and Figure 17.

Product Folder Links: LM5032

When enabled, the V_{CC} regulated output is 7.7V ±4% with current limited to a minimum of 19 mA (typically 22 mA). The regulator's output impedance is $\approx 6\Omega$.

The VCC pin requires a capacitor to ground for stability, as well as to provide the surge currents to the external MOSFETs via the gate driver outputs. The capacitor should be physically close to the VCC and GND pins.

In most applications it is necessary to power V_{CC} from an external source as the average current required at the output drivers may exceed the current capability of the internal regulator and/or the thermal capability of the LM5032 package (see Figure 7). Normally the external source is derived from the converter's power stage once the LM5032 outputs are active. Refer to the Applications Information section for more information.

Drivers Off, V_{cc} Disable

Referring to Figure 17, Drivers Off and V_{CC} Disable are internal signals which, when active disable portions of the LM5032. If the UVLO pin is below 1.25V, or if the thermal shutdown activates, the V_{CC} Disable line switches high to disable the V_{CC} regulator. UVLO also activates the Drivers Off signal to disable the output drivers, connect the SS1, SS2, COMP1, COMP2 and RES pins to ground, and enable the 50 μ A Soft-start current sources.

If the V_{CC} voltage falls below the under-voltage threshold of 6.2V , the UVT comparator activates only the Drivers Off signal. The output drivers are disabled but the V_{CC} regulator is not disabled. Additionally, the CS1, CS2, SS1, SS2, COMP1, COMP2 and RES pins are internally grounded, and the 50 μ A Soft-start current sources are enabled.

Oscillator

The oscillator frequency is set with an external resistor R_T connected between the RT/SYNC and GND1 pins. The resistor value is calculated from:

$$R_{T} = \frac{17100}{F_{S}} - 0.001(F_{S} - 400) \tag{1}$$

where F_S is the desired oscillator frequency in kHz (maximum of 2 MHz), and R_T is in k Ω . See Figure 10. The two gate driver outputs (OUT1 and OUT2) switch at half the oscillator frequency and 180° out of phase with each other. The voltage at the R_T /SYNC pin is internally regulated at 2.0V. The R_T resistor should be located as close as possible to the LM5032 with short direct connections to the pins.

The LM5032 can be synchronized to an external clock by applying a narrow clock pulse to the R_T /SYNC pin. See the Applications Information section for details on this procedure. The R_T resistor is always required, whether the oscillator is free running or externally synchronized.

PWM Comparator/Slope Compensation

The PWM comparator of each controller compares a slope compensated current ramp signal with the loop error voltage derived from the COMP pin. The COMP voltage is typically controlled by an external error amplifier/optocoupler feedback circuit to regulate the converter output voltage. Internally, the voltage at the COMP pin passes through two level shifting diodes and a gain reducing 3:1 resistor divider (see Figure 18). The compensated current ramp signal is a combination of the current waveform at the CS pin, and an internally generated ramp derived from the internal clock. At duty cycles greater than 50% current mode control circuits are prone to subharmonic oscillation. By adding a small fixed ramp to the external current sense signal oscillations can be avoided. The internal ramp has an amplitude of 45 μ A and is sourced into an internal $2k\Omega$ resistor, and a 42 $k\Omega$ resistor in parallel with the external impedance at the CS pin. The ramp current also flows through the external impedance connected to the CS pin and thus, the amount of slope compensation can be adjusted by varying the external circuit at the CS pin.

The output of the PWM comparator provides the pulse width information to the output drivers. This comparator is optimized for speed in order to achieve minimum controllable duty cycles. The comparator's output duty cycle is 0% for $V_{COMP} \le 1.5V$, and increases as V_{COMP} increases.

If either Soft-start pin is pulled low (internally or externally) the corresponding COMP pin is pulled down with it, forcing the output duty cycle to zero. When the Soft-start pin voltage increases, the COMP pin is allowed to increase. An internal 5 k Ω resistor connected from COMP to an internal 5.0V supply provides a pull-up for the COMP pin and bias current to the collector of the opto-coupler transistor.

2 Submit Documentation Feedback

Copyright © 2005–2013, Texas Instruments Incorporated

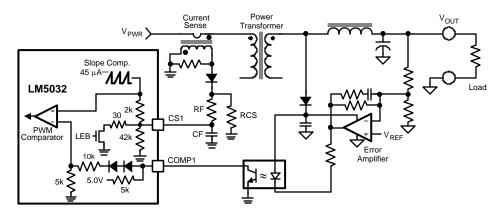


Figure 18. Typical Feedback Network

Cycle-by-Cycle Current Limit

Each CS pin is designed to accept a signal representative of its transformer primary current. If the voltage at CS exceeds 0.5V the current sense comparator terminates the present main output driver (OUT pin) pulse. If the high current fault persists, the controller operates with constant peak switch current in a cycle-by-cycle current limit mode, and a Hiccup Mode Current Limit Restart cycle begins (see below).

Each CS pin is internally connect to ground through a 30Ω resistor during the main output off time to discharge external filter capacitance. The discharge device remains on for an additional 50 ns after the main output driver switches high to blank leading edge transients in the current sensing circuit. Discharging the CS pin filter each cycle and blanking leading edge spikes reduces the filter requirement which improves the current sense response time.

The current sense comparators are fast and respond to short duration noise pulses. The external circuitry at each CS pin should include an R-C filter to suppress noise. Layout considerations are critical for the current sense filter and the sense resistor. Refer to the Applications Information section for PC board layout guidelines.

Hiccup Mode Current Limit Restart

If cycle-by-cycle current limiting continues in either or both controllers for a sufficient period of time, the Current Limit Restart circuit disables both regulators and initiates a soft-start sequence after a programmable delay. The duration of cycle-by-cycle current limiting before turn-off occurs is programmed by the value of the external capacitor at the RES pin. The dwell time before output switching resumes is programmed by the value of the Soft-start capacitor(s). The circuit is detailed in Figure 19 and the timing is shown in Figure 20. A description of this circuit's operation is as follows:

a) No current limit detected:

The 10 µA discharge current source at RES is enabled pulling the RES pin to ground.

b) Current limit repeatedly detected at both CS inputs:

The 20 µA current source at RES is enabled continuously to charge the RES pin capacitor as shown in Figure 20. The current limit comparators also terminate the PWM output pulses to provide a cycle-by-cycle current limiting. When the voltage on the RES capacitor reaches the 2.55V restart comparator threshold, the comparator sets the Restart Latch which produces the following restart sequence:

- The SS1 and SS2 pin charging currents are reduced from 50μA to 1 μA.
- An internal MOSFET is turned on to discharge the RES pin capacitor.
- The internal MOSFETs at SS1 and SS2 are turned on to discharge the Soft-start capacitors.
- COMP1 and COMP2 follow SS1 and SS2 respectively and reduce the PWM duty cycles to zero.
- When the voltages at the SS pins fall below 200mV, the internal MOSFETs at the SS pins are turned off allowing the SS pins to be charged by the 1µA current sources.
- When either SS pin reaches ≈1.5V its PWM controller produces the first pulse of a soft-start sequence which resets the Restart Latch. The SS charging currents are increased to 50 µA and the soft-start sequence

Copyright © 2005–2013, Texas Instruments Incorporated

continues at the normal rate.

If the overload condition still exists, the voltage at RES begins to increase again and repeat the restart cycle as shown in Figure 20. If the overload condition has been cleared, the RES pin is held at ground by the 10 μ A current source.

c) Current limit repeatedly detected at one of the two CS inputs:

In this condition the RES pin capacitor is charged by the 20 μ A current source once each clock cycle of the current limited regulator, and discharged by the 10 μ A current source once each clock cycle of the unaffected regulator. The voltage at the RES pin increases one fourth as fast as in case b) described above. The current limited regulator operates in a cycle-by-cycle current limit mode until the voltage at RES reaches the 2.55V threshold. When the Restart Comparator output switches high the Restart Latch is set, both SS pin capacitors are discharged to disable the regulator channels, and a restart sequence begins as described in case b) above.

To determine the value of the RES pin capacitor, see the Applications Information section.

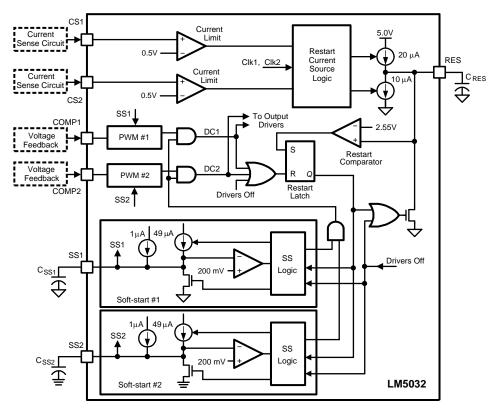


Figure 19. Current Limit Restart Circuit

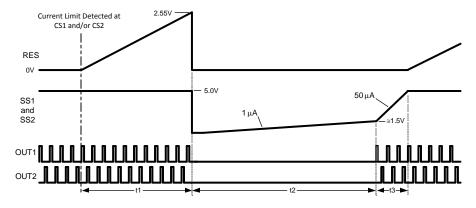


Figure 20. Current Limit Restart Timing

Soft-start

Each soft-start circuit allows the corresponding regulator to gradually reach a steady state operating point, thereby reducing startup current surges and output overshoot. Upon turn-on, both SS pins are internally held at ground. When VCC increases past its under-voltage threshold (UVT), the SS pins are released and internal 50 µA current sources charge the external capacitors. The voltage at each COMP pin follows the SS pin, and when COMP reaches ≊1.5V, the output pulses commence at a low duty cycle. The voltage at the SS pins continues to increase and saturates at ≊5.0V, The voltage at each COMP pin increases to the value required for regulation where it is controlled by its voltage feedback loop (see Figure 4).

If the internal Drivers Off line is activated (see Drivers Off, V_{CC} Disable), both SS pins are internally grounded. The SS pins pull the COMP pins to ground while the Driver Off signal disables the output drivers. When the event which activated the Drivers Off line is cleared and Vcc exceeds its under-voltage threshold, the SS pins are released. The internal 50 μ A current sources then charge the external soft-start capacitors allowing each regulator's output duty cycle to increase.

If the Current Limit Restart threshold is reached due to repeated over-current detections, both SS pins (and the COMP pins) are pulled to ground. The output drivers are disabled, and the 50 μ A SS pin current sources are reduced to 1 μ A. After a short propagation delay the SS pins and the COMP pins are released, and the external capacitors are charged up at a slow rate. When the COMP voltage reaches \approx 1.5V, the output drivers are enabled, and the current sources at the SS pins are increased to 50 μ A. The output duty cycle then increases to the value required for regulation.

To shutdown one regulator without affecting the other, ground the appropriate SS pin. This forces the COMP pin to ground, reducing the output duty cycle to zero for that regulator. Releasing the SS pin allows normal operation to resume.

Output Duty Cycle

The output driver's duty cycle for each controller is normally controlled by comparing the voltage provided to the COMP input by the external voltage feedback circuit with the current information at the CS pin. However, the maximum duty cycle during transient or fault conditions may be intentionally limited by two other circuits, both of which are common to the two controller channels.

User Defined Maximum Duty Cycle. The maximum allowed duty cycle can be set with the R_{DCL} resistor connected from the DCL pin to GND1, according to the following equation:

Maximum User Duty Cycle =
$$80\% \times R_{DCI}/R_T$$
 (2)

 R_T is the oscillator frequency programming resistor connected to the $R_T/SYNC$ pin. The value of the R_{DCL} resistor must be calculated after the R_T resistor is selected. See Figure 11. Referring to the block diagram of Figure 3 the voltage at the DCL pin is compared to the Ramp1 and Ramp2 signals, creating the UserMaxDC1 and UserMaxDC2 timing signals. These signal are provided to the two 4-input AND gates to limit the PWM duty cycle of both channels.

Line Voltage Maximum Duty Cycle. The voltage at the UVLO pin, normally proportional to the voltage at V_{PWR} , further limits the maximum duty cycle at high input voltages. Referring to Figure 13, when the UVLO pin is below 1.25V, the outputs are disabled. At UVLO = 1.25V the maximum allowed duty cycle is 80% (or less if limited by the DCL resistor). As the UVLO pin voltage increases with V_{PWR} , the maximum duty cycle decreases, reaching a minimum of 10% at \approx 4.5V. Referring to Figure 3 the UVLO voltage, after passing through an inverting gain stage, is compared to the Ramp1 and Ramp2 signals generated by the oscillator. The output of these comparators are the MaxDC1 and MaxDC2 timing signals. These signals are provided to the two 4-input AND gates which limit the PWM pulses delivered to the output drivers.

Resulting Output Duty Cycle. The controller duty cycle is determined by the four signals into the 4-input AND gates in Figure 3 (UserMaxDC, MaxDC, PWM and CLK). The output driver pulsewidth is equal to the least of these four pulses. Whichever input of the AND gate transitions high-to-low first terminates the output driver's ontime.

Driver Outputs

OUT1, the primary switch driver for Controller 1 is designed to drive the gate of an N-channel MOSFET with 1.5A sourcing current and 2.5A sinking current. The peak output levels are VCC and GND1. The ground return path for Controller 1 is GND1. The corresponding pins for Controller 2 are OUT2 and GND2.

Copyright © 2005–2013, Texas Instruments Incorporated

OUT1 and OUT2 are compound gate drivers with CMOS and Bipolar output transistors as shown in Figure 21. The parallel MOS and Bipolar devices provide a faster turn-off of the primary switch thereby reducing switching losses. The outputs switch at one-half the oscillator frequency with the rising edges at OUT1 and OUT2 180° out of phase with each other. The on-time of OUT1 and OUT2 is determined by their respective duty cycle control.

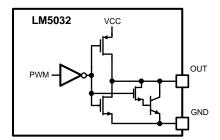


Figure 21. Compound Gate Driver

Thermal Shutdown

The LM5032 should be operated so the junction temperature does not exceed 125°C. If a junction temperature transient reaches 165°C (typical), the Thermal Shutdown circuit activates the V_{CC} Disable and Drivers Off lines (see Figure 17). The V_{CC} regulator and the four output drivers are disabled, the SS1, SS2, and RES pins are grounded, and the soft-start current is set to 50 μ A. This puts the LM5032 in a low power state helping to prevent catastrophic failures from accidental device overheating. When the junction temperature reduces below 145°C (typical hysteresis = 20°C), the V_{CC} regulator is enabled and a startup sequence is initiated (Figure 4).

APPLICATIONS INFORMATION

VIN

The voltage applied to the VIN pin, normally the same as the system voltage applied to the power transformer's primary (V_{PWR}), can vary in the range of 13 to 100V with transient capability to 105V. The current into VIN depends primarily on the output driver capacitive loads, the switching frequency, and any external load at VCC. If the power dissipation associated with the VIN current exceeds the package capability, an external voltage should be applied to VCC (see Figure 5 & Figure 6) to reduce power in the internal start-up regulator. It is recommended the circuit of Figure 22 be used to suppress transients which may occur at the input supply, in particular where VIN is operated close to the maximum operating rating of the LM5032.

When all internal bias currents for the LM5032 and output driver currents are supplied through VIN and the internal V_{CC} regulator, the required input current (I_{IN}) is shown in Figure 5 & Figure 6. In most applications, upon turn-on, I_{IN} increases with V_{IN} as shown in Figure 5 until the UVLO threshold is reached. After the outputs are enabled and the external VCC supply voltage is active, the current into VIN then drops to a nominal 120 μ A.

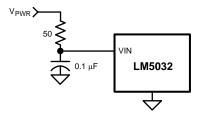


Figure 22. Input Transient Protection

FOR APPLICATIONS > 100V

For applications where the system input voltage (V_{PWR}) exceeds 100V, VIN can be powered from an external start-up regulator as shown in Figure 23, or from any other low voltage source as shown in Figure 24. Connecting VIN and VCC together allows the LM5032 to be operated with VIN below 13V. The voltage at VCC must not exceed 15V. The voltage source at the right side of Figure 23 is typically derived from the power stage, and becomes active once the LM5032's outputs are active.

Submit Documentation Feedback

Copyright © 2005–2013, Texas Instruments Incorporated

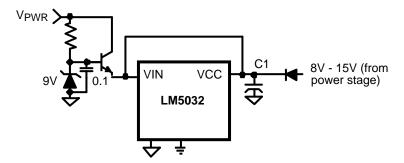


Figure 23. Start-up Regulator for V_{PWR} >100V

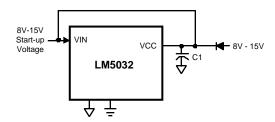


Figure 24. Bypassing the Internal Start-up Regulator

UVLO

The under-voltage lockout threshold (UVLO) is internally set at 1.25V at the UVLO pin. With two external resistors as shown in Figure 25, the LM5032 is enabled when V_{PWR} exceeds the programmed threshold voltage. When V_{PWR} is above the threshold, the internal 20 μ A current source is enabled to raise the voltage at the UVLO pin, providing hysteresis. R1 and R2 are determined from the following equations:

R1 =
$$V_{HYS}/20 \mu A$$
 (3)
R2 = $\frac{1.25 \times R1}{V_{PWR} - 1.25}$ (4)

where V_{HYS} is the desired UVLO hysteresis at V_{PWR} , and V_{PWR} in the second equation is the turn-on voltage. For example, if the LM5032 is to be enabled when V_{PWR} reaches 20V, and disabled when V_{PWR} is decreased to 17V, R1 calculates to 150 k Ω , and R2 calculates to 10 k Ω . The voltage at UVLO should not exceed 6V at any time.

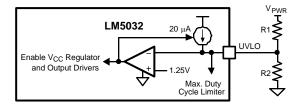


Figure 25. UVLO Circuit

The LM5032 can be remotely shutdown by taking the UVLO pin below 1.25V with an external open collector or open drain device, as shown in Figure 26. The outputs, and the V_{CC} regulator, are disabled, and the LM5032 enters a low power mode. To shut down one regulator without affecting the other, see the Soft-start section.

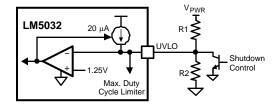


Figure 26. Shutdown Control

VCC

The capacitor at VCC provides not only regulator noise filtering and stability, but also prevents VCC from dropping to the lower under-voltage threshold level (UVT = 6.2V) when the output drivers source current surges to the external MOSFET gates. Additionally, the capacitor provides a necessary time delay during startup. The time delay allows the internal circuitry of the LM5032 and associated external circuitry to stabilize before VCC reaches the upper UVT threshold level (7.6V), at which time the outputs are enabled and the soft-start sequence begins. VCC is nominally regulated at 7.7V. The delay to the UVT level (Figure 4) is calculated from the following:

$$t_{VCC} = \frac{C1 \times 7.6V}{I_{CC(Lim)}}$$
 (5)

where C1 is the capacitor at VCC and $I_{CC(Lim)}$ is the V_{CC} regulator's current limit. If the capacitor is 0.1 μ F, the nominal $I_{CC(Lim)}$ of 22 mA provides a delay of approximately 35 μ s. The capacitor value should range between 0.1 μ F and 25 μ F. Experimentation with the final design may be necessary to determine the optimum value for the VCC capacitor.

The average V_{CC} regulator current required to drive the external MOSFETs is a function of the MOSFET gate capacitance and the switching frequency (see Figure 7). To ensure VCC does not droop below the lower UVT threshold, an external supply should be diode connected to VCC to provide the required current, as shown in Figure 27. The applied V_{CC} voltage must be between 8V and 15V. Providing the V_{CC} voltage higher than the 7.7V regulation level with an external supply shuts off the internal regulator, reducing power dissipation within the IC. Internally there is a diode from the V_{CC} regulator output to VIN. Typically the applied voltage is derived from an auxiliary winding on the power transformer, or on the output inductor.

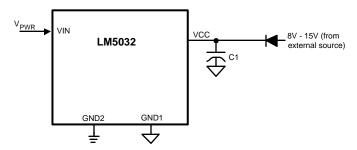


Figure 27. External Power to V_{CC}

OSCILLATOR, SYNC INPUT

The oscillator frequency is generally selected in conjunction with the system magnetic components, and any other aspects of the system which may be affected by the frequency. The R_T resistor at the RT/SYNC pin sets the frequency according to Equation 1. Each output (OUT1 and OUT2) switches at one-half the oscillator frequency. If the required frequency tolerance is critical in a particular application, the tolerance of the external resistor and the frequency tolerance specified in the Electrical Characteristics table must be considered when selecting the R_T resistor.

If the LM5032 is to be synchronized to an external clock, that signal must be coupled into the RT/SYNC pin through a 100 pF capacitor. The external synchronizing frequency must be at least 4% higher than the free running frequency set by the R_T resistor and no higher than twice the free running frequency. The RT/SYNC pin voltage is nominally regulated at 2.0V and the external pulse amplitude should lift the pin to between 3.8V and 5.0V on the low-to-high transition. The synchronization pulse width should be between 15 and 150 ns. The R_T resistor is always required, whether the oscillator is free running or externally synchronized.

VOLTAGE FEEDBACK, COMP1, COMP2

Each COMP pin is designed to accept a voltage feedback signal from the respective regulated output via an error amplifier and (typically) an opto-coupler. A typical configuration is shown in Figure 18. V_{OUT} is compared to a reference by the error amplifier which has an appropriate frequency compensation network. The amplifier's output drives the opto-coupler, which in turn drives the COMP pin.

When the LM5032's two controller channels are configured to provide a single high current output, COMP1 and COMP2 are typically connected together, and to the feedback signal from the optocoupler.

CURRENT SENSE, CS1, CS2

Each CS pin receives an input signal representative of its transformer's primary current, either from a current sense transformer or from a resistor in series with the source of the primary switch, as shown in Figure 28 and Figure 29. In both cases the sensed current creates a ramping voltage across R1, and the R_F/C_F filter suppresses noise and transients. R1, R_F and C_F should be as physically close to the LM5032 as possible, and the ground connection from the current sense transformer, or R1, should be a dedicated track to the appropriate GND pin. The current sense components must provide >0.5V at the CS pin when an over-current condition exists.

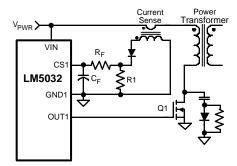


Figure 28. Current Sense Using a Current Sense Transformer

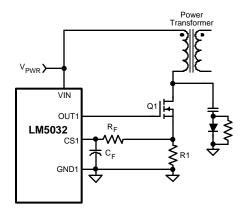


Figure 29. Current Sense Using a Source Sense Resistor (R1)

HICCUP MODE CURRENT LIMIT RESTART

This circuit's operation is described in the Functional Description. Also see Figure 19 and Figure 20. In the case of continuous current limit detection at both CS pins, the time required to reach the 2.55V RES pin threshold is:

$$t1 = \frac{C_{RES} \times 2.55V}{20 \,\mu\text{A}} = 1.275 \times 10^5 \times C_{RES}$$
 (6)

For example, if $C_{RES} = 0.1 \, \mu F$ the time t1 in Figure 18 is approximately 12.75 ms.

In the case of continuous current limit detection at one CS pin only, the time to reach the 2.55V threshold is increased by a factor of four, or:

$$t1 = 5.1 \times 10^5 \times C_{RES}$$
 (7)

The time t2 in Figure 20 is set by the capacitor at each SS pin and the internal 1 µA current source, and is equal

$$t2 = \frac{C_{SS} \times 1.5V}{1 \,\mu\text{A}} = 1.5 \times 10^6 \times C_{SS} \tag{8}$$

If $C_{SS} = 0.1~\mu F$ t2 is $\approxeq 150$ ms. Time t3 is set by the internal 50 μA current source, and is equal to:

$$t3 = \frac{C_{SS} \times 3.5V}{50 \,\mu\text{A}} = 7 \times 10^4 \times C_{SS}$$
 (9)

The time t2 provides a periodic dwell time for the converter in the event of a sustained overload or short circuit. This results in lower average input current and lower power dissipated within the circuit components. It is recommended that the ratio of t2/(t1 + t3) be in the range of 5 to 10 to make good use of this feature.

If the application requires no delay from the first detection of a current limit condition, so that t1 is effectively zero, the RES pin can be left open (no external capacitor). If it is desired to disable the hiccup mode current limit operation then the RES pin should be connected to ground.

SOFT-START

The capacitors at SS1 and SS2 determine the time required for each regulator's output duty cycle to increase from zero to its final value for regulation. The minimum acceptable time is dependent on the output capacitance and the response of each feedback loop to the COMP pin. If the Soft-start time is too quick, the output could significantly overshoot its intended voltage before the feedback loop has a chance to regulate the PWM controller.

After power is applied and V_{CC} has passed its upper UVT threshold (≈7.6V), the voltage at each SS pin ramps up as its external capacitor is charged up by an internal 50 µA current source (see Figure 4). The voltage at the COMP pins follow the SS pins. When both have reached ≥1.5V, PWM pulses appear at the driver outputs with very low duty cycle. The voltage at each SS pin continues to increase to ≈5.0V. The voltage at each COMP pin, and the PWM duty cycle, increase to the value required for regulation as determined by its feedback loop. The time t1 in Figure 4 is calculated from:

$$t1 = \frac{C_{SS} \times 1.5V}{50 \,\mu\text{A}} = 3 \times 10^4 \times C_{SS} \tag{10}$$

With a 0.1 µF capacitor at SS, t1 is ≈3 ms.

If the Hiccup Mode Current Limit Restart circuit activates due to repeated current limit detections at CS1 and/or CS2, both SS1 and SS2 are internally grounded (see the section on Hiccup Mode Current Limit Restart). After a short propagation delay, the SS pins are released and the external SS pin capacitors are charged by internal 1 µA current sources. The slow charge rate provides a rest or dwell time for the converter power stage (t2 in Figure 20), reducing the average input current and component temperature rise while in an overload condition. When the voltage at the SS and COMP pins reach ≊1.5V, the first pulse out of either PWM comparator switches the internal SS pin current sources to 50 µA. The voltages at the SS and COMP pins then increase more quickly, increasing the duty cycle at the output drivers. The rest time t2 is the time required for SS to reach 1.5V:

$$t2 = \frac{C_{SS} \times 1.5V}{1 \,\mu\text{A}} = 1.5 \times 10^6 \times C_{SS} \tag{11}$$

Submit Documentation Feedback

Copyright © 2005-2013, Texas Instruments Incorporated

With a 0.1 µF capacitor at SS, t2 is ≈150 ms.

Experimentation with the startup sequence and over-current restart condition is usually necessary to determine the appropriate value for the SS capacitors.

To shutdown one regulator without affecting the other, ground the appropriate SS pin with an open collector or open drain device as shown in Figure 30. The SS pin forces the COMP pin to ground which reduces the PWM duty cycle to zero for that regulator. Releasing the SS pin allows normal operation to resume.

When the LM5032's two controller channels are configured to provide a single high current output, SS1 and SS2 are typically connected together, requiring a single capacitor for the two pins.

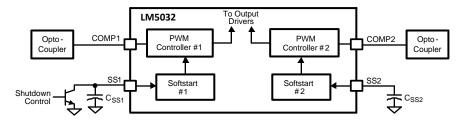


Figure 30. Shutting Down One Regulator Channel

LINE VOLTAGE DEPENDENT MAXIMUM DUTY CYCLE

As V_{PWR} increases and the voltage at UVLO follows, the maximum allowed duty cycle decreases according to the graph of Figure 12. Using values from the example above (R1 = 150 k Ω , R2 = 10 k Ω in Figure 25), the maximum duty cycle varies as shown in Figure 13. If it is desired to increase the slope of the ramp in Figure 13, Figure 31 shows a suggested configuration. After the LM5032 is enabled, Z1 clamps the voltage across R1B, and UVLO increases with V_{PWR} at a rate determined by the ratio R2/(R1A + R2).

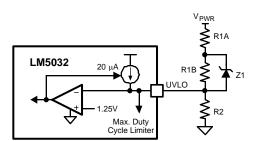


Figure 31. Altering the Slope of Duty Cycle vs. V_{PWR}

USER DEFINED MAX DUTY CYCLE

The maximum allowed duty cycle at OUT1 and OUT2 can be set with a resistor from DCL to GND1. See Figure 11 and Equation 2. The default maximum duty cycle (80%) determined by the internal clock signals can be selected by setting $R_{DCL} = R_T$. The oscillator frequency setting resistor (R_T) must be determined before R_{DCL} is selected. The DCL pin should not be left open.

PRINTED CIRCUIT (PC) BOARD LAYOUT

The LM5032 Current Sense and PWM comparators are very fast, and respond to short duration noise pulses. The components at the CS, COMP, SS, DCL, UVLO, and the RT/SYNC pins should be as physically close as possible to the IC, thereby minimizing noise pickup in the PC board tracks.

Layout considerations are critical for the current sense filter. If current sense transformers are used, both leads of each transformer secondary should be routed to the sense filter components and to the IC pins. The ground side of each transformer should be connected via a dedicated PC board track to its appropriate GND pin, rather than through the ground plane.

Product Folder Links: LM5032

Copyright © 2005-2013, Texas Instruments Incorporated Submit Documentation Feedback

If the current sense circuits employ sense resistors in the drive transistor sources, low inductance resistors should be used. In this case, all the noise sensitive low current ground tracks should be connected in common near the IC, and then a single connection made to the power ground (sense resistor ground point). The outputs of the LM5032 should have short direct paths to the power MOSFETs in order to minimize inductance in the PC board traces.

The two ground pins (GND1, GND2) must be connected together with a short direct connection to avoid jitter due to relative ground bounce in the operation of the two regulators.

If the internal dissipation of the LM5032 produces high junction temperatures during normal operation, the use of wide PC board traces can help conduct heat away from the IC. Judicious positioning of the PC board within the end product, along with use of any available air flow (forced or natural convection) can help reduce the junction temperatures.

APPLICATION CIRCUIT EXAMPLE

Figure 33 shows an example of an LM5032 controlled 200W dual interleaved regulator which provides two independent regulated outputs. The input voltage range (V_{PWR}) is 36V to 78V, and the output voltages are 12V each. The output current capability is 8.3A from each output. Current sense transformers T1 and T2 provide information to the CS2 and CS1 pins for the current mode control, and error amplifiers U5 and U6 provide voltage feedback to COMP2 and COMP1 via optocoupler U2. Auxiliary power is provided to VCC from the primary side snubbers when the LM5032 outputs are enabled. The UVLO levels are ≈ 34.3V for increasing V_{PWR}, and ≈ 32.3V for decreasing V_{PWR}. The circuit can be shutdown by forcing the ON/OFF input (J2) below 1.25V. An external synchronizing frequency can be applied to the SYNC input (J3). Each regulator output is current limited at ≈ 9A.

Efficiency measurements for this circuit are shown in Figure 32.

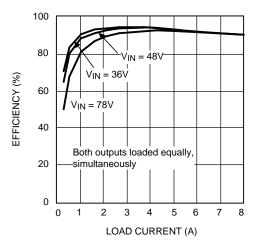


Figure 32. Total Board Efficiency

Submit Documentation Feedback

Copyright © 2005-2013, Texas Instruments Incorporated

Evaluation Board Schematic

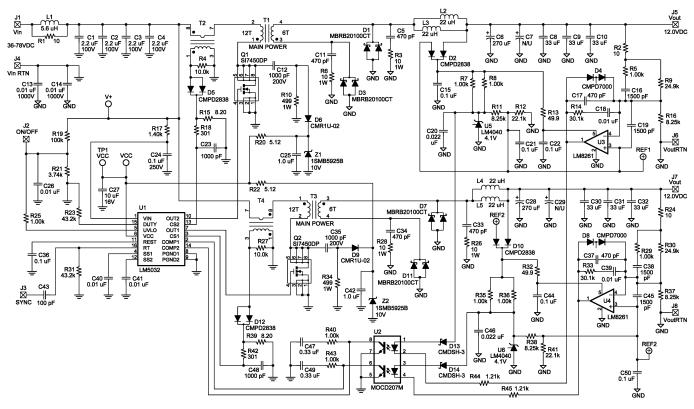


Figure 33. Dual Interleaved Regulator

REVISION HISTORY

Ch	anges from Original (April 2013) to Revision A	Pa	ge
•	Changed layout of National Data Sheet to TI format		23

PACKAGE OPTION ADDENDUM

7-Oct-2013

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
LM5032MTC/NOPB	ACTIVE	TSSOP	PW	16	92	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	-40 to 125	LM5032 MTC	Samples
LM5032MTCX/NOPB	ACTIVE	TSSOP	PW	16	2500	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	-40 to 125	LM5032 MTC	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

- (3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com 23-Sep-2013

TAPE AND REEL INFORMATION

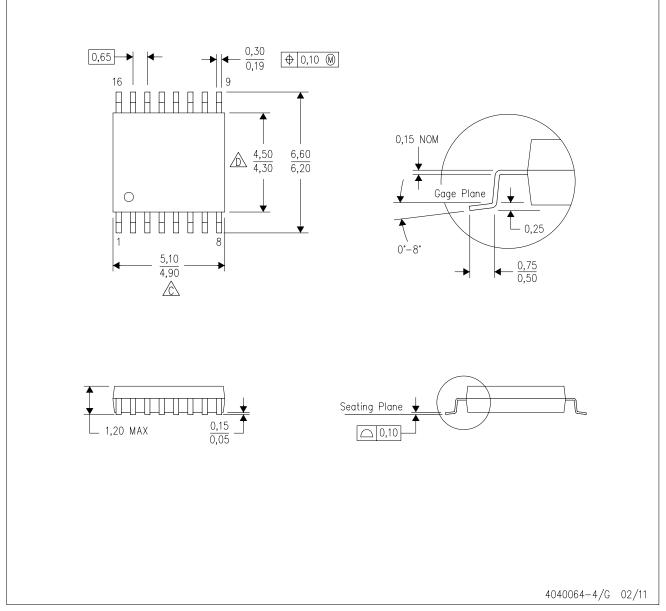
	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing			Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
LM5032MTCX/NOPB	TSSOP	PW	16	2500	330.0	12.4	6.95	8.3	1.6	8.0	12.0	Q1

www.ti.com 23-Sep-2013



*All dimensions are nominal

Device	Package Type	Type Package Drawing Pins			Length (mm)	Width (mm)	Height (mm)	
LM5032MTCX/NOPB	TSSOP	PW	16	2500	367.0	367.0	35.0	

PW (R-PDSO-G16)

PLASTIC SMALL OUTLINE

NOTES:

- A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M—1994.
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side.
- E. Falls within JEDEC MO-153

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Communications and Telecom **Amplifiers** amplifier.ti.com www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps

DSP **Energy and Lighting** dsp.ti.com www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical logic.ti.com Logic Security www.ti.com/security

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity <u>www.ti.com/wirelessconnectivity</u>